package parlia import ( "bytes" "context" "encoding/hex" "errors" "fmt" "io" "math" "math/big" "math/rand" "sort" "strings" "sync" "time" lru "github.com/hashicorp/golang-lru" "golang.org/x/crypto/sha3" "github.com/ethereum/go-ethereum" "github.com/ethereum/go-ethereum/accounts" "github.com/ethereum/go-ethereum/accounts/abi" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/gopool" "github.com/ethereum/go-ethereum/common/hexutil" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/consensus/misc" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/forkid" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/systemcontracts" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/internal/ethapi" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rpc" "github.com/ethereum/go-ethereum/trie" ) const ( inMemorySnapshots = 128 // Number of recent snapshots to keep in memory inMemorySignatures = 4096 // Number of recent block signatures to keep in memory checkpointInterval = 1024 // Number of blocks after which to save the snapshot to the database defaultEpochLength = uint64(100) // Default number of blocks of checkpoint to update validatorSet from contract extraVanity = 32 // Fixed number of extra-data prefix bytes reserved for signer vanity extraSeal = 65 // Fixed number of extra-data suffix bytes reserved for signer seal nextForkHashSize = 4 // Fixed number of extra-data suffix bytes reserved for nextForkHash. validatorBytesLength = common.AddressLength wiggleTime = uint64(1) // second, Random delay (per signer) to allow concurrent signers initialBackOffTime = uint64(1) // second processBackOffTime = uint64(1) // second systemRewardPercent = 4 // it means 1/2^4 = 1/16 percentage of gas fee incoming will be distributed to system ) var ( uncleHash = types.CalcUncleHash(nil) // Always Keccak256(RLP([])) as uncles are meaningless outside of PoW. diffInTurn = big.NewInt(2) // Block difficulty for in-turn signatures diffNoTurn = big.NewInt(1) // Block difficulty for out-of-turn signatures // 100 native token maxSystemBalance = new(big.Int).Mul(big.NewInt(100), big.NewInt(params.Ether)) systemContracts = map[common.Address]bool{ common.HexToAddress(systemcontracts.ValidatorContract): true, common.HexToAddress(systemcontracts.SlashContract): true, common.HexToAddress(systemcontracts.SystemRewardContract): true, common.HexToAddress(systemcontracts.LightClientContract): true, common.HexToAddress(systemcontracts.RelayerHubContract): true, common.HexToAddress(systemcontracts.GovHubContract): true, common.HexToAddress(systemcontracts.TokenHubContract): true, common.HexToAddress(systemcontracts.RelayerIncentivizeContract): true, common.HexToAddress(systemcontracts.CrossChainContract): true, } ) // Various error messages to mark blocks invalid. These should be private to // prevent engine specific errors from being referenced in the remainder of the // codebase, inherently breaking if the engine is swapped out. Please put common // error types into the consensus package. var ( // errUnknownBlock is returned when the list of validators is requested for a block // that is not part of the local blockchain. errUnknownBlock = errors.New("unknown block") // errMissingVanity is returned if a block's extra-data section is shorter than // 32 bytes, which is required to store the signer vanity. errMissingVanity = errors.New("extra-data 32 byte vanity prefix missing") // errMissingSignature is returned if a block's extra-data section doesn't seem // to contain a 65 byte secp256k1 signature. errMissingSignature = errors.New("extra-data 65 byte signature suffix missing") // errExtraValidators is returned if non-sprint-end block contain validator data in // their extra-data fields. errExtraValidators = errors.New("non-sprint-end block contains extra validator list") // errInvalidSpanValidators is returned if a block contains an // invalid list of validators (i.e. non divisible by 20 bytes). errInvalidSpanValidators = errors.New("invalid validator list on sprint end block") // errInvalidMixDigest is returned if a block's mix digest is non-zero. errInvalidMixDigest = errors.New("non-zero mix digest") // errInvalidUncleHash is returned if a block contains an non-empty uncle list. errInvalidUncleHash = errors.New("non empty uncle hash") // errMismatchingEpochValidators is returned if a sprint block contains a // list of validators different than the one the local node calculated. errMismatchingEpochValidators = errors.New("mismatching validator list on epoch block") // errInvalidDifficulty is returned if the difficulty of a block is missing. errInvalidDifficulty = errors.New("invalid difficulty") // errWrongDifficulty is returned if the difficulty of a block doesn't match the // turn of the signer. errWrongDifficulty = errors.New("wrong difficulty") // errOutOfRangeChain is returned if an authorization list is attempted to // be modified via out-of-range or non-contiguous headers. errOutOfRangeChain = errors.New("out of range or non-contiguous chain") // errBlockHashInconsistent is returned if an authorization list is attempted to // insert an inconsistent block. errBlockHashInconsistent = errors.New("the block hash is inconsistent") // errUnauthorizedValidator is returned if a header is signed by a non-authorized entity. errUnauthorizedValidator = errors.New("unauthorized validator") // errCoinBaseMisMatch is returned if a header's coinbase do not match with signature errCoinBaseMisMatch = errors.New("coinbase do not match with signature") // errRecentlySigned is returned if a header is signed by an authorized entity // that already signed a header recently, thus is temporarily not allowed to. errRecentlySigned = errors.New("recently signed") ) // SignerFn is a signer callback function to request a header to be signed by a // backing account. type SignerFn func(accounts.Account, string, []byte) ([]byte, error) type SignerTxFn func(accounts.Account, *types.Transaction, *big.Int) (*types.Transaction, error) func isToSystemContract(to common.Address) bool { return systemContracts[to] } // ecrecover extracts the Ethereum account address from a signed header. func ecrecover(header *types.Header, sigCache *lru.ARCCache, chainId *big.Int) (common.Address, error) { // If the signature's already cached, return that hash := header.Hash() if address, known := sigCache.Get(hash); known { return address.(common.Address), nil } // Retrieve the signature from the header extra-data if len(header.Extra) < extraSeal { return common.Address{}, errMissingSignature } signature := header.Extra[len(header.Extra)-extraSeal:] // Recover the public key and the Ethereum address pubkey, err := crypto.Ecrecover(SealHash(header, chainId).Bytes(), signature) if err != nil { return common.Address{}, err } var signer common.Address copy(signer[:], crypto.Keccak256(pubkey[1:])[12:]) sigCache.Add(hash, signer) return signer, nil } // ParliaRLP returns the rlp bytes which needs to be signed for the parlia // sealing. The RLP to sign consists of the entire header apart from the 65 byte signature // contained at the end of the extra data. // // Note, the method requires the extra data to be at least 65 bytes, otherwise it // panics. This is done to avoid accidentally using both forms (signature present // or not), which could be abused to produce different hashes for the same header. func ParliaRLP(header *types.Header, chainId *big.Int) []byte { b := new(bytes.Buffer) encodeSigHeader(b, header, chainId) return b.Bytes() } // Parlia is the consensus engine of BSC type Parlia struct { chainConfig *params.ChainConfig // Chain config config *params.ParliaConfig // Consensus engine configuration parameters for parlia consensus genesisHash common.Hash db ethdb.Database // Database to store and retrieve snapshot checkpoints recentSnaps *lru.ARCCache // Snapshots for recent block to speed up signatures *lru.ARCCache // Signatures of recent blocks to speed up mining signer types.Signer val common.Address // Ethereum address of the signing key signFn SignerFn // Signer function to authorize hashes with signTxFn SignerTxFn lock sync.RWMutex // Protects the signer fields ethAPI *ethapi.PublicBlockChainAPI validatorSetABI abi.ABI slashABI abi.ABI // The fields below are for testing only fakeDiff bool // Skip difficulty verifications } // New creates a Parlia consensus engine. func New( chainConfig *params.ChainConfig, db ethdb.Database, ethAPI *ethapi.PublicBlockChainAPI, genesisHash common.Hash, ) *Parlia { // get parlia config parliaConfig := chainConfig.Parlia // Set any missing consensus parameters to their defaults if parliaConfig != nil && parliaConfig.Epoch == 0 { parliaConfig.Epoch = defaultEpochLength } // Allocate the snapshot caches and create the engine recentSnaps, err := lru.NewARC(inMemorySnapshots) if err != nil { panic(err) } signatures, err := lru.NewARC(inMemorySignatures) if err != nil { panic(err) } vABI, err := abi.JSON(strings.NewReader(validatorSetABI)) if err != nil { panic(err) } sABI, err := abi.JSON(strings.NewReader(slashABI)) if err != nil { panic(err) } c := &Parlia{ chainConfig: chainConfig, config: parliaConfig, genesisHash: genesisHash, db: db, ethAPI: ethAPI, recentSnaps: recentSnaps, signatures: signatures, validatorSetABI: vABI, slashABI: sABI, signer: types.NewEIP155Signer(chainConfig.ChainID), } return c } func (p *Parlia) IsSystemTransaction(tx *types.Transaction, header *types.Header) (bool, error) { // deploy a contract if tx.To() == nil { return false, nil } sender, err := types.Sender(p.signer, tx) if err != nil { return false, errors.New("UnAuthorized transaction") } if sender == header.Coinbase && isToSystemContract(*tx.To()) && tx.GasPrice().Cmp(big.NewInt(0)) == 0 { return true, nil } return false, nil } func (p *Parlia) IsSystemContract(to *common.Address) bool { if to == nil { return false } return isToSystemContract(*to) } // Author implements consensus.Engine, returning the SystemAddress func (p *Parlia) Author(header *types.Header) (common.Address, error) { return header.Coinbase, nil } // VerifyHeader checks whether a header conforms to the consensus rules. func (p *Parlia) VerifyHeader(chain consensus.ChainHeaderReader, header *types.Header, seal bool) error { return p.verifyHeader(chain, header, nil) } // VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers. The // method returns a quit channel to abort the operations and a results channel to // retrieve the async verifications (the order is that of the input slice). func (p *Parlia) VerifyHeaders(chain consensus.ChainHeaderReader, headers []*types.Header, seals []bool) (chan<- struct{}, <-chan error) { abort := make(chan struct{}) results := make(chan error, len(headers)) gopool.Submit(func() { for i, header := range headers { err := p.verifyHeader(chain, header, headers[:i]) select { case <-abort: return case results <- err: } } }) return abort, results } // verifyHeader checks whether a header conforms to the consensus rules.The // caller may optionally pass in a batch of parents (ascending order) to avoid // looking those up from the database. This is useful for concurrently verifying // a batch of new headers. func (p *Parlia) verifyHeader(chain consensus.ChainHeaderReader, header *types.Header, parents []*types.Header) error { if header.Number == nil { return errUnknownBlock } number := header.Number.Uint64() // Don't waste time checking blocks from the future if header.Time > uint64(time.Now().Unix()) { return consensus.ErrFutureBlock } // Check that the extra-data contains the vanity, validators and signature. if len(header.Extra) < extraVanity { return errMissingVanity } if len(header.Extra) < extraVanity+extraSeal { return errMissingSignature } // check extra data isEpoch := number%p.config.Epoch == 0 // Ensure that the extra-data contains a signer list on checkpoint, but none otherwise signersBytes := len(header.Extra) - extraVanity - extraSeal if !isEpoch && signersBytes != 0 { return errExtraValidators } if isEpoch && signersBytes%validatorBytesLength != 0 { return errInvalidSpanValidators } // Ensure that the mix digest is zero as we don't have fork protection currently if header.MixDigest != (common.Hash{}) { return errInvalidMixDigest } // Ensure that the block doesn't contain any uncles which are meaningless in PoA if header.UncleHash != uncleHash { return errInvalidUncleHash } // Ensure that the block's difficulty is meaningful (may not be correct at this point) if number > 0 { if header.Difficulty == nil { return errInvalidDifficulty } } // If all checks passed, validate any special fields for hard forks if err := misc.VerifyForkHashes(chain.Config(), header, false); err != nil { return err } // All basic checks passed, verify cascading fields return p.verifyCascadingFields(chain, header, parents) } // verifyCascadingFields verifies all the header fields that are not standalone, // rather depend on a batch of previous headers. The caller may optionally pass // in a batch of parents (ascending order) to avoid looking those up from the // database. This is useful for concurrently verifying a batch of new headers. func (p *Parlia) verifyCascadingFields(chain consensus.ChainHeaderReader, header *types.Header, parents []*types.Header) error { // The genesis block is the always valid dead-end number := header.Number.Uint64() if number == 0 { return nil } var parent *types.Header if len(parents) > 0 { parent = parents[len(parents)-1] } else { parent = chain.GetHeader(header.ParentHash, number-1) } if parent == nil || parent.Number.Uint64() != number-1 || parent.Hash() != header.ParentHash { return consensus.ErrUnknownAncestor } snap, err := p.snapshot(chain, number-1, header.ParentHash, parents) if err != nil { return err } err = p.blockTimeVerifyForRamanujanFork(snap, header, parent) if err != nil { return err } // Verify that the gas limit is <= 2^63-1 capacity := uint64(0x7fffffffffffffff) if header.GasLimit > capacity { return fmt.Errorf("invalid gasLimit: have %v, max %v", header.GasLimit, capacity) } // Verify that the gasUsed is <= gasLimit if header.GasUsed > header.GasLimit { return fmt.Errorf("invalid gasUsed: have %d, gasLimit %d", header.GasUsed, header.GasLimit) } // Verify that the gas limit remains within allowed bounds diff := int64(parent.GasLimit) - int64(header.GasLimit) if diff < 0 { diff *= -1 } limit := parent.GasLimit / params.GasLimitBoundDivisor if uint64(diff) >= limit || header.GasLimit < params.MinGasLimit { return fmt.Errorf("invalid gas limit: have %d, want %d += %d", header.GasLimit, parent.GasLimit, limit) } // All basic checks passed, verify the seal and return return p.verifySeal(chain, header, parents) } // snapshot retrieves the authorization snapshot at a given point in time. func (p *Parlia) snapshot(chain consensus.ChainHeaderReader, number uint64, hash common.Hash, parents []*types.Header) (*Snapshot, error) { // Search for a snapshot in memory or on disk for checkpoints var ( headers []*types.Header snap *Snapshot ) for snap == nil { // If an in-memory snapshot was found, use that if s, ok := p.recentSnaps.Get(hash); ok { snap = s.(*Snapshot) break } // If an on-disk checkpoint snapshot can be found, use that if number%checkpointInterval == 0 { if s, err := loadSnapshot(p.config, p.signatures, p.db, hash, p.ethAPI); err == nil { log.Trace("Loaded snapshot from disk", "number", number, "hash", hash) snap = s break } } // If we're at the genesis, snapshot the initial state. if number == 0 { checkpoint := chain.GetHeaderByNumber(number) if checkpoint != nil { // get checkpoint data hash := checkpoint.Hash() validatorBytes := checkpoint.Extra[extraVanity : len(checkpoint.Extra)-extraSeal] // get validators from headers validators, err := ParseValidators(validatorBytes) if err != nil { return nil, err } // new snap shot snap = newSnapshot(p.config, p.signatures, number, hash, validators, p.ethAPI) if err := snap.store(p.db); err != nil { return nil, err } log.Info("Stored checkpoint snapshot to disk", "number", number, "hash", hash) break } } // No snapshot for this header, gather the header and move backward var header *types.Header if len(parents) > 0 { // If we have explicit parents, pick from there (enforced) header = parents[len(parents)-1] if header.Hash() != hash || header.Number.Uint64() != number { return nil, consensus.ErrUnknownAncestor } parents = parents[:len(parents)-1] } else { // No explicit parents (or no more left), reach out to the database header = chain.GetHeader(hash, number) if header == nil { return nil, consensus.ErrUnknownAncestor } } headers = append(headers, header) number, hash = number-1, header.ParentHash } // check if snapshot is nil if snap == nil { return nil, fmt.Errorf("unknown error while retrieving snapshot at block number %v", number) } // Previous snapshot found, apply any pending headers on top of it for i := 0; i < len(headers)/2; i++ { headers[i], headers[len(headers)-1-i] = headers[len(headers)-1-i], headers[i] } snap, err := snap.apply(headers, chain, parents, p.chainConfig.ChainID) if err != nil { return nil, err } p.recentSnaps.Add(snap.Hash, snap) // If we've generated a new checkpoint snapshot, save to disk if snap.Number%checkpointInterval == 0 && len(headers) > 0 { if err = snap.store(p.db); err != nil { return nil, err } log.Trace("Stored snapshot to disk", "number", snap.Number, "hash", snap.Hash) } return snap, err } // VerifyUncles implements consensus.Engine, always returning an error for any // uncles as this consensus mechanism doesn't permit uncles. func (p *Parlia) VerifyUncles(chain consensus.ChainReader, block *types.Block) error { if len(block.Uncles()) > 0 { return errors.New("uncles not allowed") } return nil } // VerifySeal implements consensus.Engine, checking whether the signature contained // in the header satisfies the consensus protocol requirements. func (p *Parlia) VerifySeal(chain consensus.ChainReader, header *types.Header) error { return p.verifySeal(chain, header, nil) } // verifySeal checks whether the signature contained in the header satisfies the // consensus protocol requirements. The method accepts an optional list of parent // headers that aren't yet part of the local blockchain to generate the snapshots // from. func (p *Parlia) verifySeal(chain consensus.ChainHeaderReader, header *types.Header, parents []*types.Header) error { // Verifying the genesis block is not supported number := header.Number.Uint64() if number == 0 { return errUnknownBlock } // Retrieve the snapshot needed to verify this header and cache it snap, err := p.snapshot(chain, number-1, header.ParentHash, parents) if err != nil { return err } // Resolve the authorization key and check against validators signer, err := ecrecover(header, p.signatures, p.chainConfig.ChainID) if err != nil { return err } if signer != header.Coinbase { return errCoinBaseMisMatch } if _, ok := snap.Validators[signer]; !ok { return errUnauthorizedValidator } for seen, recent := range snap.Recents { if recent == signer { // Signer is among recents, only fail if the current block doesn't shift it out if limit := uint64(len(snap.Validators)/2 + 1); seen > number-limit { return errRecentlySigned } } } // Ensure that the difficulty corresponds to the turn-ness of the signer if !p.fakeDiff { inturn := snap.inturn(signer) if inturn && header.Difficulty.Cmp(diffInTurn) != 0 { return errWrongDifficulty } if !inturn && header.Difficulty.Cmp(diffNoTurn) != 0 { return errWrongDifficulty } } return nil } // Prepare implements consensus.Engine, preparing all the consensus fields of the // header for running the transactions on top. func (p *Parlia) Prepare(chain consensus.ChainHeaderReader, header *types.Header) error { header.Coinbase = p.val header.Nonce = types.BlockNonce{} number := header.Number.Uint64() snap, err := p.snapshot(chain, number-1, header.ParentHash, nil) if err != nil { return err } // Set the correct difficulty header.Difficulty = CalcDifficulty(snap, p.val) // Ensure the extra data has all it's components if len(header.Extra) < extraVanity-nextForkHashSize { header.Extra = append(header.Extra, bytes.Repeat([]byte{0x00}, extraVanity-nextForkHashSize-len(header.Extra))...) } header.Extra = header.Extra[:extraVanity-nextForkHashSize] nextForkHash := forkid.NextForkHash(p.chainConfig, p.genesisHash, number) header.Extra = append(header.Extra, nextForkHash[:]...) if number%p.config.Epoch == 0 { newValidators, err := p.getCurrentValidators(header.ParentHash, new(big.Int).Sub(header.Number, common.Big1)) if err != nil { return err } // sort validator by address sort.Sort(validatorsAscending(newValidators)) for _, validator := range newValidators { header.Extra = append(header.Extra, validator.Bytes()...) } } // add extra seal space header.Extra = append(header.Extra, make([]byte, extraSeal)...) // Mix digest is reserved for now, set to empty header.MixDigest = common.Hash{} // Ensure the timestamp has the correct delay parent := chain.GetHeader(header.ParentHash, number-1) if parent == nil { return consensus.ErrUnknownAncestor } header.Time = p.blockTimeForRamanujanFork(snap, header, parent) if header.Time < uint64(time.Now().Unix()) { header.Time = uint64(time.Now().Unix()) } return nil } // Finalize implements consensus.Engine, ensuring no uncles are set, nor block // rewards given. func (p *Parlia) Finalize(chain consensus.ChainHeaderReader, header *types.Header, state *state.StateDB, txs *[]*types.Transaction, uncles []*types.Header, receipts *[]*types.Receipt, systemTxs *[]*types.Transaction, usedGas *uint64) error { // warn if not in majority fork number := header.Number.Uint64() snap, err := p.snapshot(chain, number-1, header.ParentHash, nil) if err != nil { return err } nextForkHash := forkid.NextForkHash(p.chainConfig, p.genesisHash, number) if !snap.isMajorityFork(hex.EncodeToString(nextForkHash[:])) { log.Debug("there is a possible fork, and your client is not the majority. Please check...", "nextForkHash", hex.EncodeToString(nextForkHash[:])) } // If the block is a epoch end block, verify the validator list // The verification can only be done when the state is ready, it can't be done in VerifyHeader. if header.Number.Uint64()%p.config.Epoch == 0 { newValidators, err := p.getCurrentValidators(header.ParentHash, new(big.Int).Sub(header.Number, common.Big1)) if err != nil { return err } // sort validator by address sort.Sort(validatorsAscending(newValidators)) validatorsBytes := make([]byte, len(newValidators)*validatorBytesLength) for i, validator := range newValidators { copy(validatorsBytes[i*validatorBytesLength:], validator.Bytes()) } extraSuffix := len(header.Extra) - extraSeal if !bytes.Equal(header.Extra[extraVanity:extraSuffix], validatorsBytes) { return errMismatchingEpochValidators } } // No block rewards in PoA, so the state remains as is and uncles are dropped cx := chainContext{Chain: chain, parlia: p} if header.Number.Cmp(common.Big1) == 0 { err := p.initContract(state, header, cx, txs, receipts, systemTxs, usedGas, false) if err != nil { log.Error("init contract failed") } } if header.Difficulty.Cmp(diffInTurn) != 0 { spoiledVal := snap.supposeValidator() signedRecently := false for _, recent := range snap.Recents { if recent == spoiledVal { signedRecently = true break } } if !signedRecently { log.Trace("slash validator", "block hash", header.Hash(), "address", spoiledVal) err = p.slash(spoiledVal, state, header, cx, txs, receipts, systemTxs, usedGas, false) if err != nil { // it is possible that slash validator failed because of the slash channel is disabled. log.Error("slash validator failed", "block hash", header.Hash(), "address", spoiledVal) } } } val := header.Coinbase err = p.distributeIncoming(val, state, header, cx, txs, receipts, systemTxs, usedGas, false) if err != nil { return err } if len(*systemTxs) > 0 { return errors.New("the length of systemTxs do not match") } return nil } // FinalizeAndAssemble implements consensus.Engine, ensuring no uncles are set, // nor block rewards given, and returns the final block. func (p *Parlia) FinalizeAndAssemble(chain consensus.ChainHeaderReader, header *types.Header, state *state.StateDB, txs []*types.Transaction, uncles []*types.Header, receipts []*types.Receipt) (*types.Block, []*types.Receipt, error) { // No block rewards in PoA, so the state remains as is and uncles are dropped cx := chainContext{Chain: chain, parlia: p} if txs == nil { txs = make([]*types.Transaction, 0) } if receipts == nil { receipts = make([]*types.Receipt, 0) } if header.Number.Cmp(common.Big1) == 0 { err := p.initContract(state, header, cx, &txs, &receipts, nil, &header.GasUsed, true) if err != nil { log.Error("init contract failed") } } if header.Difficulty.Cmp(diffInTurn) != 0 { number := header.Number.Uint64() snap, err := p.snapshot(chain, number-1, header.ParentHash, nil) if err != nil { return nil, nil, err } spoiledVal := snap.supposeValidator() signedRecently := false for _, recent := range snap.Recents { if recent == spoiledVal { signedRecently = true break } } if !signedRecently { err = p.slash(spoiledVal, state, header, cx, &txs, &receipts, nil, &header.GasUsed, true) if err != nil { // it is possible that slash validator failed because of the slash channel is disabled. log.Error("slash validator failed", "block hash", header.Hash(), "address", spoiledVal) } } } err := p.distributeIncoming(p.val, state, header, cx, &txs, &receipts, nil, &header.GasUsed, true) if err != nil { return nil, nil, err } // should not happen. Once happen, stop the node is better than broadcast the block if header.GasLimit < header.GasUsed { return nil, nil, errors.New("gas consumption of system txs exceed the gas limit") } header.UncleHash = types.CalcUncleHash(nil) var blk *types.Block var rootHash common.Hash wg := sync.WaitGroup{} wg.Add(2) go func() { rootHash = state.IntermediateRoot(chain.Config().IsEIP158(header.Number)) wg.Done() }() go func() { blk = types.NewBlock(header, txs, nil, receipts, trie.NewStackTrie(nil)) wg.Done() }() wg.Wait() blk.SetRoot(rootHash) // Assemble and return the final block for sealing return blk, receipts, nil } // Authorize injects a private key into the consensus engine to mint new blocks // with. func (p *Parlia) Authorize(val common.Address, signFn SignerFn, signTxFn SignerTxFn) { p.lock.Lock() defer p.lock.Unlock() p.val = val p.signFn = signFn p.signTxFn = signTxFn } // Argument leftOver is the time reserved for block finalize(calculate root, distribute income...) func (p *Parlia) Delay(chain consensus.ChainReader, header *types.Header, leftOver *time.Duration) *time.Duration { number := header.Number.Uint64() snap, err := p.snapshot(chain, number-1, header.ParentHash, nil) if err != nil { return nil } delay := p.delayForRamanujanFork(snap, header) if *leftOver >= time.Duration(p.config.Period)*time.Second { // ignore invalid leftOver log.Error("Delay invalid argument", "leftOver", leftOver.String(), "Period", p.config.Period) } else if *leftOver >= delay { delay = time.Duration(0) return &delay } else { delay = delay - *leftOver } // The blocking time should be no more than half of period half := time.Duration(p.config.Period) * time.Second / 2 if delay > half { delay = half } return &delay } // Seal implements consensus.Engine, attempting to create a sealed block using // the local signing credentials. func (p *Parlia) Seal(chain consensus.ChainHeaderReader, block *types.Block, results chan<- *types.Block, stop <-chan struct{}) error { header := block.Header() // Sealing the genesis block is not supported number := header.Number.Uint64() if number == 0 { return errUnknownBlock } // For 0-period chains, refuse to seal empty blocks (no reward but would spin sealing) if p.config.Period == 0 && len(block.Transactions()) == 0 { log.Info("Sealing paused, waiting for transactions") return nil } // Don't hold the val fields for the entire sealing procedure p.lock.RLock() val, signFn := p.val, p.signFn p.lock.RUnlock() snap, err := p.snapshot(chain, number-1, header.ParentHash, nil) if err != nil { return err } // Bail out if we're unauthorized to sign a block if _, authorized := snap.Validators[val]; !authorized { return errUnauthorizedValidator } // If we're amongst the recent signers, wait for the next block for seen, recent := range snap.Recents { if recent == val { // Signer is among recents, only wait if the current block doesn't shift it out if limit := uint64(len(snap.Validators)/2 + 1); number < limit || seen > number-limit { log.Info("Signed recently, must wait for others") return nil } } } // Sweet, the protocol permits us to sign the block, wait for our time delay := p.delayForRamanujanFork(snap, header) log.Info("Sealing block with", "number", number, "delay", delay, "headerDifficulty", header.Difficulty, "val", val.Hex()) // Sign all the things! sig, err := signFn(accounts.Account{Address: val}, accounts.MimetypeParlia, ParliaRLP(header, p.chainConfig.ChainID)) if err != nil { return err } copy(header.Extra[len(header.Extra)-extraSeal:], sig) // Wait until sealing is terminated or delay timeout. log.Trace("Waiting for slot to sign and propagate", "delay", common.PrettyDuration(delay)) go func() { select { case <-stop: return case <-time.After(delay): } if p.shouldWaitForCurrentBlockProcess(chain, header, snap) { log.Info("Waiting for received in turn block to process") select { case <-stop: log.Info("Received block process finished, abort block seal") return case <-time.After(time.Duration(processBackOffTime) * time.Second): log.Info("Process backoff time exhausted, start to seal block") } } select { case results <- block.WithSeal(header): default: log.Warn("Sealing result is not read by miner", "sealhash", SealHash(header, p.chainConfig.ChainID)) } }() return nil } func (p *Parlia) shouldWaitForCurrentBlockProcess(chain consensus.ChainHeaderReader, header *types.Header, snap *Snapshot) bool { if header.Difficulty.Cmp(diffInTurn) == 0 { return false } highestVerifiedHeader := chain.GetHighestVerifiedHeader() if highestVerifiedHeader == nil { return false } if header.ParentHash == highestVerifiedHeader.ParentHash { return true } return false } func (p *Parlia) EnoughDistance(chain consensus.ChainReader, header *types.Header) bool { snap, err := p.snapshot(chain, header.Number.Uint64()-1, header.ParentHash, nil) if err != nil { return true } return snap.enoughDistance(p.val, header) } func (p *Parlia) AllowLightProcess(chain consensus.ChainReader, currentHeader *types.Header) bool { snap, err := p.snapshot(chain, currentHeader.Number.Uint64()-1, currentHeader.ParentHash, nil) if err != nil { return true } idx := snap.indexOfVal(p.val) // validator is not allowed to diff sync return idx < 0 } func (p *Parlia) IsLocalBlock(header *types.Header) bool { return p.val == header.Coinbase } func (p *Parlia) SignRecently(chain consensus.ChainReader, parent *types.Block) (bool, error) { snap, err := p.snapshot(chain, parent.NumberU64(), parent.Hash(), nil) if err != nil { return true, err } // Bail out if we're unauthorized to sign a block if _, authorized := snap.Validators[p.val]; !authorized { return true, errUnauthorizedValidator } // If we're amongst the recent signers, wait for the next block number := parent.NumberU64() + 1 for seen, recent := range snap.Recents { if recent == p.val { // Signer is among recents, only wait if the current block doesn't shift it out if limit := uint64(len(snap.Validators)/2 + 1); number < limit || seen > number-limit { return true, nil } } } return false, nil } // CalcDifficulty is the difficulty adjustment algorithm. It returns the difficulty // that a new block should have based on the previous blocks in the chain and the // current signer. func (p *Parlia) CalcDifficulty(chain consensus.ChainHeaderReader, time uint64, parent *types.Header) *big.Int { snap, err := p.snapshot(chain, parent.Number.Uint64(), parent.Hash(), nil) if err != nil { return nil } return CalcDifficulty(snap, p.val) } // CalcDifficulty is the difficulty adjustment algorithm. It returns the difficulty // that a new block should have based on the previous blocks in the chain and the // current signer. func CalcDifficulty(snap *Snapshot, signer common.Address) *big.Int { if snap.inturn(signer) { return new(big.Int).Set(diffInTurn) } return new(big.Int).Set(diffNoTurn) } // SealHash returns the hash of a block prior to it being sealed. func (p *Parlia) SealHash(header *types.Header) common.Hash { return SealHash(header, p.chainConfig.ChainID) } // APIs implements consensus.Engine, returning the user facing RPC API to query snapshot. func (p *Parlia) APIs(chain consensus.ChainHeaderReader) []rpc.API { return []rpc.API{{ Namespace: "parlia", Version: "1.0", Service: &API{chain: chain, parlia: p}, Public: false, }} } // Close implements consensus.Engine. It's a noop for parlia as there are no background threads. func (p *Parlia) Close() error { return nil } // ========================== interaction with contract/account ========= // getCurrentValidators get current validators func (p *Parlia) getCurrentValidators(blockHash common.Hash, blockNumber *big.Int) ([]common.Address, error) { // block blockNr := rpc.BlockNumberOrHashWithHash(blockHash, false) // method method := "getValidators" if p.chainConfig.IsEuler(blockNumber) { method = "getMiningValidators" } ctx, cancel := context.WithCancel(context.Background()) defer cancel() // cancel when we are finished consuming integers data, err := p.validatorSetABI.Pack(method) if err != nil { log.Error("Unable to pack tx for getValidators", "error", err) return nil, err } // call msgData := (hexutil.Bytes)(data) toAddress := common.HexToAddress(systemcontracts.ValidatorContract) gas := (hexutil.Uint64)(uint64(math.MaxUint64 / 2)) result, err := p.ethAPI.Call(ctx, ethapi.TransactionArgs{ Gas: &gas, To: &toAddress, Data: &msgData, }, blockNr, nil) if err != nil { return nil, err } var ( ret0 = new([]common.Address) ) out := ret0 if err := p.validatorSetABI.UnpackIntoInterface(out, method, result); err != nil { return nil, err } valz := make([]common.Address, len(*ret0)) for i, a := range *ret0 { valz[i] = a } return valz, nil } // slash spoiled validators func (p *Parlia) distributeIncoming(val common.Address, state *state.StateDB, header *types.Header, chain core.ChainContext, txs *[]*types.Transaction, receipts *[]*types.Receipt, receivedTxs *[]*types.Transaction, usedGas *uint64, mining bool) error { coinbase := header.Coinbase balance := state.GetBalance(consensus.SystemAddress) if balance.Cmp(common.Big0) <= 0 { return nil } state.SetBalance(consensus.SystemAddress, big.NewInt(0)) state.AddBalance(coinbase, balance) doDistributeSysReward := state.GetBalance(common.HexToAddress(systemcontracts.SystemRewardContract)).Cmp(maxSystemBalance) < 0 if doDistributeSysReward { var rewards = new(big.Int) rewards = rewards.Rsh(balance, systemRewardPercent) if rewards.Cmp(common.Big0) > 0 { err := p.distributeToSystem(rewards, state, header, chain, txs, receipts, receivedTxs, usedGas, mining) if err != nil { return err } log.Trace("distribute to system reward pool", "block hash", header.Hash(), "amount", rewards) balance = balance.Sub(balance, rewards) } } log.Trace("distribute to validator contract", "block hash", header.Hash(), "amount", balance) return p.distributeToValidator(balance, val, state, header, chain, txs, receipts, receivedTxs, usedGas, mining) } // slash spoiled validators func (p *Parlia) slash(spoiledVal common.Address, state *state.StateDB, header *types.Header, chain core.ChainContext, txs *[]*types.Transaction, receipts *[]*types.Receipt, receivedTxs *[]*types.Transaction, usedGas *uint64, mining bool) error { // method method := "slash" // get packed data data, err := p.slashABI.Pack(method, spoiledVal, ) if err != nil { log.Error("Unable to pack tx for slash", "error", err) return err } // get system message msg := p.getSystemMessage(header.Coinbase, common.HexToAddress(systemcontracts.SlashContract), data, common.Big0) // apply message return p.applyTransaction(msg, state, header, chain, txs, receipts, receivedTxs, usedGas, mining) } // init contract func (p *Parlia) initContract(state *state.StateDB, header *types.Header, chain core.ChainContext, txs *[]*types.Transaction, receipts *[]*types.Receipt, receivedTxs *[]*types.Transaction, usedGas *uint64, mining bool) error { // method method := "init" // contracts contracts := []string{ systemcontracts.ValidatorContract, systemcontracts.SlashContract, systemcontracts.LightClientContract, systemcontracts.RelayerHubContract, systemcontracts.TokenHubContract, systemcontracts.RelayerIncentivizeContract, systemcontracts.CrossChainContract, } // get packed data data, err := p.validatorSetABI.Pack(method) if err != nil { log.Error("Unable to pack tx for init validator set", "error", err) return err } for _, c := range contracts { msg := p.getSystemMessage(header.Coinbase, common.HexToAddress(c), data, common.Big0) // apply message log.Trace("init contract", "block hash", header.Hash(), "contract", c) err = p.applyTransaction(msg, state, header, chain, txs, receipts, receivedTxs, usedGas, mining) if err != nil { return err } } return nil } func (p *Parlia) distributeToSystem(amount *big.Int, state *state.StateDB, header *types.Header, chain core.ChainContext, txs *[]*types.Transaction, receipts *[]*types.Receipt, receivedTxs *[]*types.Transaction, usedGas *uint64, mining bool) error { // get system message msg := p.getSystemMessage(header.Coinbase, common.HexToAddress(systemcontracts.SystemRewardContract), nil, amount) // apply message return p.applyTransaction(msg, state, header, chain, txs, receipts, receivedTxs, usedGas, mining) } // slash spoiled validators func (p *Parlia) distributeToValidator(amount *big.Int, validator common.Address, state *state.StateDB, header *types.Header, chain core.ChainContext, txs *[]*types.Transaction, receipts *[]*types.Receipt, receivedTxs *[]*types.Transaction, usedGas *uint64, mining bool) error { // method method := "deposit" // get packed data data, err := p.validatorSetABI.Pack(method, validator, ) if err != nil { log.Error("Unable to pack tx for deposit", "error", err) return err } // get system message msg := p.getSystemMessage(header.Coinbase, common.HexToAddress(systemcontracts.ValidatorContract), data, amount) // apply message return p.applyTransaction(msg, state, header, chain, txs, receipts, receivedTxs, usedGas, mining) } // get system message func (p *Parlia) getSystemMessage(from, toAddress common.Address, data []byte, value *big.Int) callmsg { return callmsg{ ethereum.CallMsg{ From: from, Gas: math.MaxUint64 / 2, GasPrice: big.NewInt(0), Value: value, To: &toAddress, Data: data, }, } } func (p *Parlia) applyTransaction( msg callmsg, state *state.StateDB, header *types.Header, chainContext core.ChainContext, txs *[]*types.Transaction, receipts *[]*types.Receipt, receivedTxs *[]*types.Transaction, usedGas *uint64, mining bool, ) (err error) { nonce := state.GetNonce(msg.From()) expectedTx := types.NewTransaction(nonce, *msg.To(), msg.Value(), msg.Gas(), msg.GasPrice(), msg.Data()) expectedHash := p.signer.Hash(expectedTx) if msg.From() == p.val && mining { expectedTx, err = p.signTxFn(accounts.Account{Address: msg.From()}, expectedTx, p.chainConfig.ChainID) if err != nil { return err } } else { if receivedTxs == nil || len(*receivedTxs) == 0 || (*receivedTxs)[0] == nil { return errors.New("supposed to get a actual transaction, but get none") } actualTx := (*receivedTxs)[0] if !bytes.Equal(p.signer.Hash(actualTx).Bytes(), expectedHash.Bytes()) { return fmt.Errorf("expected tx hash %v, get %v, nonce %d, to %s, value %s, gas %d, gasPrice %s, data %s", expectedHash.String(), actualTx.Hash().String(), expectedTx.Nonce(), expectedTx.To().String(), expectedTx.Value().String(), expectedTx.Gas(), expectedTx.GasPrice().String(), hex.EncodeToString(expectedTx.Data()), ) } expectedTx = actualTx // move to next *receivedTxs = (*receivedTxs)[1:] } state.Prepare(expectedTx.Hash(), len(*txs)) gasUsed, err := applyMessage(msg, state, header, p.chainConfig, chainContext) if err != nil { return err } *txs = append(*txs, expectedTx) var root []byte if p.chainConfig.IsByzantium(header.Number) { state.Finalise(true) } else { root = state.IntermediateRoot(p.chainConfig.IsEIP158(header.Number)).Bytes() } *usedGas += gasUsed receipt := types.NewReceipt(root, false, *usedGas) receipt.TxHash = expectedTx.Hash() receipt.GasUsed = gasUsed // Set the receipt logs and create a bloom for filtering receipt.Logs = state.GetLogs(expectedTx.Hash(), header.Hash()) receipt.Bloom = types.CreateBloom(types.Receipts{receipt}) receipt.BlockHash = header.Hash() receipt.BlockNumber = header.Number receipt.TransactionIndex = uint(state.TxIndex()) *receipts = append(*receipts, receipt) state.SetNonce(msg.From(), nonce+1) return nil } // =========================== utility function ========================== // SealHash returns the hash of a block prior to it being sealed. func SealHash(header *types.Header, chainId *big.Int) (hash common.Hash) { hasher := sha3.NewLegacyKeccak256() encodeSigHeader(hasher, header, chainId) hasher.Sum(hash[:0]) return hash } func encodeSigHeader(w io.Writer, header *types.Header, chainId *big.Int) { err := rlp.Encode(w, []interface{}{ chainId, header.ParentHash, header.UncleHash, header.Coinbase, header.Root, header.TxHash, header.ReceiptHash, header.Bloom, header.Difficulty, header.Number, header.GasLimit, header.GasUsed, header.Time, header.Extra[:len(header.Extra)-65], // this will panic if extra is too short, should check before calling encodeSigHeader header.MixDigest, header.Nonce, }) if err != nil { panic("can't encode: " + err.Error()) } } func backOffTime(snap *Snapshot, val common.Address) uint64 { if snap.inturn(val) { return 0 } else { idx := snap.indexOfVal(val) if idx < 0 { // The backOffTime does not matter when a validator is not authorized. return 0 } s := rand.NewSource(int64(snap.Number)) r := rand.New(s) n := len(snap.Validators) backOffSteps := make([]uint64, 0, n) for idx := uint64(0); idx < uint64(n); idx++ { backOffSteps = append(backOffSteps, idx) } r.Shuffle(n, func(i, j int) { backOffSteps[i], backOffSteps[j] = backOffSteps[j], backOffSteps[i] }) delay := initialBackOffTime + backOffSteps[idx]*wiggleTime return delay } } // chain context type chainContext struct { Chain consensus.ChainHeaderReader parlia consensus.Engine } func (c chainContext) Engine() consensus.Engine { return c.parlia } func (c chainContext) GetHeader(hash common.Hash, number uint64) *types.Header { return c.Chain.GetHeader(hash, number) } // callmsg implements core.Message to allow passing it as a transaction simulator. type callmsg struct { ethereum.CallMsg } func (m callmsg) From() common.Address { return m.CallMsg.From } func (m callmsg) Nonce() uint64 { return 0 } func (m callmsg) CheckNonce() bool { return false } func (m callmsg) To() *common.Address { return m.CallMsg.To } func (m callmsg) GasPrice() *big.Int { return m.CallMsg.GasPrice } func (m callmsg) Gas() uint64 { return m.CallMsg.Gas } func (m callmsg) Value() *big.Int { return m.CallMsg.Value } func (m callmsg) Data() []byte { return m.CallMsg.Data } // apply message func applyMessage( msg callmsg, state *state.StateDB, header *types.Header, chainConfig *params.ChainConfig, chainContext core.ChainContext, ) (uint64, error) { // Create a new context to be used in the EVM environment context := core.NewEVMBlockContext(header, chainContext, nil) // Create a new environment which holds all relevant information // about the transaction and calling mechanisms. vmenv := vm.NewEVM(context, vm.TxContext{Origin: msg.From(), GasPrice: big.NewInt(0)}, state, chainConfig, vm.Config{}) // Apply the transaction to the current state (included in the env) ret, returnGas, err := vmenv.Call( vm.AccountRef(msg.From()), *msg.To(), msg.Data(), msg.Gas(), msg.Value(), ) if err != nil { log.Error("apply message failed", "msg", string(ret), "err", err) } return msg.Gas() - returnGas, err }