bsc/miner/worker.go
2023-12-04 19:06:23 +08:00

1349 lines
43 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package miner
import (
"errors"
"fmt"
"math/big"
"sync"
"sync/atomic"
"time"
mapset "github.com/deckarep/golang-set"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/consensus/parlia"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/systemcontracts"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
lru "github.com/hashicorp/golang-lru"
)
const (
// resultQueueSize is the size of channel listening to sealing result.
resultQueueSize = 10
// txChanSize is the size of channel listening to NewTxsEvent.
// The number is referenced from the size of tx pool.
txChanSize = 4096
// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
chainHeadChanSize = 10
// chainSideChanSize is the size of channel listening to ChainSideEvent.
chainSideChanSize = 10
// sealingLogAtDepth is the number of confirmations before logging successful mining.
sealingLogAtDepth = 11
// minRecommitInterval is the minimal time interval to recreate the sealing block with
// any newly arrived transactions.
minRecommitInterval = 1 * time.Second
// staleThreshold is the maximum depth of the acceptable stale block.
staleThreshold = 11
// the current 4 mining loops could have asynchronous risk of mining block with
// save height, keep recently mined blocks to avoid double sign for safety,
recentMinedCacheLimit = 20
)
var (
writeBlockTimer = metrics.NewRegisteredTimer("worker/writeblock", nil)
finalizeBlockTimer = metrics.NewRegisteredTimer("worker/finalizeblock", nil)
errBlockInterruptedByNewHead = errors.New("new head arrived while building block")
errBlockInterruptedByRecommit = errors.New("recommit interrupt while building block")
errBlockInterruptedByTimeout = errors.New("timeout while building block")
errBlockInterruptedByOutOfGas = errors.New("out of gas while building block")
)
// environment is the worker's current environment and holds all
// information of the sealing block generation.
type environment struct {
signer types.Signer
state *state.StateDB // apply state changes here
ancestors mapset.Set // ancestor set (used for checking uncle parent validity)
family mapset.Set // family set (used for checking uncle invalidity)
tcount int // tx count in cycle
gasPool *core.GasPool // available gas used to pack transactions
coinbase common.Address
header *types.Header
txs []*types.Transaction
receipts []*types.Receipt
uncles map[common.Hash]*types.Header
}
// copy creates a deep copy of environment.
func (env *environment) copy() *environment {
cpy := &environment{
signer: env.signer,
state: env.state.Copy(),
ancestors: env.ancestors.Clone(),
family: env.family.Clone(),
tcount: env.tcount,
coinbase: env.coinbase,
header: types.CopyHeader(env.header),
receipts: copyReceipts(env.receipts),
}
if env.gasPool != nil {
gasPool := *env.gasPool
cpy.gasPool = &gasPool
}
// The content of txs and uncles are immutable, unnecessary
// to do the expensive deep copy for them.
cpy.txs = make([]*types.Transaction, len(env.txs))
copy(cpy.txs, env.txs)
cpy.uncles = make(map[common.Hash]*types.Header)
for hash, uncle := range env.uncles {
cpy.uncles[hash] = uncle
}
return cpy
}
// unclelist returns the contained uncles as the list format.
func (env *environment) unclelist() []*types.Header {
var uncles []*types.Header
for _, uncle := range env.uncles {
uncles = append(uncles, uncle)
}
return uncles
}
// discard terminates the background prefetcher go-routine. It should
// always be called for all created environment instances otherwise
// the go-routine leak can happen.
func (env *environment) discard() {
if env.state == nil {
return
}
env.state.StopPrefetcher()
}
// task contains all information for consensus engine sealing and result submitting.
type task struct {
receipts []*types.Receipt
state *state.StateDB
block *types.Block
createdAt time.Time
}
const (
commitInterruptNone int32 = iota
commitInterruptNewHead
commitInterruptResubmit
commitInterruptTimeout
commitInterruptOutOfGas
)
// newWorkReq represents a request for new sealing work submitting with relative interrupt notifier.
type newWorkReq struct {
interruptCh chan int32
timestamp int64
}
// getWorkReq represents a request for getting a new sealing work with provided parameters.
type getWorkReq struct {
params *generateParams
err error
result chan *types.Block
}
// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type worker struct {
prefetcher core.Prefetcher
config *Config
chainConfig *params.ChainConfig
engine consensus.Engine
eth Backend
chain *core.BlockChain
// Feeds
pendingLogsFeed event.Feed
// Subscriptions
mux *event.TypeMux
chainHeadCh chan core.ChainHeadEvent
chainHeadSub event.Subscription
chainSideCh chan core.ChainSideEvent
chainSideSub event.Subscription
// Channels
newWorkCh chan *newWorkReq
getWorkCh chan *getWorkReq
taskCh chan *task
resultCh chan *types.Block
startCh chan struct{}
exitCh chan struct{}
resubmitIntervalCh chan time.Duration
wg sync.WaitGroup
current *environment // An environment for current running cycle.
localUncles map[common.Hash]*types.Block // A set of side blocks generated locally as the possible uncle blocks.
remoteUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks.
unconfirmed *unconfirmedBlocks // A set of locally mined blocks pending canonicalness confirmations.
mu sync.RWMutex // The lock used to protect the coinbase and extra fields
coinbase common.Address
extra []byte
pendingMu sync.RWMutex
pendingTasks map[common.Hash]*task
snapshotMu sync.RWMutex // The lock used to protect the snapshots below
snapshotBlock *types.Block
snapshotReceipts types.Receipts
snapshotState *state.StateDB
// atomic status counters
running int32 // The indicator whether the consensus engine is running or not.
// External functions
isLocalBlock func(header *types.Header) bool // Function used to determine whether the specified block is mined by local miner.
// Test hooks
newTaskHook func(*task) // Method to call upon receiving a new sealing task.
skipSealHook func(*task) bool // Method to decide whether skipping the sealing.
fullTaskHook func() // Method to call before pushing the full sealing task.
resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval.
recentMinedBlocks *lru.Cache
}
func newWorker(config *Config, chainConfig *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, isLocalBlock func(header *types.Header) bool, init bool) *worker {
recentMinedBlocks, _ := lru.New(recentMinedCacheLimit)
worker := &worker{
prefetcher: core.NewStatePrefetcher(chainConfig, eth.BlockChain(), engine),
config: config,
chainConfig: chainConfig,
engine: engine,
eth: eth,
mux: mux,
chain: eth.BlockChain(),
isLocalBlock: isLocalBlock,
localUncles: make(map[common.Hash]*types.Block),
remoteUncles: make(map[common.Hash]*types.Block),
unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), sealingLogAtDepth),
pendingTasks: make(map[common.Hash]*task),
chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize),
chainSideCh: make(chan core.ChainSideEvent, chainSideChanSize),
newWorkCh: make(chan *newWorkReq),
getWorkCh: make(chan *getWorkReq),
taskCh: make(chan *task),
resultCh: make(chan *types.Block, resultQueueSize),
exitCh: make(chan struct{}),
startCh: make(chan struct{}, 1),
resubmitIntervalCh: make(chan time.Duration),
recentMinedBlocks: recentMinedBlocks,
}
// Subscribe events for blockchain
worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)
// Sanitize recommit interval if the user-specified one is too short.
recommit := worker.config.Recommit
if recommit < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
recommit = minRecommitInterval
}
worker.wg.Add(4)
go worker.mainLoop()
go worker.newWorkLoop(recommit)
go worker.resultLoop()
go worker.taskLoop()
// Submit first work to initialize pending state.
if init {
worker.startCh <- struct{}{}
}
return worker
}
// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
w.mu.Lock()
defer w.mu.Unlock()
w.coinbase = addr
}
func (w *worker) setGasCeil(ceil uint64) {
w.mu.Lock()
defer w.mu.Unlock()
w.config.GasCeil = ceil
}
// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
w.mu.Lock()
defer w.mu.Unlock()
w.extra = extra
}
// setRecommitInterval updates the interval for miner sealing work recommitting.
func (w *worker) setRecommitInterval(interval time.Duration) {
select {
case w.resubmitIntervalCh <- interval:
case <-w.exitCh:
}
}
// pending returns the pending state and corresponding block.
func (w *worker) pending() (*types.Block, *state.StateDB) {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
if w.snapshotState == nil {
return nil, nil
}
return w.snapshotBlock, w.snapshotState.Copy()
}
// pendingBlock returns pending block.
func (w *worker) pendingBlock() *types.Block {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock
}
// pendingBlockAndReceipts returns pending block and corresponding receipts.
func (w *worker) pendingBlockAndReceipts() (*types.Block, types.Receipts) {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock, w.snapshotReceipts
}
// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
atomic.StoreInt32(&w.running, 1)
w.startCh <- struct{}{}
}
// stop sets the running status as 0.
func (w *worker) stop() {
atomic.StoreInt32(&w.running, 0)
}
// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
return atomic.LoadInt32(&w.running) == 1
}
// close terminates all background threads maintained by the worker.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
atomic.StoreInt32(&w.running, 0)
close(w.exitCh)
w.wg.Wait()
}
// newWorkLoop is a standalone goroutine to submit new sealing work upon received events.
func (w *worker) newWorkLoop(recommit time.Duration) {
defer w.wg.Done()
var (
interruptCh chan int32
minRecommit = recommit // minimal resubmit interval specified by user.
timestamp int64 // timestamp for each round of sealing.
)
timer := time.NewTimer(0)
defer timer.Stop()
<-timer.C // discard the initial tick
// commit aborts in-flight transaction execution with given signal and resubmits a new one.
commit := func(reason int32) {
if interruptCh != nil {
// each commit work will have its own interruptCh to stop work with a reason
interruptCh <- reason
close(interruptCh)
}
interruptCh = make(chan int32, 1)
select {
case w.newWorkCh <- &newWorkReq{interruptCh: interruptCh, timestamp: timestamp}:
case <-w.exitCh:
return
}
timer.Reset(recommit)
}
// clearPending cleans the stale pending tasks.
clearPending := func(number uint64) {
w.pendingMu.Lock()
for h, t := range w.pendingTasks {
if t.block.NumberU64()+staleThreshold <= number {
delete(w.pendingTasks, h)
}
}
w.pendingMu.Unlock()
}
for {
select {
case <-w.startCh:
clearPending(w.chain.CurrentBlock().NumberU64())
timestamp = time.Now().Unix()
commit(commitInterruptNewHead)
case head := <-w.chainHeadCh:
if !w.isRunning() {
continue
}
clearPending(head.Block.NumberU64())
timestamp = time.Now().Unix()
if p, ok := w.engine.(*parlia.Parlia); ok {
signedRecent, err := p.SignRecently(w.chain, head.Block)
if err != nil {
log.Debug("Not allowed to propose block", "err", err)
continue
}
if signedRecent {
log.Info("Signed recently, must wait")
continue
}
}
commit(commitInterruptNewHead)
case <-timer.C:
// If sealing is running resubmit a new work cycle periodically to pull in
// higher priced transactions. Disable this overhead for pending blocks.
if w.isRunning() && ((w.chainConfig.Ethash != nil) || (w.chainConfig.Clique != nil &&
w.chainConfig.Clique.Period > 0) || (w.chainConfig.Parlia != nil && w.chainConfig.Parlia.Period > 0)) {
// Short circuit if no new transaction arrives.
commit(commitInterruptResubmit)
}
case interval := <-w.resubmitIntervalCh:
// Adjust resubmit interval explicitly by user.
if interval < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
interval = minRecommitInterval
}
log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
minRecommit, recommit = interval, interval
if w.resubmitHook != nil {
w.resubmitHook(minRecommit, recommit)
}
case <-w.exitCh:
return
}
}
}
// mainLoop is responsible for generating and submitting sealing work based on
// the received event. It can support two modes: automatically generate task and
// submit it or return task according to given parameters for various proposes.
func (w *worker) mainLoop() {
defer w.wg.Done()
defer w.chainHeadSub.Unsubscribe()
defer w.chainSideSub.Unsubscribe()
defer func() {
if w.current != nil {
w.current.discard()
}
}()
cleanTicker := time.NewTicker(time.Second * 10)
defer cleanTicker.Stop()
for {
select {
case req := <-w.newWorkCh:
w.commitWork(req.interruptCh, req.timestamp)
case req := <-w.getWorkCh:
block, err := w.generateWork(req.params)
if err != nil {
req.err = err
req.result <- nil
} else {
req.result <- block
}
case ev := <-w.chainSideCh:
// Short circuit for duplicate side blocks
if _, ok := w.engine.(*parlia.Parlia); ok {
continue
}
if _, exist := w.localUncles[ev.Block.Hash()]; exist {
continue
}
if _, exist := w.remoteUncles[ev.Block.Hash()]; exist {
continue
}
// Add side block to possible uncle block set depending on the author.
if w.isLocalBlock != nil && w.isLocalBlock(ev.Block.Header()) {
w.localUncles[ev.Block.Hash()] = ev.Block
} else {
w.remoteUncles[ev.Block.Hash()] = ev.Block
}
// If our sealing block contains less than 2 uncle blocks,
// add the new uncle block if valid and regenerate a new
// sealing block for higher profit.
if w.isRunning() && w.current != nil && len(w.current.uncles) < 2 {
start := time.Now()
if err := w.commitUncle(w.current, ev.Block.Header()); err == nil {
w.commit(w.current, nil, false, start)
}
}
case <-cleanTicker.C:
chainHead := w.chain.CurrentBlock()
for hash, uncle := range w.localUncles {
if uncle.NumberU64()+staleThreshold <= chainHead.NumberU64() {
delete(w.localUncles, hash)
}
}
for hash, uncle := range w.remoteUncles {
if uncle.NumberU64()+staleThreshold <= chainHead.NumberU64() {
delete(w.remoteUncles, hash)
}
}
// System stopped
case <-w.exitCh:
return
case <-w.chainHeadSub.Err():
return
case <-w.chainSideSub.Err():
return
}
}
}
// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
defer w.wg.Done()
var (
stopCh chan struct{}
prev common.Hash
)
// interrupt aborts the in-flight sealing task.
interrupt := func() {
if stopCh != nil {
close(stopCh)
stopCh = nil
}
}
for {
select {
case task := <-w.taskCh:
if w.newTaskHook != nil {
w.newTaskHook(task)
}
// Reject duplicate sealing work due to resubmitting.
sealHash := w.engine.SealHash(task.block.Header())
if sealHash == prev {
continue
}
// Interrupt previous sealing operation
interrupt()
stopCh, prev = make(chan struct{}), sealHash
if w.skipSealHook != nil && w.skipSealHook(task) {
continue
}
w.pendingMu.Lock()
w.pendingTasks[sealHash] = task
w.pendingMu.Unlock()
if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil {
log.Warn("Block sealing failed", "err", err)
w.pendingMu.Lock()
delete(w.pendingTasks, sealHash)
w.pendingMu.Unlock()
}
case <-w.exitCh:
interrupt()
return
}
}
}
// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
defer w.wg.Done()
for {
select {
case block := <-w.resultCh:
// Short circuit when receiving empty result.
if block == nil {
continue
}
// Short circuit when receiving duplicate result caused by resubmitting.
if w.chain.HasBlock(block.Hash(), block.NumberU64()) {
continue
}
var (
sealhash = w.engine.SealHash(block.Header())
hash = block.Hash()
)
w.pendingMu.RLock()
task, exist := w.pendingTasks[sealhash]
w.pendingMu.RUnlock()
if !exist {
log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
continue
}
// Different block could share same sealhash, deep copy here to prevent write-write conflict.
var (
receipts = make([]*types.Receipt, len(task.receipts))
logs []*types.Log
)
for i, taskReceipt := range task.receipts {
receipt := new(types.Receipt)
receipts[i] = receipt
*receipt = *taskReceipt
// add block location fields
receipt.BlockHash = hash
receipt.BlockNumber = block.Number()
receipt.TransactionIndex = uint(i)
// Update the block hash in all logs since it is now available and not when the
// receipt/log of individual transactions were created.
receipt.Logs = make([]*types.Log, len(taskReceipt.Logs))
for i, taskLog := range taskReceipt.Logs {
log := new(types.Log)
receipt.Logs[i] = log
*log = *taskLog
log.BlockHash = hash
}
logs = append(logs, receipt.Logs...)
}
if prev, ok := w.recentMinedBlocks.Get(block.NumberU64()); ok {
doubleSign := false
prevParents, _ := prev.([]common.Hash)
for _, prevParent := range prevParents {
if prevParent == block.ParentHash() {
log.Error("Reject Double Sign!!", "block", block.NumberU64(),
"hash", block.Hash(),
"root", block.Root(),
"ParentHash", block.ParentHash())
doubleSign = true
break
}
}
if doubleSign {
continue
}
prevParents = append(prevParents, block.ParentHash())
w.recentMinedBlocks.Add(block.NumberU64(), prevParents)
} else {
// Add() will call removeOldest internally to remove the oldest element
// if the LRU Cache is full
w.recentMinedBlocks.Add(block.NumberU64(), []common.Hash{block.ParentHash()})
}
// Commit block and state to database.
task.state.SetExpectedStateRoot(block.Root())
start := time.Now()
status, err := w.chain.WriteBlockAndSetHead(block, receipts, logs, task.state, true)
if status != core.CanonStatTy {
if err != nil {
log.Error("Failed writing block to chain", "err", err, "status", status)
} else {
log.Info("Written block as SideChain and avoid broadcasting", "status", status)
}
continue
}
writeBlockTimer.UpdateSince(start)
log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash,
"elapsed", common.PrettyDuration(time.Since(task.createdAt)))
// Broadcast the block and announce chain insertion event
w.mux.Post(core.NewMinedBlockEvent{Block: block})
// Insert the block into the set of pending ones to resultLoop for confirmations
w.unconfirmed.Insert(block.NumberU64(), block.Hash())
case <-w.exitCh:
return
}
}
}
// makeEnv creates a new environment for the sealing block.
func (w *worker) makeEnv(parent *types.Block, header *types.Header, coinbase common.Address,
prevEnv *environment) (*environment, error) {
// Retrieve the parent state to execute on top and start a prefetcher for
// the miner to speed block sealing up a bit
state, err := w.chain.StateAtWithSharedPool(parent.Root())
if err != nil {
return nil, err
}
if prevEnv == nil {
state.StartPrefetcher("miner")
} else {
state.TransferPrefetcher(prevEnv.state)
}
// Note the passed coinbase may be different with header.Coinbase.
env := &environment{
signer: types.MakeSigner(w.chainConfig, header.Number),
state: state,
coinbase: coinbase,
ancestors: mapset.NewSet(),
family: mapset.NewSet(),
header: header,
uncles: make(map[common.Hash]*types.Header),
}
// Keep track of transactions which return errors so they can be removed
env.tcount = 0
return env, nil
}
// commitUncle adds the given block to uncle block set, returns error if failed to add.
func (w *worker) commitUncle(env *environment, uncle *types.Header) error {
if w.isTTDReached(env.header) {
return errors.New("ignore uncle for beacon block")
}
hash := uncle.Hash()
if _, exist := env.uncles[hash]; exist {
return errors.New("uncle not unique")
}
if env.header.ParentHash == uncle.ParentHash {
return errors.New("uncle is sibling")
}
if !env.ancestors.Contains(uncle.ParentHash) {
return errors.New("uncle's parent unknown")
}
if env.family.Contains(hash) {
return errors.New("uncle already included")
}
env.uncles[hash] = uncle
return nil
}
// updateSnapshot updates pending snapshot block, receipts and state.
func (w *worker) updateSnapshot(env *environment) {
w.snapshotMu.Lock()
defer w.snapshotMu.Unlock()
w.snapshotBlock = types.NewBlock(
env.header,
env.txs,
env.unclelist(),
env.receipts,
trie.NewStackTrie(nil),
)
w.snapshotReceipts = copyReceipts(env.receipts)
w.snapshotState = env.state.Copy()
}
func (w *worker) commitTransaction(env *environment, tx *types.Transaction, receiptProcessors ...core.ReceiptProcessor) ([]*types.Log, error) {
snap := env.state.Snapshot()
receipt, err := core.ApplyTransaction(w.chainConfig, w.chain, &env.coinbase, env.gasPool, env.state, env.header, tx, &env.header.GasUsed, *w.chain.GetVMConfig(), receiptProcessors...)
if err != nil {
env.state.RevertToSnapshot(snap)
return nil, err
}
env.txs = append(env.txs, tx)
env.receipts = append(env.receipts, receipt)
return receipt.Logs, nil
}
func (w *worker) commitTransactions(env *environment, txs *types.TransactionsByPriceAndNonce,
interruptCh chan int32, stopTimer *time.Timer) error {
gasLimit := env.header.GasLimit
if env.gasPool == nil {
env.gasPool = new(core.GasPool).AddGas(gasLimit)
if w.chain.Config().IsEuler(env.header.Number) {
env.gasPool.SubGas(params.SystemTxsGas * 3)
} else {
env.gasPool.SubGas(params.SystemTxsGas)
}
}
var coalescedLogs []*types.Log
// initialize bloom processors
processorCapacity := 100
if txs.CurrentSize() < processorCapacity {
processorCapacity = txs.CurrentSize()
}
bloomProcessors := core.NewAsyncReceiptBloomGenerator(processorCapacity)
stopPrefetchCh := make(chan struct{})
defer close(stopPrefetchCh)
//prefetch txs from all pending txs
txsPrefetch := txs.Copy()
tx := txsPrefetch.Peek()
txCurr := &tx
w.prefetcher.PrefetchMining(txsPrefetch, env.header, env.gasPool.Gas(), env.state.CopyDoPrefetch(), *w.chain.GetVMConfig(), stopPrefetchCh, txCurr)
signal := commitInterruptNone
LOOP:
for {
// In the following three cases, we will interrupt the execution of the transaction.
// (1) new head block event arrival, the reason is 1
// (2) worker start or restart, the reason is 1
// (3) worker recreate the sealing block with any newly arrived transactions, the reason is 2.
// For the first two cases, the semi-finished work will be discarded.
// For the third case, the semi-finished work will be submitted to the consensus engine.
if interruptCh != nil {
select {
case signal, ok := <-interruptCh:
if !ok {
// should never be here, since interruptCh should not be read before
log.Warn("commit transactions stopped unknown")
}
return signalToErr(signal)
default:
}
}
// If we don't have enough gas for any further transactions then we're done
if env.gasPool.Gas() < params.TxGas {
log.Trace("Not enough gas for further transactions", "have", env.gasPool, "want", params.TxGas)
signal = commitInterruptOutOfGas
break
}
if stopTimer != nil {
select {
case <-stopTimer.C:
log.Info("Not enough time for further transactions", "txs", len(env.txs))
stopTimer.Reset(0) // re-active the timer, in case it will be used later.
signal = commitInterruptTimeout
break LOOP
default:
}
}
// Retrieve the next transaction and abort if all done
tx = txs.Peek()
if tx == nil {
break
}
// Error may be ignored here. The error has already been checked
// during transaction acceptance is the transaction pool.
//
// We use the eip155 signer regardless of the current hf.
//from, _ := types.Sender(env.signer, tx)
// Check whether the tx is replay protected. If we're not in the EIP155 hf
// phase, start ignoring the sender until we do.
if tx.Protected() && !w.chainConfig.IsEIP155(env.header.Number) {
log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.chainConfig.EIP155Block)
txs.Pop()
continue
}
// Start executing the transaction
env.state.Prepare(tx.Hash(), env.tcount)
from, _ := types.Sender(env.signer, tx)
logs, err := w.commitTransaction(env, tx, bloomProcessors)
switch {
case errors.Is(err, core.ErrGasLimitReached):
// Pop the current out-of-gas transaction without shifting in the next from the account
log.Trace("Gas limit exceeded for current block", "sender", from)
txs.Pop()
case errors.Is(err, core.ErrNonceTooLow):
// New head notification data race between the transaction pool and miner, shift
log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
txs.Shift()
case errors.Is(err, core.ErrNonceTooHigh):
// Reorg notification data race between the transaction pool and miner, skip account =
log.Trace("Skipping account with high nonce", "sender", from, "nonce", tx.Nonce())
txs.Pop()
case errors.Is(err, nil):
// Everything ok, collect the logs and shift in the next transaction from the same account
coalescedLogs = append(coalescedLogs, logs...)
env.tcount++
txs.Shift()
case errors.Is(err, core.ErrTxTypeNotSupported):
// Pop the unsupported transaction without shifting in the next from the account
log.Trace("Skipping unsupported transaction type", "sender", from, "type", tx.Type())
txs.Pop()
default:
// Strange error, discard the transaction and get the next in line (note, the
// nonce-too-high clause will prevent us from executing in vain).
//log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
txs.Shift()
}
}
bloomProcessors.Close()
if !w.isRunning() && len(coalescedLogs) > 0 {
// We don't push the pendingLogsEvent while we are sealing. The reason is that
// when we are sealing, the worker will regenerate a sealing block every 3 seconds.
// In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.
// make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
// logs by filling in the block hash when the block was mined by the local miner. This can
// cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
cpy := make([]*types.Log, len(coalescedLogs))
for i, l := range coalescedLogs {
cpy[i] = new(types.Log)
*cpy[i] = *l
}
w.pendingLogsFeed.Send(cpy)
}
return signalToErr(signal)
}
// generateParams wraps various of settings for generating sealing task.
type generateParams struct {
timestamp uint64 // The timstamp for sealing task
forceTime bool // Flag whether the given timestamp is immutable or not
parentHash common.Hash // Parent block hash, empty means the latest chain head
coinbase common.Address // The fee recipient address for including transaction
random common.Hash // The randomness generated by beacon chain, empty before the merge
noUncle bool // Flag whether the uncle block inclusion is allowed
noExtra bool // Flag whether the extra field assignment is allowed
prevWork *environment
}
// prepareWork constructs the sealing task according to the given parameters,
// either based on the last chain head or specified parent. In this function
// the pending transactions are not filled yet, only the empty task returned.
func (w *worker) prepareWork(genParams *generateParams) (*environment, error) {
w.mu.RLock()
defer w.mu.RUnlock()
// Find the parent block for sealing task
parent := w.chain.CurrentBlock()
if genParams.parentHash != (common.Hash{}) {
parent = w.chain.GetBlockByHash(genParams.parentHash)
}
if parent == nil {
return nil, fmt.Errorf("missing parent")
}
// Sanity check the timestamp correctness, recap the timestamp
// to parent+1 if the mutation is allowed.
timestamp := genParams.timestamp
if parent.Time() >= timestamp {
if genParams.forceTime {
return nil, fmt.Errorf("invalid timestamp, parent %d given %d", parent.Time(), timestamp)
}
timestamp = parent.Time() + 1
}
// Construct the sealing block header, set the extra field if it's allowed
num := parent.Number()
header := &types.Header{
ParentHash: parent.Hash(),
Number: num.Add(num, common.Big1),
GasLimit: core.CalcGasLimit(parent.GasLimit(), w.config.GasCeil),
Time: timestamp,
Coinbase: genParams.coinbase,
}
if !genParams.noExtra && len(w.extra) != 0 {
header.Extra = w.extra
}
// Set the randomness field from the beacon chain if it's available.
if genParams.random != (common.Hash{}) {
header.MixDigest = genParams.random
}
// Set baseFee and GasLimit if we are on an EIP-1559 chain
if w.chainConfig.IsLondon(header.Number) {
header.BaseFee = misc.CalcBaseFee(w.chainConfig, parent.Header())
}
// Run the consensus preparation with the default or customized consensus engine.
if err := w.engine.Prepare(w.chain, header); err != nil {
log.Error("Failed to prepare header for sealing", "err", err)
return nil, err
}
// Could potentially happen if starting to mine in an odd state.
// Note genParams.coinbase can be different with header.Coinbase
// since clique algorithm can modify the coinbase field in header.
env, err := w.makeEnv(parent, header, genParams.coinbase, genParams.prevWork)
if err != nil {
log.Error("Failed to create sealing context", "err", err)
return nil, err
}
// Handle upgrade build-in system contract code
systemcontracts.UpgradeBuildInSystemContract(w.chainConfig, header.Number, env.state)
// Accumulate the uncles for the sealing work only if it's allowed.
if !genParams.noUncle {
commitUncles := func(blocks map[common.Hash]*types.Block) {
for hash, uncle := range blocks {
if len(env.uncles) == 2 {
break
}
if err := w.commitUncle(env, uncle.Header()); err != nil {
log.Trace("Possible uncle rejected", "hash", hash, "reason", err)
} else {
log.Debug("Committing new uncle to block", "hash", hash)
}
}
}
// Prefer to locally generated uncle
commitUncles(w.localUncles)
commitUncles(w.remoteUncles)
}
return env, nil
}
// fillTransactions retrieves the pending transactions from the txpool and fills them
// into the given sealing block. The transaction selection and ordering strategy can
// be customized with the plugin in the future.
func (w *worker) fillTransactions(interruptCh chan int32, env *environment, stopTimer *time.Timer) (err error) {
// Split the pending transactions into locals and remotes
// Fill the block with all available pending transactions.
pending := w.eth.TxPool().Pending(false)
localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending
for _, account := range w.eth.TxPool().Locals() {
if txs := remoteTxs[account]; len(txs) > 0 {
delete(remoteTxs, account)
localTxs[account] = txs
}
}
err = nil
if len(localTxs) > 0 {
txs := types.NewTransactionsByPriceAndNonce(env.signer, localTxs, env.header.BaseFee)
err = w.commitTransactions(env, txs, interruptCh, stopTimer)
// we will abort here when:
// 1.new block was imported
// 2.out of Gas, no more transaction can be added.
// 3.the mining timer has expired, stop adding transactions.
// 4.interrupted resubmit timer, which is by default 10s.
// resubmit is for PoW only, can be deleted for PoS consensus later
if err != nil {
return
}
}
if len(remoteTxs) > 0 {
txs := types.NewTransactionsByPriceAndNonce(env.signer, remoteTxs, env.header.BaseFee)
err = w.commitTransactions(env, txs, interruptCh, stopTimer)
}
return
}
// generateWork generates a sealing block based on the given parameters.
func (w *worker) generateWork(params *generateParams) (*types.Block, error) {
work, err := w.prepareWork(params)
if err != nil {
return nil, err
}
defer work.discard()
w.fillTransactions(nil, work, nil)
block, _, err := w.engine.FinalizeAndAssemble(w.chain, work.header, work.state, work.txs, work.unclelist(), work.receipts)
return block, err
}
// commitWork generates several new sealing tasks based on the parent block
// and submit them to the sealer.
func (w *worker) commitWork(interruptCh chan int32, timestamp int64) {
start := time.Now()
// Set the coinbase if the worker is running or it's required
var coinbase common.Address
if w.isRunning() {
if w.coinbase == (common.Address{}) {
log.Error("Refusing to mine without etherbase")
return
}
coinbase = w.coinbase // Use the preset address as the fee recipient
}
stopTimer := time.NewTimer(0)
defer stopTimer.Stop()
<-stopTimer.C // discard the initial tick
stopWaitTimer := time.NewTimer(0)
defer stopWaitTimer.Stop()
<-stopWaitTimer.C // discard the initial tick
// validator can try several times to get the most profitable block,
// as long as the timestamp is not reached.
workList := make([]*environment, 0, 10)
var prevWork *environment
// workList clean up
defer func() {
for _, wk := range workList {
// only keep the best work, discard others.
if wk == w.current {
continue
}
wk.discard()
}
}()
LOOP:
for {
work, err := w.prepareWork(&generateParams{
timestamp: uint64(timestamp),
coinbase: coinbase,
prevWork: prevWork,
})
if err != nil {
return
}
prevWork = work
workList = append(workList, work)
delay := w.engine.Delay(w.chain, work.header, &w.config.DelayLeftOver)
if delay == nil {
log.Warn("commitWork delay is nil, something is wrong")
stopTimer = nil
} else if *delay <= 0 {
log.Debug("Not enough time for commitWork")
break
} else {
log.Debug("commitWork stopTimer", "block", work.header.Number,
"header time", time.Until(time.Unix(int64(work.header.Time), 0)),
"commit delay", *delay, "DelayLeftOver", w.config.DelayLeftOver)
stopTimer.Reset(*delay)
}
// subscribe before fillTransactions
txsCh := make(chan core.NewTxsEvent, txChanSize)
sub := w.eth.TxPool().SubscribeNewTxsEvent(txsCh)
// if TxPool has been stopped, `sub` would be nil, it could happen on shutdown.
if sub == nil {
log.Info("commitWork SubscribeNewTxsEvent return nil")
} else {
defer sub.Unsubscribe()
}
// Fill pending transactions from the txpool
fillStart := time.Now()
err = w.fillTransactions(interruptCh, work, stopTimer)
fillDuration := time.Since(fillStart)
switch {
case errors.Is(err, errBlockInterruptedByNewHead):
log.Debug("commitWork abort", "err", err)
return
case errors.Is(err, errBlockInterruptedByRecommit):
fallthrough
case errors.Is(err, errBlockInterruptedByTimeout):
fallthrough
case errors.Is(err, errBlockInterruptedByOutOfGas):
// break the loop to get the best work
log.Debug("commitWork finish", "reason", err)
break LOOP
}
if interruptCh == nil || stopTimer == nil {
// it is single commit work, no need to try several time.
log.Info("commitWork interruptCh or stopTimer is nil")
break
}
newTxsNum := 0
// stopTimer was the maximum delay for each fillTransactions
// but now it is used to wait until (head.Time - DelayLeftOver) is reached.
stopTimer.Reset(time.Until(time.Unix(int64(work.header.Time), 0)) - w.config.DelayLeftOver)
LOOP_WAIT:
for {
select {
case <-stopTimer.C:
log.Debug("commitWork stopTimer expired")
break LOOP
case <-interruptCh:
log.Debug("commitWork interruptCh closed, new block imported or resubmit triggered")
return
case ev := <-txsCh:
delay := w.engine.Delay(w.chain, work.header, &w.config.DelayLeftOver)
log.Debug("commitWork txsCh arrived", "fillDuration", fillDuration.String(),
"delay", delay.String(), "work.tcount", work.tcount,
"newTxsNum", newTxsNum, "len(ev.Txs)", len(ev.Txs))
if *delay < fillDuration {
// There may not have enough time for another fillTransactions.
break LOOP
} else if *delay < fillDuration*2 {
// We can schedule another fillTransactions, but the time is limited,
// probably it is the last chance, schedule it immediately.
break LOOP_WAIT
} else {
// There is still plenty of time left.
// We can wait a while to collect more transactions before
// schedule another fillTransaction to reduce CPU cost.
// There will be 2 cases to schedule another fillTransactions:
// 1.newTxsNum >= work.tcount
// 2.no much time left, have to schedule it immediately.
newTxsNum = newTxsNum + len(ev.Txs)
if newTxsNum >= work.tcount {
break LOOP_WAIT
}
stopWaitTimer.Reset(*delay - fillDuration*2)
}
case <-stopWaitTimer.C:
if newTxsNum > 0 {
break LOOP_WAIT
}
}
}
// if sub's channel if full, it will block other NewTxsEvent subscribers,
// so unsubscribe ASAP and Unsubscribe() is re-enterable, safe to call several time.
if sub != nil {
sub.Unsubscribe()
}
}
// get the most profitable work
bestWork := workList[0]
bestReward := new(big.Int)
for i, wk := range workList {
balance := wk.state.GetBalance(consensus.SystemAddress)
log.Debug("Get the most profitable work", "index", i, "balance", balance, "bestReward", bestReward)
if balance.Cmp(bestReward) > 0 {
bestWork = wk
bestReward = balance
}
}
w.commit(bestWork, w.fullTaskHook, true, start)
// Swap out the old work with the new one, terminating any leftover
// prefetcher processes in the mean time and starting a new one.
if w.current != nil {
w.current.discard()
}
w.current = bestWork
}
// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
// Note the assumption is held that the mutation is allowed to the passed env, do
// the deep copy first.
func (w *worker) commit(env *environment, interval func(), update bool, start time.Time) error {
if w.isRunning() {
if interval != nil {
interval()
}
/*
err := env.state.WaitPipeVerification()
if err != nil {
return err
}
env.state.CorrectAccountsRoot(w.chain.CurrentBlock().Root())
*/
finalizeStart := time.Now()
block, receipts, err := w.engine.FinalizeAndAssemble(w.chain, types.CopyHeader(env.header), env.state, env.txs, env.unclelist(), env.receipts)
if err != nil {
return err
}
finalizeBlockTimer.UpdateSince(finalizeStart)
// Create a local environment copy, avoid the data race with snapshot state.
// https://github.com/ethereum/go-ethereum/issues/24299
env := env.copy()
// If we're post merge, just ignore
if !w.isTTDReached(block.Header()) {
select {
case w.taskCh <- &task{receipts: receipts, state: env.state, block: block, createdAt: time.Now()}:
w.unconfirmed.Shift(block.NumberU64() - 1)
log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()),
"uncles", len(env.uncles), "txs", env.tcount,
"gas", block.GasUsed(),
"elapsed", common.PrettyDuration(time.Since(start)))
case <-w.exitCh:
log.Info("Worker has exited")
}
}
}
if update {
w.updateSnapshot(env)
}
return nil
}
// getSealingBlock generates the sealing block based on the given parameters.
func (w *worker) getSealingBlock(parent common.Hash, timestamp uint64, coinbase common.Address, random common.Hash) (*types.Block, error) {
req := &getWorkReq{
params: &generateParams{
timestamp: timestamp,
forceTime: true,
parentHash: parent,
coinbase: coinbase,
random: random,
noUncle: true,
noExtra: true,
},
result: make(chan *types.Block, 1),
}
select {
case w.getWorkCh <- req:
block := <-req.result
if block == nil {
return nil, req.err
}
return block, nil
case <-w.exitCh:
return nil, errors.New("miner closed")
}
}
// isTTDReached returns the indicator if the given block has reached the total
// terminal difficulty for The Merge transition.
func (w *worker) isTTDReached(header *types.Header) bool {
td, ttd := w.chain.GetTd(header.ParentHash, header.Number.Uint64()-1), w.chain.Config().TerminalTotalDifficulty
return td != nil && ttd != nil && td.Cmp(ttd) >= 0
}
// copyReceipts makes a deep copy of the given receipts.
func copyReceipts(receipts []*types.Receipt) []*types.Receipt {
result := make([]*types.Receipt, len(receipts))
for i, l := range receipts {
cpy := *l
result[i] = &cpy
}
return result
}
// postSideBlock fires a side chain event, only use it for testing.
func (w *worker) postSideBlock(event core.ChainSideEvent) {
select {
case w.chainSideCh <- event:
case <-w.exitCh:
}
}
// signalToErr converts the interruption signal to a concrete error type for return.
// The given signal must be a valid interruption signal.
func signalToErr(signal int32) error {
switch signal {
case commitInterruptNone:
return nil
case commitInterruptNewHead:
return errBlockInterruptedByNewHead
case commitInterruptResubmit:
return errBlockInterruptedByRecommit
case commitInterruptTimeout:
return errBlockInterruptedByTimeout
case commitInterruptOutOfGas:
return errBlockInterruptedByOutOfGas
default:
panic(fmt.Errorf("undefined signal %d", signal))
}
}