bsc/core/rawdb/schema.go

348 lines
13 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package rawdb contains a collection of low level database accessors.
package rawdb
import (
"bytes"
"encoding/binary"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/metrics"
)
// The fields below define the low level database schema prefixing.
var (
// databaseVersionKey tracks the current database version.
databaseVersionKey = []byte("DatabaseVersion")
// headHeaderKey tracks the latest known header's hash.
headHeaderKey = []byte("LastHeader")
// headBlockKey tracks the latest known full block's hash.
headBlockKey = []byte("LastBlock")
// headFastBlockKey tracks the latest known incomplete block's hash during fast sync.
headFastBlockKey = []byte("LastFast")
// persistentStateIDKey tracks the id of latest stored state(for path-based only).
persistentStateIDKey = []byte("LastStateID")
// lastPivotKey tracks the last pivot block used by fast sync (to reenable on sethead).
lastPivotKey = []byte("LastPivot")
// fastTrieProgressKey tracks the number of trie entries imported during fast sync.
fastTrieProgressKey = []byte("TrieSync")
// snapshotDisabledKey flags that the snapshot should not be maintained due to initial sync.
snapshotDisabledKey = []byte("SnapshotDisabled")
// SnapshotRootKey tracks the hash of the last snapshot.
SnapshotRootKey = []byte("SnapshotRoot")
// snapshotJournalKey tracks the in-memory diff layers across restarts.
snapshotJournalKey = []byte("SnapshotJournal")
// snapshotGeneratorKey tracks the snapshot generation marker across restarts.
snapshotGeneratorKey = []byte("SnapshotGenerator")
// snapshotRecoveryKey tracks the snapshot recovery marker across restarts.
snapshotRecoveryKey = []byte("SnapshotRecovery")
// snapshotSyncStatusKey tracks the snapshot sync status across restarts.
snapshotSyncStatusKey = []byte("SnapshotSyncStatus")
// skeletonSyncStatusKey tracks the skeleton sync status across restarts.
skeletonSyncStatusKey = []byte("SkeletonSyncStatus")
// trieJournalKey tracks the in-memory trie node layers across restarts.
trieJournalKey = []byte("TrieJournal")
// txIndexTailKey tracks the oldest block whose transactions have been indexed.
txIndexTailKey = []byte("TransactionIndexTail")
// fastTxLookupLimitKey tracks the transaction lookup limit during fast sync.
fastTxLookupLimitKey = []byte("FastTransactionLookupLimit")
//offSet of new updated ancientDB.
offSetOfCurrentAncientFreezer = []byte("offSetOfCurrentAncientFreezer")
//offSet of the ancientDB before updated version.
offSetOfLastAncientFreezer = []byte("offSetOfLastAncientFreezer")
//frozenOfAncientDBKey tracks the block number for ancientDB to save.
frozenOfAncientDBKey = []byte("FrozenOfAncientDB")
//LastSafePointBlockKey tracks the block number for block state that write disk
LastSafePointBlockKey = []byte("LastSafePointBlockNumber")
//PruneAncientFlag flag whether prune ancient
pruneAncientKey = []byte("PruneAncientFlag")
// badBlockKey tracks the list of bad blocks seen by local
badBlockKey = []byte("InvalidBlock")
// uncleanShutdownKey tracks the list of local crashes
uncleanShutdownKey = []byte("unclean-shutdown") // config prefix for the db
// transitionStatusKey tracks the eth2 transition status.
transitionStatusKey = []byte("eth2-transition")
// Data item prefixes (use single byte to avoid mixing data types, avoid `i`, used for indexes).
headerPrefix = []byte("h") // headerPrefix + num (uint64 big endian) + hash -> header
headerTDSuffix = []byte("t") // headerPrefix + num (uint64 big endian) + hash + headerTDSuffix -> td
headerHashSuffix = []byte("n") // headerPrefix + num (uint64 big endian) + headerHashSuffix -> hash
headerNumberPrefix = []byte("H") // headerNumberPrefix + hash -> num (uint64 big endian)
blockBodyPrefix = []byte("b") // blockBodyPrefix + num (uint64 big endian) + hash -> block body
blockReceiptsPrefix = []byte("r") // blockReceiptsPrefix + num (uint64 big endian) + hash -> block receipts
txLookupPrefix = []byte("l") // txLookupPrefix + hash -> transaction/receipt lookup metadata
bloomBitsPrefix = []byte("B") // bloomBitsPrefix + bit (uint16 big endian) + section (uint64 big endian) + hash -> bloom bits
SnapshotAccountPrefix = []byte("a") // SnapshotAccountPrefix + account hash -> account trie value
SnapshotStoragePrefix = []byte("o") // SnapshotStoragePrefix + account hash + storage hash -> storage trie value
CodePrefix = []byte("c") // CodePrefix + code hash -> account code
// difflayer database
diffLayerPrefix = []byte("d") // diffLayerPrefix + hash -> diffLayer
// Path-based storage scheme of merkle patricia trie.
trieNodeAccountPrefix = []byte("A") // trieNodeAccountPrefix + hexPath -> trie node
trieNodeStoragePrefix = []byte("O") // trieNodeStoragePrefix + accountHash + hexPath -> trie node
stateIDPrefix = []byte("L") // stateIDPrefix + state root -> state id
PreimagePrefix = []byte("secure-key-") // PreimagePrefix + hash -> preimage
configPrefix = []byte("ethereum-config-") // config prefix for the db
genesisPrefix = []byte("ethereum-genesis-") // genesis state prefix for the db
// BloomBitsIndexPrefix is the data table of a chain indexer to track its progress
BloomBitsIndexPrefix = []byte("iB")
ChtPrefix = []byte("chtRootV2-") // ChtPrefix + chtNum (uint64 big endian) -> trie root hash
ChtTablePrefix = []byte("cht-")
ChtIndexTablePrefix = []byte("chtIndexV2-")
BloomTriePrefix = []byte("bltRoot-") // BloomTriePrefix + bloomTrieNum (uint64 big endian) -> trie root hash
BloomTrieTablePrefix = []byte("blt-")
BloomTrieIndexPrefix = []byte("bltIndex-")
CliqueSnapshotPrefix = []byte("clique-")
ParliaSnapshotPrefix = []byte("parlia-")
preimageCounter = metrics.NewRegisteredCounter("db/preimage/total", nil)
preimageHitCounter = metrics.NewRegisteredCounter("db/preimage/hits", nil)
)
// LegacyTxLookupEntry is the legacy TxLookupEntry definition with some unnecessary
// fields.
type LegacyTxLookupEntry struct {
BlockHash common.Hash
BlockIndex uint64
Index uint64
}
// encodeBlockNumber encodes a block number as big endian uint64
func encodeBlockNumber(number uint64) []byte {
enc := make([]byte, 8)
binary.BigEndian.PutUint64(enc, number)
return enc
}
// headerKeyPrefix = headerPrefix + num (uint64 big endian)
func headerKeyPrefix(number uint64) []byte {
return append(headerPrefix, encodeBlockNumber(number)...)
}
// headerKey = headerPrefix + num (uint64 big endian) + hash
func headerKey(number uint64, hash common.Hash) []byte {
return append(append(headerPrefix, encodeBlockNumber(number)...), hash.Bytes()...)
}
// headerTDKey = headerPrefix + num (uint64 big endian) + hash + headerTDSuffix
func headerTDKey(number uint64, hash common.Hash) []byte {
return append(headerKey(number, hash), headerTDSuffix...)
}
// headerHashKey = headerPrefix + num (uint64 big endian) + headerHashSuffix
func headerHashKey(number uint64) []byte {
return append(append(headerPrefix, encodeBlockNumber(number)...), headerHashSuffix...)
}
// headerNumberKey = headerNumberPrefix + hash
func headerNumberKey(hash common.Hash) []byte {
return append(headerNumberPrefix, hash.Bytes()...)
}
// blockBodyKey = blockBodyPrefix + num (uint64 big endian) + hash
func blockBodyKey(number uint64, hash common.Hash) []byte {
return append(append(blockBodyPrefix, encodeBlockNumber(number)...), hash.Bytes()...)
}
// blockReceiptsKey = blockReceiptsPrefix + num (uint64 big endian) + hash
func blockReceiptsKey(number uint64, hash common.Hash) []byte {
return append(append(blockReceiptsPrefix, encodeBlockNumber(number)...), hash.Bytes()...)
}
// diffLayerKey = diffLayerKeyPrefix + hash
func diffLayerKey(hash common.Hash) []byte {
return append(diffLayerPrefix, hash.Bytes()...)
}
// txLookupKey = txLookupPrefix + hash
func txLookupKey(hash common.Hash) []byte {
return append(txLookupPrefix, hash.Bytes()...)
}
// accountSnapshotKey = SnapshotAccountPrefix + hash
func accountSnapshotKey(hash common.Hash) []byte {
return append(SnapshotAccountPrefix, hash.Bytes()...)
}
// storageSnapshotKey = SnapshotStoragePrefix + account hash + storage hash
func storageSnapshotKey(accountHash, storageHash common.Hash) []byte {
buf := make([]byte, len(SnapshotStoragePrefix)+common.HashLength+common.HashLength)
n := copy(buf, SnapshotStoragePrefix)
n += copy(buf[n:], accountHash.Bytes())
copy(buf[n:], storageHash.Bytes())
return buf
}
// storageSnapshotsKey = SnapshotStoragePrefix + account hash + storage hash
func storageSnapshotsKey(accountHash common.Hash) []byte {
return append(SnapshotStoragePrefix, accountHash.Bytes()...)
}
// bloomBitsKey = bloomBitsPrefix + bit (uint16 big endian) + section (uint64 big endian) + hash
func bloomBitsKey(bit uint, section uint64, hash common.Hash) []byte {
key := append(append(bloomBitsPrefix, make([]byte, 10)...), hash.Bytes()...)
binary.BigEndian.PutUint16(key[1:], uint16(bit))
binary.BigEndian.PutUint64(key[3:], section)
return key
}
// preimageKey = PreimagePrefix + hash
func preimageKey(hash common.Hash) []byte {
return append(PreimagePrefix, hash.Bytes()...)
}
// codeKey = CodePrefix + hash
func codeKey(hash common.Hash) []byte {
return append(CodePrefix, hash.Bytes()...)
}
// IsCodeKey reports whether the given byte slice is the key of contract code,
// if so return the raw code hash as well.
func IsCodeKey(key []byte) (bool, []byte) {
if bytes.HasPrefix(key, CodePrefix) && len(key) == common.HashLength+len(CodePrefix) {
return true, key[len(CodePrefix):]
}
return false, nil
}
// configKey = configPrefix + hash
func configKey(hash common.Hash) []byte {
return append(configPrefix, hash.Bytes()...)
}
// genesisStateSpecKey = genesisPrefix + hash
func genesisStateSpecKey(hash common.Hash) []byte {
return append(genesisPrefix, hash.Bytes()...)
}
// stateIDKey = stateIDPrefix + root (32 bytes)
func stateIDKey(root common.Hash) []byte {
return append(stateIDPrefix, root.Bytes()...)
}
// accountTrieNodeKey = trieNodeAccountPrefix + nodePath.
func accountTrieNodeKey(path []byte) []byte {
return append(trieNodeAccountPrefix, path...)
}
// storageTrieNodeKey = trieNodeStoragePrefix + accountHash + nodePath.
func storageTrieNodeKey(accountHash common.Hash, path []byte) []byte {
buf := make([]byte, len(trieNodeStoragePrefix)+common.HashLength+len(path))
n := copy(buf, trieNodeStoragePrefix)
n += copy(buf[n:], accountHash.Bytes())
copy(buf[n:], path)
return buf
}
// IsLegacyTrieNode reports whether a provided database entry is a legacy trie
// node. The characteristics of legacy trie node are:
// - the key length is 32 bytes
// - the key is the hash of val
func IsLegacyTrieNode(key []byte, val []byte) bool {
if len(key) != common.HashLength {
return false
}
return bytes.Equal(key, crypto.Keccak256(val))
}
// ResolveAccountTrieNodeKey reports whether a provided database entry is an
// account trie node in path-based state scheme, and returns the resolved
// node path if so.
func ResolveAccountTrieNodeKey(key []byte) (bool, []byte) {
if !bytes.HasPrefix(key, trieNodeAccountPrefix) {
return false, nil
}
// The remaining key should only consist a hex node path
// whose length is in the range 0 to 64 (64 is excluded
// since leaves are always wrapped with shortNode).
if len(key) >= len(trieNodeAccountPrefix)+common.HashLength*2 {
return false, nil
}
return true, key[len(trieNodeAccountPrefix):]
}
// IsAccountTrieNode reports whether a provided database entry is an account
// trie node in path-based state scheme.
func IsAccountTrieNode(key []byte) bool {
ok, _ := ResolveAccountTrieNodeKey(key)
return ok
}
// ResolveStorageTrieNode reports whether a provided database entry is a storage
// trie node in path-based state scheme, and returns the resolved account hash
// and node path if so.
func ResolveStorageTrieNode(key []byte) (bool, common.Hash, []byte) {
if !bytes.HasPrefix(key, trieNodeStoragePrefix) {
return false, common.Hash{}, nil
}
// The remaining key consists of 2 parts:
// - 32 bytes account hash
// - hex node path whose length is in the range 0 to 64
if len(key) < len(trieNodeStoragePrefix)+common.HashLength {
return false, common.Hash{}, nil
}
if len(key) >= len(trieNodeStoragePrefix)+common.HashLength+common.HashLength*2 {
return false, common.Hash{}, nil
}
accountHash := common.BytesToHash(key[len(trieNodeStoragePrefix) : len(trieNodeStoragePrefix)+common.HashLength])
return true, accountHash, key[len(trieNodeStoragePrefix)+common.HashLength:]
}
// IsStorageTrieNode reports whether a provided database entry is a storage
// trie node in path-based state scheme.
func IsStorageTrieNode(key []byte) bool {
ok, _, _ := ResolveStorageTrieNode(key)
return ok
}