bsc/accounts/abi/bind/bind.go
protolambda 0b814d32f8 accounts/abi: Abi binding support for nested arrays, fixes #15648, including nested array unpack fix (#15676)
* accounts/abi/bind: support for multi-dim arrays

Also:
- reduce usage of regexes a bit.
- fix minor Java syntax problems

Fixes #15648

* accounts/abi/bind: Add some more documentation

* accounts/abi/bind: Improve code readability

* accounts/abi: bugfix for unpacking nested arrays

The code previously assumed the arrays/slices were always 1 level
deep. While the packing supports nested arrays (!!!).

The current code for unpacking doesn't return the "consumed" length, so
this fix had to work around that by calculating it (i.e. packing and
 getting resulting length) after the unpacking of the array element.
It's far from ideal, but unpacking behaviour is fixed now.

* accounts/abi: Fix unpacking of nested arrays

Removed the temporary workaround of packing to calculate size, which was
incorrect for slice-like types anyway.
Full size of nested arrays is used now.

* accounts/abi: deeply nested array unpack test

Test unpacking of an array nested more than one level.

* accounts/abi: Add deeply nested array pack test

Same as the deep nested array unpack test, but the other way around.

* accounts/abi/bind: deeply nested arrays bind test

Test the usage of bindings that were generated
for methods with multi-dimensional (and not
just a single extra dimension, like foo[2][3])
array arguments and returns.

edit: trigger rebuild, CI failed to fetch linter module.

* accounts/abi/bind: improve array binding

wrapArray uses a regex now, and arrayBindingJava is improved.

* accounts/abi: Improve naming of element size func

The full step size for unpacking an array
 is now retrieved with "getFullElemSize".

* accounts/abi: support nested nested array args

Previously, the code only considered the outer-size of the array,
ignoring the size of the contents. This was fine for most types,
but nested arrays are packed directly into it, and count towards
the total size. This resulted in arguments following a nested
array to replicate some of the binary contents of the array.

The fix: for arrays, calculate their complete contents size:
 count the arg.Type.Elem.Size when Elem is an Array, and
 repeat when their child is an array too, etc.
The count is the number of 32 byte elements, similar to how it
 previously counted, but nested.

* accounts/abi: Test deep nested arr multi-arguments

Arguments with a deeply nested array should not cause the next arguments
to be read from the wrong position.
2018-03-04 23:24:17 +01:00

427 lines
14 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package bind generates Ethereum contract Go bindings.
//
// Detailed usage document and tutorial available on the go-ethereum Wiki page:
// https://github.com/ethereum/go-ethereum/wiki/Native-DApps:-Go-bindings-to-Ethereum-contracts
package bind
import (
"bytes"
"fmt"
"regexp"
"strings"
"text/template"
"unicode"
"github.com/ethereum/go-ethereum/accounts/abi"
"golang.org/x/tools/imports"
)
// Lang is a target programming language selector to generate bindings for.
type Lang int
const (
LangGo Lang = iota
LangJava
LangObjC
)
// Bind generates a Go wrapper around a contract ABI. This wrapper isn't meant
// to be used as is in client code, but rather as an intermediate struct which
// enforces compile time type safety and naming convention opposed to having to
// manually maintain hard coded strings that break on runtime.
func Bind(types []string, abis []string, bytecodes []string, pkg string, lang Lang) (string, error) {
// Process each individual contract requested binding
contracts := make(map[string]*tmplContract)
for i := 0; i < len(types); i++ {
// Parse the actual ABI to generate the binding for
evmABI, err := abi.JSON(strings.NewReader(abis[i]))
if err != nil {
return "", err
}
// Strip any whitespace from the JSON ABI
strippedABI := strings.Map(func(r rune) rune {
if unicode.IsSpace(r) {
return -1
}
return r
}, abis[i])
// Extract the call and transact methods; events; and sort them alphabetically
var (
calls = make(map[string]*tmplMethod)
transacts = make(map[string]*tmplMethod)
events = make(map[string]*tmplEvent)
)
for _, original := range evmABI.Methods {
// Normalize the method for capital cases and non-anonymous inputs/outputs
normalized := original
normalized.Name = methodNormalizer[lang](original.Name)
normalized.Inputs = make([]abi.Argument, len(original.Inputs))
copy(normalized.Inputs, original.Inputs)
for j, input := range normalized.Inputs {
if input.Name == "" {
normalized.Inputs[j].Name = fmt.Sprintf("arg%d", j)
}
}
normalized.Outputs = make([]abi.Argument, len(original.Outputs))
copy(normalized.Outputs, original.Outputs)
for j, output := range normalized.Outputs {
if output.Name != "" {
normalized.Outputs[j].Name = capitalise(output.Name)
}
}
// Append the methods to the call or transact lists
if original.Const {
calls[original.Name] = &tmplMethod{Original: original, Normalized: normalized, Structured: structured(original.Outputs)}
} else {
transacts[original.Name] = &tmplMethod{Original: original, Normalized: normalized, Structured: structured(original.Outputs)}
}
}
for _, original := range evmABI.Events {
// Skip anonymous events as they don't support explicit filtering
if original.Anonymous {
continue
}
// Normalize the event for capital cases and non-anonymous outputs
normalized := original
normalized.Name = methodNormalizer[lang](original.Name)
normalized.Inputs = make([]abi.Argument, len(original.Inputs))
copy(normalized.Inputs, original.Inputs)
for j, input := range normalized.Inputs {
// Indexed fields are input, non-indexed ones are outputs
if input.Indexed {
if input.Name == "" {
normalized.Inputs[j].Name = fmt.Sprintf("arg%d", j)
}
}
}
// Append the event to the accumulator list
events[original.Name] = &tmplEvent{Original: original, Normalized: normalized}
}
contracts[types[i]] = &tmplContract{
Type: capitalise(types[i]),
InputABI: strings.Replace(strippedABI, "\"", "\\\"", -1),
InputBin: strings.TrimSpace(bytecodes[i]),
Constructor: evmABI.Constructor,
Calls: calls,
Transacts: transacts,
Events: events,
}
}
// Generate the contract template data content and render it
data := &tmplData{
Package: pkg,
Contracts: contracts,
}
buffer := new(bytes.Buffer)
funcs := map[string]interface{}{
"bindtype": bindType[lang],
"bindtopictype": bindTopicType[lang],
"namedtype": namedType[lang],
"capitalise": capitalise,
"decapitalise": decapitalise,
}
tmpl := template.Must(template.New("").Funcs(funcs).Parse(tmplSource[lang]))
if err := tmpl.Execute(buffer, data); err != nil {
return "", err
}
// For Go bindings pass the code through goimports to clean it up and double check
if lang == LangGo {
code, err := imports.Process(".", buffer.Bytes(), nil)
if err != nil {
return "", fmt.Errorf("%v\n%s", err, buffer)
}
return string(code), nil
}
// For all others just return as is for now
return buffer.String(), nil
}
// bindType is a set of type binders that convert Solidity types to some supported
// programming language types.
var bindType = map[Lang]func(kind abi.Type) string{
LangGo: bindTypeGo,
LangJava: bindTypeJava,
}
// Helper function for the binding generators.
// It reads the unmatched characters after the inner type-match,
// (since the inner type is a prefix of the total type declaration),
// looks for valid arrays (possibly a dynamic one) wrapping the inner type,
// and returns the sizes of these arrays.
//
// Returned array sizes are in the same order as solidity signatures; inner array size first.
// Array sizes may also be "", indicating a dynamic array.
func wrapArray(stringKind string, innerLen int, innerMapping string) (string, []string) {
remainder := stringKind[innerLen:]
//find all the sizes
matches := regexp.MustCompile(`\[(\d*)\]`).FindAllStringSubmatch(remainder, -1)
parts := make([]string, 0, len(matches))
for _, match := range matches {
//get group 1 from the regex match
parts = append(parts, match[1])
}
return innerMapping, parts
}
// Translates the array sizes to a Go-lang declaration of a (nested) array of the inner type.
// Simply returns the inner type if arraySizes is empty.
func arrayBindingGo(inner string, arraySizes []string) string {
out := ""
//prepend all array sizes, from outer (end arraySizes) to inner (start arraySizes)
for i := len(arraySizes) - 1; i >= 0; i-- {
out += "[" + arraySizes[i] + "]"
}
out += inner
return out
}
// bindTypeGo converts a Solidity type to a Go one. Since there is no clear mapping
// from all Solidity types to Go ones (e.g. uint17), those that cannot be exactly
// mapped will use an upscaled type (e.g. *big.Int).
func bindTypeGo(kind abi.Type) string {
stringKind := kind.String()
innerLen, innerMapping := bindUnnestedTypeGo(stringKind)
return arrayBindingGo(wrapArray(stringKind, innerLen, innerMapping))
}
// The inner function of bindTypeGo, this finds the inner type of stringKind.
// (Or just the type itself if it is not an array or slice)
// The length of the matched part is returned, with the the translated type.
func bindUnnestedTypeGo(stringKind string) (int, string) {
switch {
case strings.HasPrefix(stringKind, "address"):
return len("address"), "common.Address"
case strings.HasPrefix(stringKind, "bytes"):
parts := regexp.MustCompile(`bytes([0-9]*)`).FindStringSubmatch(stringKind)
return len(parts[0]), fmt.Sprintf("[%s]byte", parts[1])
case strings.HasPrefix(stringKind, "int") || strings.HasPrefix(stringKind, "uint"):
parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(stringKind)
switch parts[2] {
case "8", "16", "32", "64":
return len(parts[0]), fmt.Sprintf("%sint%s", parts[1], parts[2])
}
return len(parts[0]), "*big.Int"
case strings.HasPrefix(stringKind, "bool"):
return len("bool"), "bool"
case strings.HasPrefix(stringKind, "string"):
return len("string"), "string"
default:
return len(stringKind), stringKind
}
}
// Translates the array sizes to a Java declaration of a (nested) array of the inner type.
// Simply returns the inner type if arraySizes is empty.
func arrayBindingJava(inner string, arraySizes []string) string {
// Java array type declarations do not include the length.
return inner + strings.Repeat("[]", len(arraySizes))
}
// bindTypeJava converts a Solidity type to a Java one. Since there is no clear mapping
// from all Solidity types to Java ones (e.g. uint17), those that cannot be exactly
// mapped will use an upscaled type (e.g. BigDecimal).
func bindTypeJava(kind abi.Type) string {
stringKind := kind.String()
innerLen, innerMapping := bindUnnestedTypeJava(stringKind)
return arrayBindingJava(wrapArray(stringKind, innerLen, innerMapping))
}
// The inner function of bindTypeJava, this finds the inner type of stringKind.
// (Or just the type itself if it is not an array or slice)
// The length of the matched part is returned, with the the translated type.
func bindUnnestedTypeJava(stringKind string) (int, string) {
switch {
case strings.HasPrefix(stringKind, "address"):
parts := regexp.MustCompile(`address(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 2 {
return len(stringKind), stringKind
}
if parts[1] == "" {
return len("address"), "Address"
}
return len(parts[0]), "Addresses"
case strings.HasPrefix(stringKind, "bytes"):
parts := regexp.MustCompile(`bytes([0-9]*)`).FindStringSubmatch(stringKind)
if len(parts) != 2 {
return len(stringKind), stringKind
}
return len(parts[0]), "byte[]"
case strings.HasPrefix(stringKind, "int") || strings.HasPrefix(stringKind, "uint"):
//Note that uint and int (without digits) are also matched,
// these are size 256, and will translate to BigInt (the default).
parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(stringKind)
if len(parts) != 3 {
return len(stringKind), stringKind
}
namedSize := map[string]string{
"8": "byte",
"16": "short",
"32": "int",
"64": "long",
}[parts[2]]
//default to BigInt
if namedSize == "" {
namedSize = "BigInt"
}
return len(parts[0]), namedSize
case strings.HasPrefix(stringKind, "bool"):
return len("bool"), "boolean"
case strings.HasPrefix(stringKind, "string"):
return len("string"), "String"
default:
return len(stringKind), stringKind
}
}
// bindTopicType is a set of type binders that convert Solidity types to some
// supported programming language topic types.
var bindTopicType = map[Lang]func(kind abi.Type) string{
LangGo: bindTopicTypeGo,
LangJava: bindTopicTypeJava,
}
// bindTypeGo converts a Solidity topic type to a Go one. It is almost the same
// funcionality as for simple types, but dynamic types get converted to hashes.
func bindTopicTypeGo(kind abi.Type) string {
bound := bindTypeGo(kind)
if bound == "string" || bound == "[]byte" {
bound = "common.Hash"
}
return bound
}
// bindTypeGo converts a Solidity topic type to a Java one. It is almost the same
// funcionality as for simple types, but dynamic types get converted to hashes.
func bindTopicTypeJava(kind abi.Type) string {
bound := bindTypeJava(kind)
if bound == "String" || bound == "Bytes" {
bound = "Hash"
}
return bound
}
// namedType is a set of functions that transform language specific types to
// named versions that my be used inside method names.
var namedType = map[Lang]func(string, abi.Type) string{
LangGo: func(string, abi.Type) string { panic("this shouldn't be needed") },
LangJava: namedTypeJava,
}
// namedTypeJava converts some primitive data types to named variants that can
// be used as parts of method names.
func namedTypeJava(javaKind string, solKind abi.Type) string {
switch javaKind {
case "byte[]":
return "Binary"
case "byte[][]":
return "Binaries"
case "string":
return "String"
case "string[]":
return "Strings"
case "boolean":
return "Bool"
case "boolean[]":
return "Bools"
case "BigInt[]":
return "BigInts"
default:
parts := regexp.MustCompile(`(u)?int([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(solKind.String())
if len(parts) != 4 {
return javaKind
}
switch parts[2] {
case "8", "16", "32", "64":
if parts[3] == "" {
return capitalise(fmt.Sprintf("%sint%s", parts[1], parts[2]))
}
return capitalise(fmt.Sprintf("%sint%ss", parts[1], parts[2]))
default:
return javaKind
}
}
}
// methodNormalizer is a name transformer that modifies Solidity method names to
// conform to target language naming concentions.
var methodNormalizer = map[Lang]func(string) string{
LangGo: capitalise,
LangJava: decapitalise,
}
// capitalise makes the first character of a string upper case, also removing any
// prefixing underscores from the variable names.
func capitalise(input string) string {
for len(input) > 0 && input[0] == '_' {
input = input[1:]
}
if len(input) == 0 {
return ""
}
return strings.ToUpper(input[:1]) + input[1:]
}
// decapitalise makes the first character of a string lower case.
func decapitalise(input string) string {
return strings.ToLower(input[:1]) + input[1:]
}
// structured checks whether a list of ABI data types has enough information to
// operate through a proper Go struct or if flat returns are needed.
func structured(args abi.Arguments) bool {
if len(args) < 2 {
return false
}
exists := make(map[string]bool)
for _, out := range args {
// If the name is anonymous, we can't organize into a struct
if out.Name == "" {
return false
}
// If the field name is empty when normalized or collides (var, Var, _var, _Var),
// we can't organize into a struct
field := capitalise(out.Name)
if field == "" || exists[field] {
return false
}
exists[field] = true
}
return true
}