bsc/crypto/bls12381/g1.go

435 lines
10 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math"
"math/big"
)
// PointG1 is type for point in G1.
// PointG1 is both used for Affine and Jacobian point representation.
// If z is equal to one the point is considered as in affine form.
type PointG1 [3]fe
func (p *PointG1) Set(p2 *PointG1) *PointG1 {
p[0].set(&p2[0])
p[1].set(&p2[1])
p[2].set(&p2[2])
return p
}
// Zero returns G1 point in point at infinity representation
func (p *PointG1) Zero() *PointG1 {
p[0].zero()
p[1].one()
p[2].zero()
return p
}
type tempG1 struct {
t [9]*fe
}
// G1 is struct for G1 group.
type G1 struct {
tempG1
}
// NewG1 constructs a new G1 instance.
func NewG1() *G1 {
t := newTempG1()
return &G1{t}
}
func newTempG1() tempG1 {
t := [9]*fe{}
for i := 0; i < 9; i++ {
t[i] = &fe{}
}
return tempG1{t}
}
// Q returns group order in big.Int.
func (g *G1) Q() *big.Int {
return new(big.Int).Set(q)
}
func (g *G1) fromBytesUnchecked(in []byte) (*PointG1, error) {
p0, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
p1, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
p2 := new(fe).one()
return &PointG1{*p0, *p1, *p2}, nil
}
// FromBytes constructs a new point given uncompressed byte input.
// FromBytes does not take zcash flags into account.
// Byte input expected to be larger than 96 bytes.
// First 96 bytes should be concatenation of x and y values.
// Point (0, 0) is considered as infinity.
func (g *G1) FromBytes(in []byte) (*PointG1, error) {
if len(in) != 96 {
return nil, errors.New("input string should be equal or larger than 96")
}
p0, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
p1, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
// check if given input points to infinity
if p0.isZero() && p1.isZero() {
return g.Zero(), nil
}
p2 := new(fe).one()
p := &PointG1{*p0, *p1, *p2}
if !g.IsOnCurve(p) {
return nil, errors.New("point is not on curve")
}
return p, nil
}
// DecodePoint given encoded (x, y) coordinates in 128 bytes returns a valid G1 Point.
func (g *G1) DecodePoint(in []byte) (*PointG1, error) {
if len(in) != 128 {
return nil, errors.New("invalid g1 point length")
}
pointBytes := make([]byte, 96)
// decode x
xBytes, err := decodeFieldElement(in[:64])
if err != nil {
return nil, err
}
// decode y
yBytes, err := decodeFieldElement(in[64:])
if err != nil {
return nil, err
}
copy(pointBytes[:48], xBytes)
copy(pointBytes[48:], yBytes)
return g.FromBytes(pointBytes)
}
// ToBytes serializes a point into bytes in uncompressed form.
// ToBytes does not take zcash flags into account.
// ToBytes returns (0, 0) if point is infinity.
func (g *G1) ToBytes(p *PointG1) []byte {
out := make([]byte, 96)
if g.IsZero(p) {
return out
}
g.Affine(p)
copy(out[:48], toBytes(&p[0]))
copy(out[48:], toBytes(&p[1]))
return out
}
// EncodePoint encodes a point into 128 bytes.
func (g *G1) EncodePoint(p *PointG1) []byte {
outRaw := g.ToBytes(p)
out := make([]byte, 128)
// encode x
copy(out[16:], outRaw[:48])
// encode y
copy(out[64+16:], outRaw[48:])
return out
}
// New creates a new G1 Point which is equal to zero in other words point at infinity.
func (g *G1) New() *PointG1 {
return g.Zero()
}
// Zero returns a new G1 Point which is equal to point at infinity.
func (g *G1) Zero() *PointG1 {
return new(PointG1).Zero()
}
// One returns a new G1 Point which is equal to generator point.
func (g *G1) One() *PointG1 {
p := &PointG1{}
return p.Set(&g1One)
}
// IsZero returns true if given point is equal to zero.
func (g *G1) IsZero(p *PointG1) bool {
return p[2].isZero()
}
// Equal checks if given two G1 point is equal in their affine form.
func (g *G1) Equal(p1, p2 *PointG1) bool {
if g.IsZero(p1) {
return g.IsZero(p2)
}
if g.IsZero(p2) {
return g.IsZero(p1)
}
t := g.t
square(t[0], &p1[2])
square(t[1], &p2[2])
mul(t[2], t[0], &p2[0])
mul(t[3], t[1], &p1[0])
mul(t[0], t[0], &p1[2])
mul(t[1], t[1], &p2[2])
mul(t[1], t[1], &p1[1])
mul(t[0], t[0], &p2[1])
return t[0].equal(t[1]) && t[2].equal(t[3])
}
// InCorrectSubgroup checks whether given point is in correct subgroup.
func (g *G1) InCorrectSubgroup(p *PointG1) bool {
tmp := &PointG1{}
g.MulScalar(tmp, p, q)
return g.IsZero(tmp)
}
// IsOnCurve checks a G1 point is on curve.
func (g *G1) IsOnCurve(p *PointG1) bool {
if g.IsZero(p) {
return true
}
t := g.t
square(t[0], &p[1])
square(t[1], &p[0])
mul(t[1], t[1], &p[0])
square(t[2], &p[2])
square(t[3], t[2])
mul(t[2], t[2], t[3])
mul(t[2], b, t[2])
add(t[1], t[1], t[2])
return t[0].equal(t[1])
}
// IsAffine checks a G1 point whether it is in affine form.
func (g *G1) IsAffine(p *PointG1) bool {
return p[2].isOne()
}
// Affine calculates affine form of given G1 point.
func (g *G1) Affine(p *PointG1) *PointG1 {
if g.IsZero(p) {
return p
}
if !g.IsAffine(p) {
t := g.t
inverse(t[0], &p[2])
square(t[1], t[0])
mul(&p[0], &p[0], t[1])
mul(t[0], t[0], t[1])
mul(&p[1], &p[1], t[0])
p[2].one()
}
return p
}
// Add adds two G1 points p1, p2 and assigns the result to point at first argument.
func (g *G1) Add(r, p1, p2 *PointG1) *PointG1 {
// www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
if g.IsZero(p1) {
return r.Set(p2)
}
if g.IsZero(p2) {
return r.Set(p1)
}
t := g.t
square(t[7], &p1[2])
mul(t[1], &p2[0], t[7])
mul(t[2], &p1[2], t[7])
mul(t[0], &p2[1], t[2])
square(t[8], &p2[2])
mul(t[3], &p1[0], t[8])
mul(t[4], &p2[2], t[8])
mul(t[2], &p1[1], t[4])
if t[1].equal(t[3]) {
if t[0].equal(t[2]) {
return g.Double(r, p1)
}
return r.Zero()
}
sub(t[1], t[1], t[3])
double(t[4], t[1])
square(t[4], t[4])
mul(t[5], t[1], t[4])
sub(t[0], t[0], t[2])
double(t[0], t[0])
square(t[6], t[0])
sub(t[6], t[6], t[5])
mul(t[3], t[3], t[4])
double(t[4], t[3])
sub(&r[0], t[6], t[4])
sub(t[4], t[3], &r[0])
mul(t[6], t[2], t[5])
double(t[6], t[6])
mul(t[0], t[0], t[4])
sub(&r[1], t[0], t[6])
add(t[0], &p1[2], &p2[2])
square(t[0], t[0])
sub(t[0], t[0], t[7])
sub(t[0], t[0], t[8])
mul(&r[2], t[0], t[1])
return r
}
// Double doubles a G1 point p and assigns the result to the point at first argument.
func (g *G1) Double(r, p *PointG1) *PointG1 {
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
if g.IsZero(p) {
return r.Set(p)
}
t := g.t
square(t[0], &p[0])
square(t[1], &p[1])
square(t[2], t[1])
add(t[1], &p[0], t[1])
square(t[1], t[1])
sub(t[1], t[1], t[0])
sub(t[1], t[1], t[2])
double(t[1], t[1])
double(t[3], t[0])
add(t[0], t[3], t[0])
square(t[4], t[0])
double(t[3], t[1])
sub(&r[0], t[4], t[3])
sub(t[1], t[1], &r[0])
double(t[2], t[2])
double(t[2], t[2])
double(t[2], t[2])
mul(t[0], t[0], t[1])
sub(t[1], t[0], t[2])
mul(t[0], &p[1], &p[2])
r[1].set(t[1])
double(&r[2], t[0])
return r
}
// Neg negates a G1 point p and assigns the result to the point at first argument.
func (g *G1) Neg(r, p *PointG1) *PointG1 {
r[0].set(&p[0])
r[2].set(&p[2])
neg(&r[1], &p[1])
return r
}
// Sub subtracts two G1 points p1, p2 and assigns the result to point at first argument.
func (g *G1) Sub(c, a, b *PointG1) *PointG1 {
d := &PointG1{}
g.Neg(d, b)
g.Add(c, a, d)
return c
}
// MulScalar multiplies a point by given scalar value in big.Int and assigns the result to point at first argument.
func (g *G1) MulScalar(c, p *PointG1, e *big.Int) *PointG1 {
q, n := &PointG1{}, &PointG1{}
n.Set(p)
l := e.BitLen()
for i := 0; i < l; i++ {
if e.Bit(i) == 1 {
g.Add(q, q, n)
}
g.Double(n, n)
}
return c.Set(q)
}
// ClearCofactor maps given a G1 point to correct subgroup
func (g *G1) ClearCofactor(p *PointG1) {
g.MulScalar(p, p, cofactorEFFG1)
}
// MultiExp calculates multi exponentiation. Given pairs of G1 point and scalar values
// (P_0, e_0), (P_1, e_1), ... (P_n, e_n) calculates r = e_0 * P_0 + e_1 * P_1 + ... + e_n * P_n
// Length of points and scalars are expected to be equal, otherwise an error is returned.
// Result is assigned to point at first argument.
func (g *G1) MultiExp(r *PointG1, points []*PointG1, powers []*big.Int) (*PointG1, error) {
if len(points) != len(powers) {
return nil, errors.New("point and scalar vectors should be in same length")
}
var c uint32 = 3
if len(powers) >= 32 {
c = uint32(math.Ceil(math.Log10(float64(len(powers)))))
}
bucketSize, numBits := (1<<c)-1, uint32(g.Q().BitLen())
windows := make([]*PointG1, numBits/c+1)
bucket := make([]*PointG1, bucketSize)
acc, sum := g.New(), g.New()
for i := 0; i < bucketSize; i++ {
bucket[i] = g.New()
}
mask := (uint64(1) << c) - 1
j := 0
var cur uint32
for cur <= numBits {
acc.Zero()
bucket = make([]*PointG1, (1<<c)-1)
for i := 0; i < len(bucket); i++ {
bucket[i] = g.New()
}
for i := 0; i < len(powers); i++ {
s0 := powers[i].Uint64()
index := uint(s0 & mask)
if index != 0 {
g.Add(bucket[index-1], bucket[index-1], points[i])
}
powers[i] = new(big.Int).Rsh(powers[i], uint(c))
}
sum.Zero()
for i := len(bucket) - 1; i >= 0; i-- {
g.Add(sum, sum, bucket[i])
g.Add(acc, acc, sum)
}
windows[j] = g.New()
windows[j].Set(acc)
j++
cur += c
}
acc.Zero()
for i := len(windows) - 1; i >= 0; i-- {
for j := uint32(0); j < c; j++ {
g.Double(acc, acc)
}
g.Add(acc, acc, windows[i])
}
return r.Set(acc), nil
}
// MapToCurve given a byte slice returns a valid G1 point.
// This mapping function implements the Simplified Shallue-van de Woestijne-Ulas method.
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06
// Input byte slice should be a valid field element, otherwise an error is returned.
func (g *G1) MapToCurve(in []byte) (*PointG1, error) {
u, err := fromBytes(in)
if err != nil {
return nil, err
}
x, y := swuMapG1(u)
isogenyMapG1(x, y)
one := new(fe).one()
p := &PointG1{*x, *y, *one}
g.ClearCofactor(p)
return g.Affine(p), nil
}