bsc/eth/handler.go
2024-08-22 11:34:23 +02:00

1085 lines
36 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package eth
import (
"errors"
"math"
"math/big"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/beacon"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/forkid"
"github.com/ethereum/go-ethereum/core/monitor"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/txpool"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth/downloader"
"github.com/ethereum/go-ethereum/eth/fetcher"
"github.com/ethereum/go-ethereum/eth/protocols/bsc"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/eth/protocols/snap"
"github.com/ethereum/go-ethereum/eth/protocols/trust"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/p2p"
)
const (
// txChanSize is the size of channel listening to NewTxsEvent.
// The number is referenced from the size of tx pool.
txChanSize = 4096
// voteChanSize is the size of channel listening to NewVotesEvent.
voteChanSize = 256
// deltaTdThreshold is the threshold of TD difference for peers to broadcast votes.
deltaTdThreshold = 20
// txMaxBroadcastSize is the max size of a transaction that will be broadcasted.
// All transactions with a higher size will be announced and need to be fetched
// by the peer.
txMaxBroadcastSize = 4096
)
var (
syncChallengeTimeout = 15 * time.Second // Time allowance for a node to reply to the sync progress challenge
accountBlacklistPeerCounter = metrics.NewRegisteredCounter("eth/count/blacklist", nil)
)
// txPool defines the methods needed from a transaction pool implementation to
// support all the operations needed by the Ethereum chain protocols.
type txPool interface {
// Has returns an indicator whether txpool has a transaction
// cached with the given hash.
Has(hash common.Hash) bool
// Get retrieves the transaction from local txpool with given
// tx hash.
Get(hash common.Hash) *types.Transaction
// Add should add the given transactions to the pool.
Add(txs []*types.Transaction, local bool, sync bool) []error
// Pending should return pending transactions.
// The slice should be modifiable by the caller.
Pending(filter txpool.PendingFilter) map[common.Address][]*txpool.LazyTransaction
// SubscribeTransactions subscribes to new transaction events. The subscriber
// can decide whether to receive notifications only for newly seen transactions
// or also for reorged out ones.
SubscribeTransactions(ch chan<- core.NewTxsEvent, reorgs bool) event.Subscription
// SubscribeReannoTxsEvent should return an event subscription of
// ReannoTxsEvent and send events to the given channel.
SubscribeReannoTxsEvent(chan<- core.ReannoTxsEvent) event.Subscription
}
// votePool defines the methods needed from a votes pool implementation to
// support all the operations needed by the Ethereum chain protocols.
type votePool interface {
PutVote(vote *types.VoteEnvelope)
GetVotes() []*types.VoteEnvelope
// SubscribeNewVoteEvent should return an event subscription of
// NewVotesEvent and send events to the given channel.
SubscribeNewVoteEvent(ch chan<- core.NewVoteEvent) event.Subscription
}
// handlerConfig is the collection of initialization parameters to create a full
// node network handler.
type handlerConfig struct {
Database ethdb.Database // Database for direct sync insertions
Chain *core.BlockChain // Blockchain to serve data from
TxPool txPool // Transaction pool to propagate from
VotePool votePool
Merger *consensus.Merger // The manager for eth1/2 transition
Network uint64 // Network identifier to adfvertise
Sync downloader.SyncMode // Whether to snap or full sync
BloomCache uint64 // Megabytes to alloc for snap sync bloom
EventMux *event.TypeMux // Legacy event mux, deprecate for `feed`
RequiredBlocks map[uint64]common.Hash // Hard coded map of required block hashes for sync challenges
DirectBroadcast bool
DisablePeerTxBroadcast bool
PeerSet *peerSet
}
type handler struct {
networkID uint64
forkFilter forkid.Filter // Fork ID filter, constant across the lifetime of the node
disablePeerTxBroadcast bool
snapSync atomic.Bool // Flag whether snap sync is enabled (gets disabled if we already have blocks)
synced atomic.Bool // Flag whether we're considered synchronised (enables transaction processing)
directBroadcast bool
database ethdb.Database
txpool txPool
votepool votePool
maliciousVoteMonitor *monitor.MaliciousVoteMonitor
chain *core.BlockChain
maxPeers int
maxPeersPerIP int
peersPerIP map[string]int
peerPerIPLock sync.Mutex
downloader *downloader.Downloader
blockFetcher *fetcher.BlockFetcher
txFetcher *fetcher.TxFetcher
peers *peerSet
merger *consensus.Merger
eventMux *event.TypeMux
txsCh chan core.NewTxsEvent
txsSub event.Subscription
reannoTxsCh chan core.ReannoTxsEvent
reannoTxsSub event.Subscription
minedBlockSub *event.TypeMuxSubscription
voteCh chan core.NewVoteEvent
votesSub event.Subscription
voteMonitorSub event.Subscription
requiredBlocks map[uint64]common.Hash
// channels for fetcher, syncer, txsyncLoop
quitSync chan struct{}
stopCh chan struct{}
chainSync *chainSyncer
wg sync.WaitGroup
handlerStartCh chan struct{}
handlerDoneCh chan struct{}
}
// newHandler returns a handler for all Ethereum chain management protocol.
func newHandler(config *handlerConfig) (*handler, error) {
// Create the protocol manager with the base fields
if config.EventMux == nil {
config.EventMux = new(event.TypeMux) // Nicety initialization for tests
}
if config.PeerSet == nil {
config.PeerSet = newPeerSet() // Nicety initialization for tests
}
h := &handler{
networkID: config.Network,
forkFilter: forkid.NewFilter(config.Chain),
disablePeerTxBroadcast: config.DisablePeerTxBroadcast,
eventMux: config.EventMux,
database: config.Database,
txpool: config.TxPool,
votepool: config.VotePool,
chain: config.Chain,
peers: config.PeerSet,
merger: config.Merger,
peersPerIP: make(map[string]int),
requiredBlocks: config.RequiredBlocks,
directBroadcast: config.DirectBroadcast,
quitSync: make(chan struct{}),
handlerDoneCh: make(chan struct{}),
handlerStartCh: make(chan struct{}),
stopCh: make(chan struct{}),
}
if config.Sync == downloader.FullSync {
// The database seems empty as the current block is the genesis. Yet the snap
// block is ahead, so snap sync was enabled for this node at a certain point.
// The scenarios where this can happen is
// * if the user manually (or via a bad block) rolled back a snap sync node
// below the sync point.
// * the last snap sync is not finished while user specifies a full sync this
// time. But we don't have any recent state for full sync.
// In these cases however it's safe to reenable snap sync.
fullBlock, snapBlock := h.chain.CurrentBlock(), h.chain.CurrentSnapBlock()
if fullBlock.Number.Uint64() == 0 && snapBlock.Number.Uint64() > 0 {
if rawdb.ReadAncientType(h.database) == rawdb.PruneFreezerType {
log.Crit("Fast Sync not finish, can't enable pruneancient mode")
}
h.snapSync.Store(true)
log.Warn("Switch sync mode from full sync to snap sync", "reason", "snap sync incomplete")
} else if !h.chain.NoTries() && !h.chain.HasState(fullBlock.Root) {
h.snapSync.Store(true)
log.Warn("Switch sync mode from full sync to snap sync", "reason", "head state missing")
}
} else {
head := h.chain.CurrentBlock()
if head.Number.Uint64() > 0 && h.chain.HasState(head.Root) {
// Print warning log if database is not empty to run snap sync.
log.Warn("Switch sync mode from snap sync to full sync", "reason", "snap sync complete")
} else {
// If snap sync was requested and our database is empty, grant it
h.snapSync.Store(true)
log.Info("Enabled snap sync", "head", head.Number, "hash", head.Hash())
}
}
// If snap sync is requested but snapshots are disabled, fail loudly
if h.snapSync.Load() && config.Chain.Snapshots() == nil {
return nil, errors.New("snap sync not supported with snapshots disabled")
}
// Construct the downloader (long sync)
h.downloader = downloader.New(config.Database, h.eventMux, h.chain, nil, h.removePeer, h.enableSyncedFeatures)
// Construct the fetcher (short sync)
validator := func(header *types.Header) error {
// All the block fetcher activities should be disabled
// after the transition. Print the warning log.
if h.merger.PoSFinalized() {
log.Warn("Unexpected validation activity", "hash", header.Hash(), "number", header.Number)
return errors.New("unexpected behavior after transition")
}
// Reject all the PoS style headers in the first place. No matter
// the chain has finished the transition or not, the PoS headers
// should only come from the trusted consensus layer instead of
// p2p network.
if beacon, ok := h.chain.Engine().(*beacon.Beacon); ok {
if beacon.IsPoSHeader(header) {
return errors.New("unexpected post-merge header")
}
}
return h.chain.Engine().VerifyHeader(h.chain, header)
}
heighter := func() uint64 {
return h.chain.CurrentBlock().Number.Uint64()
}
finalizeHeighter := func() uint64 {
fblock := h.chain.CurrentFinalBlock()
if fblock == nil {
return 0
}
return fblock.Number.Uint64()
}
inserter := func(blocks types.Blocks) (int, error) {
// All the block fetcher activities should be disabled
// after the transition. Print the warning log.
if h.merger.PoSFinalized() {
var ctx []interface{}
ctx = append(ctx, "blocks", len(blocks))
if len(blocks) > 0 {
ctx = append(ctx, "firsthash", blocks[0].Hash())
ctx = append(ctx, "firstnumber", blocks[0].Number())
ctx = append(ctx, "lasthash", blocks[len(blocks)-1].Hash())
ctx = append(ctx, "lastnumber", blocks[len(blocks)-1].Number())
}
log.Warn("Unexpected insertion activity", ctx...)
return 0, errors.New("unexpected behavior after transition")
}
// If snap sync is running, deny importing weird blocks. This is a problematic
// clause when starting up a new network, because snap-syncing miners might not
// accept each others' blocks until a restart. Unfortunately we haven't figured
// out a way yet where nodes can decide unilaterally whether the network is new
// or not. This should be fixed if we figure out a solution.
if !h.synced.Load() {
log.Warn("Syncing, discarded propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash())
return 0, nil
}
if h.merger.TDDReached() {
// The blocks from the p2p network is regarded as untrusted
// after the transition. In theory block gossip should be disabled
// entirely whenever the transition is started. But in order to
// handle the transition boundary reorg in the consensus-layer,
// the legacy blocks are still accepted, but only for the terminal
// pow blocks. Spec: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-3675.md#halt-the-importing-of-pow-blocks
for i, block := range blocks {
ptd := h.chain.GetTd(block.ParentHash(), block.NumberU64()-1)
if ptd == nil {
return 0, nil
}
td := new(big.Int).Add(ptd, block.Difficulty())
if !h.chain.Config().IsTerminalPoWBlock(ptd, td) {
log.Info("Filtered out non-terminal pow block", "number", block.NumberU64(), "hash", block.Hash())
return 0, nil
}
if err := h.chain.InsertBlockWithoutSetHead(block); err != nil {
return i, err
}
}
return 0, nil
}
return h.chain.InsertChain(blocks)
}
broadcastBlockWithCheck := func(block *types.Block, propagate bool) {
if propagate {
checkErrs := make(chan error, 2)
go func() {
checkErrs <- core.ValidateListsInBody(block)
}()
go func() {
checkErrs <- core.IsDataAvailable(h.chain, block)
}()
for i := 0; i < cap(checkErrs); i++ {
err := <-checkErrs
if err != nil {
log.Error("Propagating invalid block", "number", block.Number(), "hash", block.Hash(), "err", err)
return
}
}
}
h.BroadcastBlock(block, propagate)
}
h.blockFetcher = fetcher.NewBlockFetcher(false, nil, h.chain.GetBlockByHash, validator, broadcastBlockWithCheck,
heighter, finalizeHeighter, nil, inserter, h.removePeer)
fetchTx := func(peer string, hashes []common.Hash) error {
p := h.peers.peer(peer)
if p == nil {
return errors.New("unknown peer")
}
return p.RequestTxs(hashes)
}
addTxs := func(peer string, txs []*types.Transaction) []error {
errors := h.txpool.Add(txs, false, false)
for _, err := range errors {
if err == txpool.ErrInBlackList {
accountBlacklistPeerCounter.Inc(1)
p := h.peers.peer(peer)
if p != nil {
remoteAddr := p.remoteAddr()
if remoteAddr != nil {
log.Warn("blacklist account detected from other peer", "remoteAddr", remoteAddr, "ID", p.ID())
}
}
}
}
return errors
}
h.txFetcher = fetcher.NewTxFetcher(h.txpool.Has, addTxs, fetchTx, h.removePeer)
h.chainSync = newChainSyncer(h)
h.printPeerStatus()
return h, nil
}
// protoTracker tracks the number of active protocol handlers.
func (h *handler) protoTracker() {
defer h.wg.Done()
var active int
for {
select {
case <-h.handlerStartCh:
active++
case <-h.handlerDoneCh:
active--
case <-h.quitSync:
// Wait for all active handlers to finish.
for ; active > 0; active-- {
<-h.handlerDoneCh
}
return
}
}
}
// incHandlers signals to increment the number of active handlers if not
// quitting.
func (h *handler) incHandlers() bool {
select {
case h.handlerStartCh <- struct{}{}:
return true
case <-h.quitSync:
return false
}
}
// decHandlers signals to decrement the number of active handlers.
func (h *handler) decHandlers() {
h.handlerDoneCh <- struct{}{}
}
// runEthPeer registers an eth peer into the joint eth/snap peerset, adds it to
// various subsystems and starts handling messages.
func (h *handler) runEthPeer(peer *eth.Peer, handler eth.Handler) error {
if !h.incHandlers() {
return p2p.DiscQuitting
}
defer h.decHandlers()
// If the peer has a `snap` extension, wait for it to connect so we can have
// a uniform initialization/teardown mechanism
snap, err := h.peers.waitSnapExtension(peer)
if err != nil {
peer.Log().Error("Snapshot extension barrier failed", "err", err)
return err
}
trust, err := h.peers.waitTrustExtension(peer)
if err != nil {
peer.Log().Error("Trust extension barrier failed", "err", err)
return err
}
bsc, err := h.peers.waitBscExtension(peer)
if err != nil {
peer.Log().Error("Bsc extension barrier failed", "err", err)
return err
}
// Execute the Ethereum handshake
var (
genesis = h.chain.Genesis()
head = h.chain.CurrentHeader()
hash = head.Hash()
number = head.Number.Uint64()
td = h.chain.GetTd(hash, number)
)
forkID := forkid.NewID(h.chain.Config(), genesis, number, head.Time)
if err := peer.Handshake(h.networkID, td, hash, genesis.Hash(), forkID, h.forkFilter, &eth.UpgradeStatusExtension{DisablePeerTxBroadcast: h.disablePeerTxBroadcast}); err != nil {
peer.Log().Debug("Ethereum handshake failed", "err", err)
return err
}
reject := false // reserved peer slots
if h.snapSync.Load() {
if snap == nil {
// If we are running snap-sync, we want to reserve roughly half the peer
// slots for peers supporting the snap protocol.
// The logic here is; we only allow up to 5 more non-snap peers than snap-peers.
if all, snp := h.peers.len(), h.peers.snapLen(); all-snp > snp+5 {
reject = true
}
}
}
// Ignore maxPeers if this is a trusted peer
peerInfo := peer.Peer.Info()
if !peerInfo.Network.Trusted {
if reject || h.peers.len() >= h.maxPeers {
return p2p.DiscTooManyPeers
}
}
remoteAddr := peerInfo.Network.RemoteAddress
indexIP := strings.LastIndex(remoteAddr, ":")
if indexIP == -1 {
// there could be no IP address, such as a pipe
peer.Log().Debug("runEthPeer", "no ip address, remoteAddress", remoteAddr)
} else if !peerInfo.Network.Trusted {
remoteIP := remoteAddr[:indexIP]
h.peerPerIPLock.Lock()
if num, ok := h.peersPerIP[remoteIP]; ok && num >= h.maxPeersPerIP {
h.peerPerIPLock.Unlock()
peer.Log().Info("The IP has too many peers", "ip", remoteIP, "maxPeersPerIP", h.maxPeersPerIP,
"name", peerInfo.Name, "Enode", peerInfo.Enode)
return p2p.DiscTooManyPeers
}
h.peersPerIP[remoteIP] = h.peersPerIP[remoteIP] + 1
h.peerPerIPLock.Unlock()
}
peer.Log().Debug("Ethereum peer connected", "name", peer.Name())
// Register the peer locally
if err := h.peers.registerPeer(peer, snap, trust, bsc); err != nil {
peer.Log().Error("Ethereum peer registration failed", "err", err)
return err
}
defer h.unregisterPeer(peer.ID())
p := h.peers.peer(peer.ID())
if p == nil {
return errors.New("peer dropped during handling")
}
// Register the peer in the downloader. If the downloader considers it banned, we disconnect
if err := h.downloader.RegisterPeer(peer.ID(), peer.Version(), peer); err != nil {
peer.Log().Error("Failed to register peer in eth syncer", "err", err)
return err
}
if snap != nil {
if err := h.downloader.SnapSyncer.Register(snap); err != nil {
peer.Log().Error("Failed to register peer in snap syncer", "err", err)
return err
}
}
h.chainSync.handlePeerEvent()
// Propagate existing transactions and votes. new transactions and votes appearing
// after this will be sent via broadcasts.
h.syncTransactions(peer)
if h.votepool != nil && p.bscExt != nil {
h.syncVotes(p.bscExt)
}
// Create a notification channel for pending requests if the peer goes down
dead := make(chan struct{})
defer close(dead)
// If we have any explicit peer required block hashes, request them
for number, hash := range h.requiredBlocks {
resCh := make(chan *eth.Response)
req, err := peer.RequestHeadersByNumber(number, 1, 0, false, resCh)
if err != nil {
return err
}
go func(number uint64, hash common.Hash, req *eth.Request) {
// Ensure the request gets cancelled in case of error/drop
defer req.Close()
timeout := time.NewTimer(syncChallengeTimeout)
defer timeout.Stop()
select {
case res := <-resCh:
headers := ([]*types.Header)(*res.Res.(*eth.BlockHeadersRequest))
if len(headers) == 0 {
// Required blocks are allowed to be missing if the remote
// node is not yet synced
res.Done <- nil
return
}
// Validate the header and either drop the peer or continue
if len(headers) > 1 {
res.Done <- errors.New("too many headers in required block response")
return
}
if headers[0].Number.Uint64() != number || headers[0].Hash() != hash {
peer.Log().Info("Required block mismatch, dropping peer", "number", number, "hash", headers[0].Hash(), "want", hash)
res.Done <- errors.New("required block mismatch")
return
}
peer.Log().Debug("Peer required block verified", "number", number, "hash", hash)
res.Done <- nil
case <-timeout.C:
peer.Log().Warn("Required block challenge timed out, dropping", "addr", peer.RemoteAddr(), "type", peer.Name())
h.removePeer(peer.ID())
}
}(number, hash, req)
}
// Handle incoming messages until the connection is torn down
return handler(peer)
}
// runSnapExtension registers a `snap` peer into the joint eth/snap peerset and
// starts handling inbound messages. As `snap` is only a satellite protocol to
// `eth`, all subsystem registrations and lifecycle management will be done by
// the main `eth` handler to prevent strange races.
func (h *handler) runSnapExtension(peer *snap.Peer, handler snap.Handler) error {
if !h.incHandlers() {
return p2p.DiscQuitting
}
defer h.decHandlers()
if err := h.peers.registerSnapExtension(peer); err != nil {
if metrics.Enabled {
if peer.Inbound() {
snap.IngressRegistrationErrorMeter.Mark(1)
} else {
snap.EgressRegistrationErrorMeter.Mark(1)
}
}
peer.Log().Debug("Snapshot extension registration failed", "err", err)
return err
}
return handler(peer)
}
// runTrustExtension registers a `trust` peer into the joint eth/trust peerset and
// starts handling inbound messages. As `trust` is only a satellite protocol to
// `eth`, all subsystem registrations and lifecycle management will be done by
// the main `eth` handler to prevent strange races.
func (h *handler) runTrustExtension(peer *trust.Peer, handler trust.Handler) error {
if !h.incHandlers() {
return p2p.DiscQuitting
}
defer h.decHandlers()
if err := h.peers.registerTrustExtension(peer); err != nil {
if metrics.Enabled {
if peer.Inbound() {
trust.IngressRegistrationErrorMeter.Mark(1)
} else {
trust.EgressRegistrationErrorMeter.Mark(1)
}
}
peer.Log().Error("Trust extension registration failed", "err", err)
return err
}
return handler(peer)
}
// runBscExtension registers a `bsc` peer into the joint eth/bsc peerset and
// starts handling inbound messages. As `bsc` is only a satellite protocol to
// `eth`, all subsystem registrations and lifecycle management will be done by
// the main `eth` handler to prevent strange races.
func (h *handler) runBscExtension(peer *bsc.Peer, handler bsc.Handler) error {
if !h.incHandlers() {
return p2p.DiscQuitting
}
defer h.decHandlers()
if err := h.peers.registerBscExtension(peer); err != nil {
if metrics.Enabled {
if peer.Inbound() {
bsc.IngressRegistrationErrorMeter.Mark(1)
} else {
bsc.EgressRegistrationErrorMeter.Mark(1)
}
}
peer.Log().Error("Bsc extension registration failed", "err", err)
return err
}
return handler(peer)
}
// removePeer requests disconnection of a peer.
func (h *handler) removePeer(id string) {
peer := h.peers.peer(id)
if peer != nil {
// Hard disconnect at the networking layer. Handler will get an EOF and terminate the peer. defer unregisterPeer will do the cleanup task after then.
peer.Peer.Disconnect(p2p.DiscUselessPeer)
}
}
// unregisterPeer removes a peer from the downloader, fetchers and main peer set.
func (h *handler) unregisterPeer(id string) {
// Create a custom logger to avoid printing the entire id
var logger log.Logger
if len(id) < 16 {
// Tests use short IDs, don't choke on them
logger = log.New("peer", id)
} else {
logger = log.New("peer", id[:8])
}
// Abort if the peer does not exist
peer := h.peers.peer(id)
if peer == nil {
logger.Error("Ethereum peer removal failed", "err", errPeerNotRegistered)
return
}
// Remove the `eth` peer if it exists
logger.Debug("Removing Ethereum peer", "snap", peer.snapExt != nil)
// Remove the `snap` extension if it exists
if peer.snapExt != nil {
h.downloader.SnapSyncer.Unregister(id)
}
h.downloader.UnregisterPeer(id)
h.txFetcher.Drop(id)
if err := h.peers.unregisterPeer(id); err != nil {
logger.Error("Ethereum peer removal failed", "err", err)
}
peerInfo := peer.Peer.Info()
remoteAddr := peerInfo.Network.RemoteAddress
indexIP := strings.LastIndex(remoteAddr, ":")
if indexIP == -1 {
// there could be no IP address, such as a pipe
peer.Log().Debug("unregisterPeer", "name", peerInfo.Name, "no ip address, remoteAddress", remoteAddr)
} else if !peerInfo.Network.Trusted {
remoteIP := remoteAddr[:indexIP]
h.peerPerIPLock.Lock()
if h.peersPerIP[remoteIP] <= 0 {
peer.Log().Error("unregisterPeer without record", "name", peerInfo.Name, "remoteAddress", remoteAddr)
} else {
h.peersPerIP[remoteIP] = h.peersPerIP[remoteIP] - 1
logger.Debug("unregisterPeer", "name", peerInfo.Name, "connectNum", h.peersPerIP[remoteIP])
if h.peersPerIP[remoteIP] == 0 {
delete(h.peersPerIP, remoteIP)
}
}
h.peerPerIPLock.Unlock()
}
}
func (h *handler) Start(maxPeers int, maxPeersPerIP int) {
h.maxPeers = maxPeers
h.maxPeersPerIP = maxPeersPerIP
// broadcast and announce transactions (only new ones, not resurrected ones)
h.wg.Add(1)
h.txsCh = make(chan core.NewTxsEvent, txChanSize)
h.txsSub = h.txpool.SubscribeTransactions(h.txsCh, false)
go h.txBroadcastLoop()
// broadcast votes
if h.votepool != nil {
h.wg.Add(1)
h.voteCh = make(chan core.NewVoteEvent, voteChanSize)
h.votesSub = h.votepool.SubscribeNewVoteEvent(h.voteCh)
go h.voteBroadcastLoop()
if h.maliciousVoteMonitor != nil {
h.wg.Add(1)
go h.startMaliciousVoteMonitor()
}
}
// announce local pending transactions again
h.wg.Add(1)
h.reannoTxsCh = make(chan core.ReannoTxsEvent, txChanSize)
h.reannoTxsSub = h.txpool.SubscribeReannoTxsEvent(h.reannoTxsCh)
go h.txReannounceLoop()
// broadcast mined blocks
h.wg.Add(1)
h.minedBlockSub = h.eventMux.Subscribe(core.NewMinedBlockEvent{})
go h.minedBroadcastLoop()
// start sync handlers
h.wg.Add(1)
go h.chainSync.loop()
// start peer handler tracker
h.wg.Add(1)
go h.protoTracker()
}
func (h *handler) startMaliciousVoteMonitor() {
defer h.wg.Done()
voteCh := make(chan core.NewVoteEvent, voteChanSize)
h.voteMonitorSub = h.votepool.SubscribeNewVoteEvent(voteCh)
for {
select {
case event := <-voteCh:
pendingBlockNumber := h.chain.CurrentHeader().Number.Uint64() + 1
h.maliciousVoteMonitor.ConflictDetect(event.Vote, pendingBlockNumber)
case <-h.voteMonitorSub.Err():
return
case <-h.stopCh:
return
}
}
}
func (h *handler) Stop() {
h.txsSub.Unsubscribe() // quits txBroadcastLoop
h.reannoTxsSub.Unsubscribe() // quits txReannounceLoop
h.minedBlockSub.Unsubscribe() // quits blockBroadcastLoop
if h.votepool != nil {
h.votesSub.Unsubscribe() // quits voteBroadcastLoop
if h.maliciousVoteMonitor != nil {
h.voteMonitorSub.Unsubscribe()
}
}
close(h.stopCh)
// Quit chainSync and txsync64.
// After this is done, no new peers will be accepted.
close(h.quitSync)
// Disconnect existing sessions.
// This also closes the gate for any new registrations on the peer set.
// sessions which are already established but not added to h.peers yet
// will exit when they try to register.
h.peers.close()
h.wg.Wait()
log.Info("Ethereum protocol stopped")
}
// BroadcastBlock will either propagate a block to a subset of its peers, or
// will only announce its availability (depending what's requested).
func (h *handler) BroadcastBlock(block *types.Block, propagate bool) {
// Disable the block propagation if the chain has already entered the PoS
// stage. The block propagation is delegated to the consensus layer.
if h.merger.PoSFinalized() {
return
}
// Disable the block propagation if it's the post-merge block.
if beacon, ok := h.chain.Engine().(*beacon.Beacon); ok {
if beacon.IsPoSHeader(block.Header()) {
return
}
}
hash := block.Hash()
peers := h.peers.peersWithoutBlock(hash)
// If propagation is requested, send to a subset of the peer
if propagate {
// Calculate the TD of the block (it's not imported yet, so block.Td is not valid)
var td *big.Int
if parent := h.chain.GetBlock(block.ParentHash(), block.NumberU64()-1); parent != nil {
td = new(big.Int).Add(block.Difficulty(), h.chain.GetTd(block.ParentHash(), block.NumberU64()-1))
} else {
log.Error("Propagating dangling block", "number", block.Number(), "hash", hash)
return
}
// Send the block to a subset of our peers
var transfer []*ethPeer
if h.directBroadcast {
transfer = peers[:]
} else {
transfer = peers[:int(math.Sqrt(float64(len(peers))))]
}
for _, peer := range transfer {
peer.AsyncSendNewBlock(block, td)
}
log.Trace("Propagated block", "hash", hash, "recipients", len(transfer), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))
return
}
// Otherwise if the block is indeed in our own chain, announce it
if h.chain.HasBlock(hash, block.NumberU64()) {
for _, peer := range peers {
peer.AsyncSendNewBlockHash(block)
}
log.Trace("Announced block", "hash", hash, "recipients", len(peers), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))
}
}
// BroadcastTransactions will propagate a batch of transactions
// - To a square root of all peers for non-blob transactions
// - And, separately, as announcements to all peers which are not known to
// already have the given transaction.
func (h *handler) BroadcastTransactions(txs types.Transactions) {
var (
blobTxs int // Number of blob transactions to announce only
largeTxs int // Number of large transactions to announce only
directCount int // Number of transactions sent directly to peers (duplicates included)
directPeers int // Number of peers that were sent transactions directly
annCount int // Number of transactions announced across all peers (duplicates included)
annPeers int // Number of peers announced about transactions
txset = make(map[*ethPeer][]common.Hash) // Set peer->hash to transfer directly
annos = make(map[*ethPeer][]common.Hash) // Set peer->hash to announce
)
// Broadcast transactions to a batch of peers not knowing about it
for _, tx := range txs {
peers := h.peers.peersWithoutTransaction(tx.Hash())
var numDirect int
switch {
case tx.Type() == types.BlobTxType:
blobTxs++
case tx.Size() > txMaxBroadcastSize:
largeTxs++
default:
numDirect = int(math.Sqrt(float64(len(peers))))
}
// Send the tx unconditionally to a subset of our peers
for _, peer := range peers[:numDirect] {
txset[peer] = append(txset[peer], tx.Hash())
}
// For the remaining peers, send announcement only
for _, peer := range peers[numDirect:] {
annos[peer] = append(annos[peer], tx.Hash())
}
}
for peer, hashes := range txset {
directPeers++
directCount += len(hashes)
peer.AsyncSendTransactions(hashes)
}
for peer, hashes := range annos {
annPeers++
annCount += len(hashes)
peer.AsyncSendPooledTransactionHashes(hashes)
}
log.Debug("Distributed transactions", "plaintxs", len(txs)-blobTxs-largeTxs, "blobtxs", blobTxs, "largetxs", largeTxs,
"bcastpeers", directPeers, "bcastcount", directCount, "annpeers", annPeers, "anncount", annCount)
}
// ReannounceTransactions will announce a batch of local pending transactions
// to a square root of all peers.
func (h *handler) ReannounceTransactions(txs types.Transactions) {
hashes := make([]common.Hash, 0, txs.Len())
for _, tx := range txs {
hashes = append(hashes, tx.Hash())
}
// Announce transactions hash to a batch of peers
peersCount := uint(math.Sqrt(float64(h.peers.len())))
peers := h.peers.headPeers(peersCount)
for _, peer := range peers {
peer.AsyncSendPooledTransactionHashes(hashes)
}
log.Debug("Transaction reannounce", "txs", len(txs),
"announce packs", peersCount, "announced hashes", peersCount*uint(len(hashes)))
}
// BroadcastVote will propagate a batch of votes to all peers
// which are not known to already have the given vote.
func (h *handler) BroadcastVote(vote *types.VoteEnvelope) {
var (
directCount int // Count of announcements made
directPeers int
voteMap = make(map[*ethPeer]*types.VoteEnvelope) // Set peer->hash to transfer directly
)
// Broadcast vote to a batch of peers not knowing about it
peers := h.peers.peersWithoutVote(vote.Hash())
headBlock := h.chain.CurrentBlock()
currentTD := h.chain.GetTd(headBlock.Hash(), headBlock.Number.Uint64())
for _, peer := range peers {
_, peerTD := peer.Head()
deltaTD := new(big.Int).Abs(new(big.Int).Sub(currentTD, peerTD))
if deltaTD.Cmp(big.NewInt(deltaTdThreshold)) < 1 && peer.bscExt != nil {
voteMap[peer] = vote
}
}
for peer, _vote := range voteMap {
directPeers++
directCount += 1
votes := []*types.VoteEnvelope{_vote}
peer.bscExt.AsyncSendVotes(votes)
}
log.Debug("Vote broadcast", "vote packs", directPeers, "broadcast vote", directCount)
}
// minedBroadcastLoop sends mined blocks to connected peers.
func (h *handler) minedBroadcastLoop() {
defer h.wg.Done()
for {
select {
case obj := <-h.minedBlockSub.Chan():
if obj == nil {
continue
}
if ev, ok := obj.Data.(core.NewMinedBlockEvent); ok {
h.BroadcastBlock(ev.Block, true) // First propagate block to peers
h.BroadcastBlock(ev.Block, false) // Only then announce to the rest
}
case <-h.stopCh:
return
}
}
}
// txBroadcastLoop announces new transactions to connected peers.
func (h *handler) txBroadcastLoop() {
defer h.wg.Done()
for {
select {
case event := <-h.txsCh:
h.BroadcastTransactions(event.Txs)
case <-h.txsSub.Err():
return
case <-h.stopCh:
return
}
}
}
// txReannounceLoop announces local pending transactions to connected peers again.
func (h *handler) txReannounceLoop() {
defer h.wg.Done()
for {
select {
case event := <-h.reannoTxsCh:
h.ReannounceTransactions(event.Txs)
case <-h.reannoTxsSub.Err():
return
case <-h.stopCh:
return
}
}
}
// voteBroadcastLoop announces new vote to connected peers.
func (h *handler) voteBroadcastLoop() {
defer h.wg.Done()
for {
select {
case event := <-h.voteCh:
// The timeliness of votes is very important,
// so one vote will be sent instantly without waiting for other votes for batch sending by design.
h.BroadcastVote(event.Vote)
case <-h.votesSub.Err():
return
}
}
}
// enableSyncedFeatures enables the post-sync functionalities when the initial
// sync is finished.
func (h *handler) enableSyncedFeatures() {
// Mark the local node as synced.
h.synced.Store(true)
// If we were running snap sync and it finished, disable doing another
// round on next sync cycle
if h.snapSync.Load() {
log.Info("Snap sync complete, auto disabling")
h.snapSync.Store(false)
}
// if h.chain.TrieDB().Scheme() == rawdb.PathScheme {
// h.chain.TrieDB().SetBufferSize(pathdb.DefaultBufferSize)
// }
}
type PeerDummy struct {
ID string
Head common.Hash
TD *big.Int
TimeStamp time.Time
}
func (h *handler) printPeerStatus() {
go func() {
statusMap := make(map[string]PeerDummy)
for {
// run in timer very 1 minue of time
time.Sleep(1 * time.Minute)
// Create a set to track current peers
currentPeers := make(map[string]struct{})
// print peer status
h.peers.lock.RLock()
for _, peer := range h.peers.peers {
currentPeers[peer.Peer.ID()] = struct{}{}
head, td := peer.Peer.Head()
if p, ok := statusMap[peer.Peer.ID()]; ok {
if p.Head == head && p.TD.Cmp(td) == 0 {
continue
}
p.Head = head
p.TD = td
p.TimeStamp = time.Now()
statusMap[peer.Peer.ID()] = p
} else {
statusMap[peer.Peer.ID()] = PeerDummy{
ID: peer.Peer.ID(),
Head: head,
TD: td,
TimeStamp: time.Now(),
}
}
}
h.peers.lock.RUnlock()
// Remove peers from statusMap that are no longer in h.peers.peers
for id := range statusMap {
if _, exists := currentPeers[id]; !exists {
delete(statusMap, id)
}
}
var count int
for _, peer := range statusMap {
if peer.TimeStamp.Before(time.Now().Add(-60 * time.Minute)) {
count++
if count == 1 {
log.Warn("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
}
log.Warn("peer", peer.ID, "head", peer.Head, "TD", peer.TD, "TimeStamp", peer.TimeStamp)
}
}
if count > 0 {
log.Warn("Total peers: ", len(statusMap), "inactive peers: ", count)
log.Warn("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
}
}
}()
}