bsc/core/rawdb/accessors_trie.go

355 lines
12 KiB
Go

// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package rawdb
import (
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"golang.org/x/crypto/sha3"
)
// HashScheme is the legacy hash-based state scheme with which trie nodes are
// stored in the disk with node hash as the database key. The advantage of this
// scheme is that different versions of trie nodes can be stored in disk, which
// is very beneficial for constructing archive nodes. The drawback is it will
// store different trie nodes on the same path to different locations on the disk
// with no data locality, and it's unfriendly for designing state pruning.
//
// Now this scheme is still kept for backward compatibility, and it will be used
// for archive node and some other tries(e.g. light trie).
const HashScheme = "hash"
// PathScheme is the new path-based state scheme with which trie nodes are stored
// in the disk with node path as the database key. This scheme will only store one
// version of state data in the disk, which means that the state pruning operation
// is native. At the same time, this scheme will put adjacent trie nodes in the same
// area of the disk with good data locality property. But this scheme needs to rely
// on extra state diffs to survive deep reorg.
const PathScheme = "path"
// hasher is used to compute the sha256 hash of the provided data.
type hasher struct{ sha crypto.KeccakState }
var hasherPool = sync.Pool{
New: func() interface{} { return &hasher{sha: sha3.NewLegacyKeccak256().(crypto.KeccakState)} },
}
func newHasher() *hasher {
return hasherPool.Get().(*hasher)
}
func (h *hasher) hash(data []byte) common.Hash {
return crypto.HashData(h.sha, data)
}
func (h *hasher) release() {
hasherPool.Put(h)
}
// ReadAccountTrieNode retrieves the account trie node and the associated node
// hash with the specified node path.
func ReadAccountTrieNode(db ethdb.KeyValueReader, path []byte) ([]byte, common.Hash) {
data, err := db.Get(accountTrieNodeKey(path))
if err != nil {
return nil, common.Hash{}
}
h := newHasher()
defer h.release()
return data, h.hash(data)
}
// HasAccountTrieNode checks the account trie node presence with the specified
// node path and the associated node hash.
func HasAccountTrieNode(db ethdb.KeyValueReader, path []byte, hash common.Hash) bool {
data, err := db.Get(accountTrieNodeKey(path))
if err != nil {
return false
}
h := newHasher()
defer h.release()
return h.hash(data) == hash
}
// ExistsAccountTrieNode checks the presence of the account trie node with the
// specified node path, regardless of the node hash.
func ExistsAccountTrieNode(db ethdb.KeyValueReader, path []byte) bool {
has, err := db.Has(accountTrieNodeKey(path))
if err != nil {
return false
}
return has
}
// WriteAccountTrieNode writes the provided account trie node into database.
func WriteAccountTrieNode(db ethdb.KeyValueWriter, path []byte, node []byte) {
if err := db.Put(accountTrieNodeKey(path), node); err != nil {
log.Crit("Failed to store account trie node", "err", err)
}
}
// DeleteAccountTrieNode deletes the specified account trie node from the database.
func DeleteAccountTrieNode(db ethdb.KeyValueWriter, path []byte) {
if err := db.Delete(accountTrieNodeKey(path)); err != nil {
log.Crit("Failed to delete account trie node", "err", err)
}
}
// ReadStorageTrieNode retrieves the storage trie node and the associated node
// hash with the specified node path.
func ReadStorageTrieNode(db ethdb.KeyValueReader, accountHash common.Hash, path []byte) ([]byte, common.Hash) {
data, err := db.Get(storageTrieNodeKey(accountHash, path))
if err != nil {
return nil, common.Hash{}
}
h := newHasher()
defer h.release()
return data, h.hash(data)
}
// HasStorageTrieNode checks the storage trie node presence with the provided
// node path and the associated node hash.
func HasStorageTrieNode(db ethdb.KeyValueReader, accountHash common.Hash, path []byte, hash common.Hash) bool {
data, err := db.Get(storageTrieNodeKey(accountHash, path))
if err != nil {
return false
}
h := newHasher()
defer h.release()
return h.hash(data) == hash
}
// ExistsStorageTrieNode checks the presence of the storage trie node with the
// specified account hash and node path, regardless of the node hash.
func ExistsStorageTrieNode(db ethdb.KeyValueReader, accountHash common.Hash, path []byte) bool {
has, err := db.Has(storageTrieNodeKey(accountHash, path))
if err != nil {
return false
}
return has
}
// WriteStorageTrieNode writes the provided storage trie node into database.
func WriteStorageTrieNode(db ethdb.KeyValueWriter, accountHash common.Hash, path []byte, node []byte) {
if err := db.Put(storageTrieNodeKey(accountHash, path), node); err != nil {
log.Crit("Failed to store storage trie node", "err", err)
}
}
// DeleteStorageTrieNode deletes the specified storage trie node from the database.
func DeleteStorageTrieNode(db ethdb.KeyValueWriter, accountHash common.Hash, path []byte) {
if err := db.Delete(storageTrieNodeKey(accountHash, path)); err != nil {
log.Crit("Failed to delete storage trie node", "err", err)
}
}
// ReadLegacyTrieNode retrieves the legacy trie node with the given
// associated node hash.
func ReadLegacyTrieNode(db ethdb.KeyValueReader, hash common.Hash) []byte {
data, err := db.Get(hash.Bytes())
if err != nil {
return nil
}
return data
}
// HasLegacyTrieNode checks if the trie node with the provided hash is present in db.
func HasLegacyTrieNode(db ethdb.KeyValueReader, hash common.Hash) bool {
ok, _ := db.Has(hash.Bytes())
return ok
}
// WriteLegacyTrieNode writes the provided legacy trie node to database.
func WriteLegacyTrieNode(db ethdb.KeyValueWriter, hash common.Hash, node []byte) {
if err := db.Put(hash.Bytes(), node); err != nil {
log.Crit("Failed to store legacy trie node", "err", err)
}
}
// DeleteLegacyTrieNode deletes the specified legacy trie node from database.
func DeleteLegacyTrieNode(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Delete(hash.Bytes()); err != nil {
log.Crit("Failed to delete legacy trie node", "err", err)
}
}
// HasTrieNode checks the trie node presence with the provided node info and
// the associated node hash.
func HasTrieNode(db ethdb.KeyValueReader, owner common.Hash, path []byte, hash common.Hash, scheme string) bool {
switch scheme {
case HashScheme:
return HasLegacyTrieNode(db, hash)
case PathScheme:
if owner == (common.Hash{}) {
return HasAccountTrieNode(db, path, hash)
}
return HasStorageTrieNode(db, owner, path, hash)
default:
panic(fmt.Sprintf("Unknown scheme %v", scheme))
}
}
// ReadTrieNode retrieves the trie node from database with the provided node info
// and associated node hash.
// hashScheme-based lookup requires the following:
// - hash
//
// pathScheme-based lookup requires the following:
// - owner
// - path
func ReadTrieNode(db ethdb.KeyValueReader, owner common.Hash, path []byte, hash common.Hash, scheme string) []byte {
switch scheme {
case HashScheme:
return ReadLegacyTrieNode(db, hash)
case PathScheme:
var (
blob []byte
nHash common.Hash
)
if owner == (common.Hash{}) {
blob, nHash = ReadAccountTrieNode(db, path)
} else {
blob, nHash = ReadStorageTrieNode(db, owner, path)
}
if nHash != hash {
return nil
}
return blob
default:
panic(fmt.Sprintf("Unknown scheme %v", scheme))
}
}
// WriteTrieNode writes the trie node into database with the provided node info
// and associated node hash.
// hashScheme-based lookup requires the following:
// - hash
//
// pathScheme-based lookup requires the following:
// - owner
// - path
func WriteTrieNode(db ethdb.KeyValueWriter, owner common.Hash, path []byte, hash common.Hash, node []byte, scheme string) {
switch scheme {
case HashScheme:
WriteLegacyTrieNode(db, hash, node)
case PathScheme:
if owner == (common.Hash{}) {
WriteAccountTrieNode(db, path, node)
} else {
WriteStorageTrieNode(db, owner, path, node)
}
default:
panic(fmt.Sprintf("Unknown scheme %v", scheme))
}
}
// DeleteTrieNode deletes the trie node from database with the provided node info
// and associated node hash.
// hashScheme-based lookup requires the following:
// - hash
//
// pathScheme-based lookup requires the following:
// - owner
// - path
func DeleteTrieNode(db ethdb.KeyValueWriter, owner common.Hash, path []byte, hash common.Hash, scheme string) {
switch scheme {
case HashScheme:
DeleteLegacyTrieNode(db, hash)
case PathScheme:
if owner == (common.Hash{}) {
DeleteAccountTrieNode(db, path)
} else {
DeleteStorageTrieNode(db, owner, path)
}
default:
panic(fmt.Sprintf("Unknown scheme %v", scheme))
}
}
// ReadStateScheme reads the state scheme of persistent state, or none
// if the state is not present in database.
func ReadStateScheme(db ethdb.Reader) string {
// Check if state in path-based scheme is present
blob, _ := ReadAccountTrieNode(db.StateStoreReader(), nil)
if len(blob) != 0 {
return PathScheme
}
// The root node might be deleted during the initial snap sync, check
// the persistent state id then.
if id := ReadPersistentStateID(db.StateStoreReader()); id != 0 {
return PathScheme
}
// In a hash-based scheme, the genesis state is consistently stored
// on the disk. To assess the scheme of the persistent state, it
// suffices to inspect the scheme of the genesis state.
header := ReadHeader(db, ReadCanonicalHash(db, 0), 0)
if header == nil {
return "" // empty datadir
}
blob = ReadLegacyTrieNode(db.StateStoreReader(), header.Root)
if len(blob) == 0 {
return "" // no state in disk
}
return HashScheme
}
// ValidateStateScheme used to check state scheme whether is valid.
// Valid state scheme: hash and path.
func ValidateStateScheme(stateScheme string) bool {
if stateScheme == HashScheme || stateScheme == PathScheme {
return true
}
return false
}
// ParseStateScheme checks if the specified state scheme is compatible with
// the stored state.
//
// - If the provided scheme is none, use the scheme consistent with persistent
// state, or fallback to path-based scheme if state is empty.
//
// - If the provided scheme is hash, use hash-based scheme or error out if not
// compatible with persistent state scheme.
//
// - If the provided scheme is path: use path-based scheme or error out if not
// compatible with persistent state scheme.
func ParseStateScheme(provided string, disk ethdb.Database) (string, error) {
// If state scheme is not specified, use the scheme consistent
// with persistent state, or fallback to hash mode if database
// is empty.
stored := ReadStateScheme(disk)
if provided == "" {
if stored == "" {
log.Info("State scheme set to default", "scheme", "path")
return PathScheme, nil // use default scheme for empty database
}
log.Info("State scheme set to already existing disk db", "scheme", stored)
return stored, nil // reuse scheme of persistent scheme
}
// If state scheme is specified, ensure it's compatible with
// persistent state.
if stored == "" || provided == stored {
log.Info("State scheme set by user", "scheme", provided)
return provided, nil
}
return "", fmt.Errorf("incompatible state scheme, stored: %s, user provided: %s", stored, provided)
}