bsc/core/state_processor.go
2024-06-12 14:55:32 +08:00

279 lines
11 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"errors"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/systemcontracts"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/params"
"math/big"
"time"
)
// StateProcessor is a basic Processor, which takes care of transitioning
// state from one point to another.
//
// StateProcessor implements Processor.
type StateProcessor struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus.Engine // Consensus engine used for block rewards
}
// NewStateProcessor initialises a new StateProcessor.
func NewStateProcessor(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *StateProcessor {
return &StateProcessor{
config: config,
bc: bc,
engine: engine,
}
}
var (
dagExecutionTimer = metrics.NewRegisteredTimer("dag/executiontime", nil)
dagAccountReadTimer = metrics.NewRegisteredTimer("dag/accountreadtime", nil)
dagStorageReadTimer = metrics.NewRegisteredTimer("dag/storagereadtime", nil)
)
// Process processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb and applying any rewards to both
// the processor (coinbase) and any included uncles.
//
// Process returns the receipts and logs accumulated during the process and
// returns the amount of gas that was used in the process. If any of the
// transactions failed to execute due to insufficient gas it will return an error.
func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (*state.StateDB, types.Receipts, []*types.Log, uint64, error) {
var (
usedGas = new(uint64)
header = block.Header()
blockHash = block.Hash()
blockNumber = block.Number()
allLogs []*types.Log
gp = new(GasPool).AddGas(block.GasLimit())
)
var receipts = make([]*types.Receipt, 0)
// Mutate the block and state according to any hard-fork specs
if p.config.DAOForkSupport && p.config.DAOForkBlock != nil && p.config.DAOForkBlock.Cmp(block.Number()) == 0 {
misc.ApplyDAOHardFork(statedb)
}
lastBlock := p.bc.GetBlockByHash(block.ParentHash())
if lastBlock == nil {
return statedb, nil, nil, 0, errors.New("could not get parent block")
}
if !p.config.IsFeynman(block.Number(), block.Time()) {
// Handle upgrade build-in system contract code
systemcontracts.UpgradeBuildInSystemContract(p.config, blockNumber, lastBlock.Time(), block.Time(), statedb)
}
var (
context = NewEVMBlockContext(header, p.bc, nil)
vmenv = vm.NewEVM(context, vm.TxContext{}, statedb, p.config, cfg)
signer = types.MakeSigner(p.config, header.Number, header.Time)
txNum = len(block.Transactions())
)
if beaconRoot := block.BeaconRoot(); beaconRoot != nil {
ProcessBeaconBlockRoot(*beaconRoot, vmenv, statedb)
}
// Iterate over and process the individual transactions
posa, isPoSA := p.engine.(consensus.PoSA)
commonTxs := make([]*types.Transaction, 0, txNum)
// initialise bloom processors
bloomProcessors := NewAsyncReceiptBloomGenerator(txNum)
statedb.MarkFullProcessed()
statedb.ResetMVStates(len(block.Transactions()))
log.Debug("ResetMVStates", "block", block.NumberU64(), "txs", len(block.Transactions()))
// usually do have two tx, one for validator set contract, another for system reward contract.
systemTxs := make([]*types.Transaction, 0, 2)
start := time.Now()
for i, tx := range block.Transactions() {
statedb.BeginTxStat(i)
if isPoSA {
if isSystemTx, err := posa.IsSystemTransaction(tx, block.Header()); err != nil {
bloomProcessors.Close()
return statedb, nil, nil, 0, err
} else if isSystemTx {
statedb.RecordSystemTxRWSet(i)
systemTxs = append(systemTxs, tx)
continue
}
}
if p.config.IsCancun(block.Number(), block.Time()) {
if len(systemTxs) > 0 {
// systemTxs should be always at the end of block.
return statedb, nil, nil, 0, fmt.Errorf("normal tx %d [%v] after systemTx", i, tx.Hash().Hex())
}
}
msg, err := TransactionToMessage(tx, signer, header.BaseFee)
if err != nil {
bloomProcessors.Close()
return statedb, nil, nil, 0, err
}
statedb.SetTxContext(tx.Hash(), i, 0)
receipt, err := applyTransaction(msg, p.config, gp, statedb, blockNumber, blockHash, tx, usedGas, vmenv, bloomProcessors)
if err != nil {
bloomProcessors.Close()
return statedb, nil, nil, 0, fmt.Errorf("could not apply tx %d [%v]: %w", i, tx.Hash().Hex(), err)
}
commonTxs = append(commonTxs, tx)
receipts = append(receipts, receipt)
statedb.StopTxStat(receipt.GasUsed)
}
eTime := time.Since(start)
// this bloomProcessors may take ~20ms
bloomProcessors.Close()
// Fail if Shanghai not enabled and len(withdrawals) is non-zero.
withdrawals := block.Withdrawals()
if len(withdrawals) > 0 && !p.config.IsShanghai(block.Number(), block.Time()) {
return nil, nil, nil, 0, errors.New("withdrawals before shanghai")
}
// TODO: temporary add time metrics
dag, exrStats := statedb.MVStates2TxDAG()
//log.Info("MVStates2TxDAG", "block", block.NumberU64(), "tx", len(block.Transactions()), "dag", dag)
fmt.Printf("MVStates2TxDAG, block: %v|%v, tx: %v, time: %v\n", block.NumberU64(), block.Hash(), len(block.Transactions()), time.Now().Format(time.DateTime))
fmt.Print(types.EvaluateTxDAGPerformance(dag, exrStats))
fmt.Printf("block: %v, execution: %.2fms, accountRead: %.2fms, storageRead: %.2fms\n",
block.NumberU64(), float64(eTime.Microseconds())/1000, float64((statedb.SnapshotAccountReads+statedb.AccountReads).Microseconds())/1000,
float64((statedb.SnapshotStorageReads+statedb.StorageReads).Microseconds())/1000)
dagExecutionTimer.Update(eTime)
dagAccountReadTimer.Update(statedb.SnapshotAccountReads + statedb.AccountReads)
dagStorageReadTimer.Update(statedb.SnapshotStorageReads + statedb.StorageReads)
// Finalize the block, applying any consensus engine specific extras (e.g. block rewards)
// TODO: system txs must execute at last
err := p.engine.Finalize(p.bc, header, statedb, &commonTxs, block.Uncles(), withdrawals, &receipts, &systemTxs, usedGas)
if err != nil {
return statedb, receipts, allLogs, *usedGas, err
}
for _, receipt := range receipts {
allLogs = append(allLogs, receipt.Logs...)
}
return statedb, receipts, allLogs, *usedGas, nil
}
func applyTransaction(msg *Message, config *params.ChainConfig, gp *GasPool, statedb *state.StateDB, blockNumber *big.Int, blockHash common.Hash, tx *types.Transaction, usedGas *uint64, evm *vm.EVM, receiptProcessors ...ReceiptProcessor) (*types.Receipt, error) {
// Create a new context to be used in the EVM environment.
txContext := NewEVMTxContext(msg)
evm.Reset(txContext, statedb)
// Apply the transaction to the current state (included in the env).
result, err := ApplyMessage(evm, msg, gp)
if err != nil {
return nil, err
}
// Update the state with pending changes.
var root []byte
if config.IsByzantium(blockNumber) {
statedb.Finalise(true)
} else {
root = statedb.IntermediateRoot(config.IsEIP158(blockNumber)).Bytes()
}
*usedGas += result.UsedGas
// Create a new receipt for the transaction, storing the intermediate root and gas used
// by the tx.
receipt := &types.Receipt{Type: tx.Type(), PostState: root, CumulativeGasUsed: *usedGas}
if result.Failed() {
receipt.Status = types.ReceiptStatusFailed
} else {
receipt.Status = types.ReceiptStatusSuccessful
}
receipt.TxHash = tx.Hash()
receipt.GasUsed = result.UsedGas
if tx.Type() == types.BlobTxType {
receipt.BlobGasUsed = uint64(len(tx.BlobHashes()) * params.BlobTxBlobGasPerBlob)
receipt.BlobGasPrice = evm.Context.BlobBaseFee
}
// If the transaction created a contract, store the creation address in the receipt.
if msg.To == nil {
receipt.ContractAddress = crypto.CreateAddress(evm.TxContext.Origin, tx.Nonce())
}
// Set the receipt logs and create the bloom filter.
receipt.Logs = statedb.GetLogs(tx.Hash(), blockNumber.Uint64(), blockHash)
receipt.BlockHash = blockHash
receipt.BlockNumber = blockNumber
receipt.TransactionIndex = uint(statedb.TxIndex())
for _, receiptProcessor := range receiptProcessors {
receiptProcessor.Apply(receipt)
}
return receipt, err
}
// ApplyTransaction attempts to apply a transaction to the given state database
// and uses the input parameters for its environment. It returns the receipt
// for the transaction, gas used and an error if the transaction failed,
// indicating the block was invalid.
func ApplyTransaction(config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config, receiptProcessors ...ReceiptProcessor) (*types.Receipt, error) {
msg, err := TransactionToMessage(tx, types.MakeSigner(config, header.Number, header.Time), header.BaseFee)
if err != nil {
return nil, err
}
// Create a new context to be used in the EVM environment
blockContext := NewEVMBlockContext(header, bc, author)
txContext := NewEVMTxContext(msg)
vmenv := vm.NewEVM(blockContext, txContext, statedb, config, cfg)
defer func() {
ite := vmenv.Interpreter()
vm.EVMInterpreterPool.Put(ite)
vm.EvmPool.Put(vmenv)
}()
return applyTransaction(msg, config, gp, statedb, header.Number, header.Hash(), tx, usedGas, vmenv, receiptProcessors...)
}
// ProcessBeaconBlockRoot applies the EIP-4788 system call to the beacon block root
// contract. This method is exported to be used in tests.
func ProcessBeaconBlockRoot(beaconRoot common.Hash, vmenv *vm.EVM, statedb *state.StateDB) {
// If EIP-4788 is enabled, we need to invoke the beaconroot storage contract with
// the new root
msg := &Message{
From: params.SystemAddress,
GasLimit: 30_000_000,
GasPrice: common.Big0,
GasFeeCap: common.Big0,
GasTipCap: common.Big0,
To: &params.BeaconRootsAddress,
Data: beaconRoot[:],
}
vmenv.Reset(NewEVMTxContext(msg), statedb)
statedb.AddAddressToAccessList(params.BeaconRootsAddress)
_, _, _ = vmenv.Call(vm.AccountRef(msg.From), *msg.To, msg.Data, 30_000_000, common.U2560)
statedb.Finalise(true)
}