bsc/accounts/usbwallet/ledger_wallet.go
Felix Lange c213fd1fd8 all: import "context" instead of "golang.org/x/net/context"
There is no need to depend on the old context package now that the
minimum Go version is 1.7. The move to "context" eliminates our weird
vendoring setup. Some vendored code still uses golang.org/x/net/context
and it is now vendored in the normal way.

This change triggered new vet checks around context.WithTimeout which
didn't fire with golang.org/x/net/context.
2017-03-22 20:49:15 +01:00

892 lines
32 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This file contains the implementation for interacting with the Ledger hardware
// wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo:
// https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc
package usbwallet
import (
"context"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"math/big"
"sync"
"time"
ethereum "github.com/ethereum/go-ethereum"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/karalabe/hid"
)
// Maximum time between wallet health checks to detect USB unplugs.
const ledgerHeartbeatCycle = time.Second
// Minimum time to wait between self derivation attempts, even it the user is
// requesting accounts like crazy.
const ledgerSelfDeriveThrottling = time.Second
// ledgerOpcode is an enumeration encoding the supported Ledger opcodes.
type ledgerOpcode byte
// ledgerParam1 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam1 byte
// ledgerParam2 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam2 byte
const (
ledgerOpRetrieveAddress ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path
ledgerOpSignTransaction ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters
ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration
ledgerP1DirectlyFetchAddress ledgerParam1 = 0x00 // Return address directly from the wallet
ledgerP1ConfirmFetchAddress ledgerParam1 = 0x01 // Require a user confirmation before returning the address
ledgerP1InitTransactionData ledgerParam1 = 0x00 // First transaction data block for signing
ledgerP1ContTransactionData ledgerParam1 = 0x80 // Subsequent transaction data block for signing
ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address
ledgerP2ReturnAddressChainCode ledgerParam2 = 0x01 // Require a user confirmation before returning the address
)
// errReplyInvalidHeader is the error message returned by a Ledger data exchange
// if the device replies with a mismatching header. This usually means the device
// is in browser mode.
var errReplyInvalidHeader = errors.New("invalid reply header")
// errInvalidVersionReply is the error message returned by a Ledger version retrieval
// when a response does arrive, but it does not contain the expected data.
var errInvalidVersionReply = errors.New("invalid version reply")
// ledgerWallet represents a live USB Ledger hardware wallet.
type ledgerWallet struct {
url *accounts.URL // Textual URL uniquely identifying this wallet
info hid.DeviceInfo // Known USB device infos about the wallet
device *hid.Device // USB device advertising itself as a Ledger wallet
failure error // Any failure that would make the device unusable
version [3]byte // Current version of the Ledger Ethereum app (zero if app is offline)
browser bool // Flag whether the Ledger is in browser mode (reply channel mismatch)
accounts []accounts.Account // List of derive accounts pinned on the Ledger
paths map[common.Address]accounts.DerivationPath // Known derivation paths for signing operations
deriveNextPath accounts.DerivationPath // Next derivation path for account auto-discovery
deriveNextAddr common.Address // Next derived account address for auto-discovery
deriveChain ethereum.ChainStateReader // Blockchain state reader to discover used account with
deriveReq chan chan struct{} // Channel to request a self-derivation on
deriveQuit chan chan error // Channel to terminate the self-deriver with
healthQuit chan chan error
// Locking a hardware wallet is a bit special. Since hardware devices are lower
// performing, any communication with them might take a non negligible amount of
// time. Worse still, waiting for user confirmation can take arbitrarily long,
// but exclusive communication must be upheld during. Locking the entire wallet
// in the mean time however would stall any parts of the system that don't want
// to communicate, just read some state (e.g. list the accounts).
//
// As such, a hardware wallet needs two locks to function correctly. A state
// lock can be used to protect the wallet's software-side internal state, which
// must not be held exlusively during hardware communication. A communication
// lock can be used to achieve exclusive access to the device itself, this one
// however should allow "skipping" waiting for operations that might want to
// use the device, but can live without too (e.g. account self-derivation).
//
// Since we have two locks, it's important to know how to properly use them:
// - Communication requires the `device` to not change, so obtaining the
// commsLock should be done after having a stateLock.
// - Communication must not disable read access to the wallet state, so it
// must only ever hold a *read* lock to stateLock.
commsLock chan struct{} // Mutex (buf=1) for the USB comms without keeping the state locked
stateLock sync.RWMutex // Protects read and write access to the wallet struct fields
log log.Logger // Contextual logger to tag the ledger with its id
}
// URL implements accounts.Wallet, returning the URL of the Ledger device.
func (w *ledgerWallet) URL() accounts.URL {
return *w.url // Immutable, no need for a lock
}
// Status implements accounts.Wallet, always whether the Ledger is opened, closed
// or whether the Ethereum app was not started on it.
func (w *ledgerWallet) Status() string {
w.stateLock.RLock() // No device communication, state lock is enough
defer w.stateLock.RUnlock()
if w.failure != nil {
return fmt.Sprintf("Failed: %v", w.failure)
}
if w.device == nil {
return "Closed"
}
if w.browser {
return "Ethereum app in browser mode"
}
if w.offline() {
return "Ethereum app offline"
}
return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2])
}
// offline returns whether the wallet and the Ethereum app is offline or not.
//
// The method assumes that the state lock is held!
func (w *ledgerWallet) offline() bool {
return w.version == [3]byte{0, 0, 0}
}
// failed returns if the USB device wrapped by the wallet failed for some reason.
// This is used by the device scanner to report failed wallets as departed.
//
// The method assumes that the state lock is *not* held!
func (w *ledgerWallet) failed() bool {
w.stateLock.RLock() // No device communication, state lock is enough
defer w.stateLock.RUnlock()
return w.failure != nil
}
// Open implements accounts.Wallet, attempting to open a USB connection to the
// Ledger hardware wallet. The Ledger does not require a user passphrase, so that
// parameter is silently discarded.
func (w *ledgerWallet) Open(passphrase string) error {
w.stateLock.Lock() // State lock is enough since there's no connection yet at this point
defer w.stateLock.Unlock()
// If the wallet was already opened, don't try to open again
if w.device != nil {
return accounts.ErrWalletAlreadyOpen
}
// Otherwise iterate over all USB devices and find this again (no way to directly do this)
device, err := w.info.Open()
if err != nil {
return err
}
// Wallet seems to be successfully opened, guess if the Ethereum app is running
w.device = device
w.commsLock = make(chan struct{}, 1)
w.commsLock <- struct{}{} // Enable lock
w.paths = make(map[common.Address]accounts.DerivationPath)
w.deriveReq = make(chan chan struct{})
w.deriveQuit = make(chan chan error)
w.healthQuit = make(chan chan error)
defer func() {
go w.heartbeat()
go w.selfDerive()
}()
if _, err = w.ledgerDerive(accounts.DefaultBaseDerivationPath); err != nil {
// Ethereum app is not running or in browser mode, nothing more to do, return
if err == errReplyInvalidHeader {
w.browser = true
}
return nil
}
// Try to resolve the Ethereum app's version, will fail prior to v1.0.2
if w.version, err = w.ledgerVersion(); err != nil {
w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1
}
return nil
}
// heartbeat is a health check loop for the Ledger wallets to periodically verify
// whether they are still present or if they malfunctioned. It is needed because:
// - libusb on Windows doesn't support hotplug, so we can't detect USB unplugs
// - communication timeout on the Ledger requires a device power cycle to fix
func (w *ledgerWallet) heartbeat() {
w.log.Debug("Ledger health-check started")
defer w.log.Debug("Ledger health-check stopped")
// Execute heartbeat checks until termination or error
var (
errc chan error
err error
)
for errc == nil && err == nil {
// Wait until termination is requested or the heartbeat cycle arrives
select {
case errc = <-w.healthQuit:
// Termination requested
continue
case <-time.After(ledgerHeartbeatCycle):
// Heartbeat time
}
// Execute a tiny data exchange to see responsiveness
w.stateLock.RLock()
if w.device == nil {
// Terminated while waiting for the lock
w.stateLock.RUnlock()
continue
}
<-w.commsLock // Don't lock state while resolving version
_, err = w.ledgerVersion()
w.commsLock <- struct{}{}
w.stateLock.RUnlock()
if err != nil && err != errInvalidVersionReply {
w.stateLock.Lock() // Lock state to tear the wallet down
w.failure = err
w.close()
w.stateLock.Unlock()
}
// Ignore non hardware related errors
err = nil
}
// In case of error, wait for termination
if err != nil {
w.log.Debug("Ledger health-check failed", "err", err)
errc = <-w.healthQuit
}
errc <- err
}
// Close implements accounts.Wallet, closing the USB connection to the Ledger.
func (w *ledgerWallet) Close() error {
// Ensure the wallet was opened
w.stateLock.RLock()
hQuit, dQuit := w.healthQuit, w.deriveQuit
w.stateLock.RUnlock()
// Terminate the health checks
var herr error
if hQuit != nil {
errc := make(chan error)
hQuit <- errc
herr = <-errc // Save for later, we *must* close the USB
}
// Terminate the self-derivations
var derr error
if dQuit != nil {
errc := make(chan error)
dQuit <- errc
derr = <-errc // Save for later, we *must* close the USB
}
// Terminate the device connection
w.stateLock.Lock()
defer w.stateLock.Unlock()
w.healthQuit = nil
w.deriveQuit = nil
w.deriveReq = nil
if err := w.close(); err != nil {
return err
}
if herr != nil {
return herr
}
return derr
}
// close is the internal wallet closer that terminates the USB connection and
// resets all the fields to their defaults.
//
// Note, close assumes the state lock is held!
func (w *ledgerWallet) close() error {
// Allow duplicate closes, especially for health-check failures
if w.device == nil {
return nil
}
// Close the device, clear everything, then return
w.device.Close()
w.device = nil
w.browser, w.version = false, [3]byte{}
w.accounts, w.paths = nil, nil
return nil
}
// Accounts implements accounts.Wallet, returning the list of accounts pinned to
// the Ledger hardware wallet. If self-derivation was enabled, the account list
// is periodically expanded based on current chain state.
func (w *ledgerWallet) Accounts() []accounts.Account {
// Attempt self-derivation if it's running
reqc := make(chan struct{}, 1)
select {
case w.deriveReq <- reqc:
// Self-derivation request accepted, wait for it
<-reqc
default:
// Self-derivation offline, throttled or busy, skip
}
// Return whatever account list we ended up with
w.stateLock.RLock()
defer w.stateLock.RUnlock()
cpy := make([]accounts.Account, len(w.accounts))
copy(cpy, w.accounts)
return cpy
}
// selfDerive is an account derivation loop that upon request attempts to find
// new non-zero accounts.
func (w *ledgerWallet) selfDerive() {
w.log.Debug("Ledger self-derivation started")
defer w.log.Debug("Ledger self-derivation stopped")
// Execute self-derivations until termination or error
var (
reqc chan struct{}
errc chan error
err error
)
for errc == nil && err == nil {
// Wait until either derivation or termination is requested
select {
case errc = <-w.deriveQuit:
// Termination requested
continue
case reqc = <-w.deriveReq:
// Account discovery requested
}
// Derivation needs a chain and device access, skip if either unavailable
w.stateLock.RLock()
if w.device == nil || w.deriveChain == nil || w.offline() {
w.stateLock.RUnlock()
reqc <- struct{}{}
continue
}
select {
case <-w.commsLock:
default:
w.stateLock.RUnlock()
reqc <- struct{}{}
continue
}
// Device lock obtained, derive the next batch of accounts
var (
accs []accounts.Account
paths []accounts.DerivationPath
nextAddr = w.deriveNextAddr
nextPath = w.deriveNextPath
context = context.Background()
)
for empty := false; !empty; {
// Retrieve the next derived Ethereum account
if nextAddr == (common.Address{}) {
if nextAddr, err = w.ledgerDerive(nextPath); err != nil {
w.log.Warn("Ledger account derivation failed", "err", err)
break
}
}
// Check the account's status against the current chain state
var (
balance *big.Int
nonce uint64
)
balance, err = w.deriveChain.BalanceAt(context, nextAddr, nil)
if err != nil {
w.log.Warn("Ledger balance retrieval failed", "err", err)
break
}
nonce, err = w.deriveChain.NonceAt(context, nextAddr, nil)
if err != nil {
w.log.Warn("Ledger nonce retrieval failed", "err", err)
break
}
// If the next account is empty, stop self-derivation, but add it nonetheless
if balance.Sign() == 0 && nonce == 0 {
empty = true
}
// We've just self-derived a new account, start tracking it locally
path := make(accounts.DerivationPath, len(nextPath))
copy(path[:], nextPath[:])
paths = append(paths, path)
account := accounts.Account{
Address: nextAddr,
URL: accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)},
}
accs = append(accs, account)
// Display a log message to the user for new (or previously empty accounts)
if _, known := w.paths[nextAddr]; !known || (!empty && nextAddr == w.deriveNextAddr) {
w.log.Info("Ledger discovered new account", "address", nextAddr, "path", path, "balance", balance, "nonce", nonce)
}
// Fetch the next potential account
if !empty {
nextAddr = common.Address{}
nextPath[len(nextPath)-1]++
}
}
// Self derivation complete, release device lock
w.commsLock <- struct{}{}
w.stateLock.RUnlock()
// Insert any accounts successfully derived
w.stateLock.Lock()
for i := 0; i < len(accs); i++ {
if _, ok := w.paths[accs[i].Address]; !ok {
w.accounts = append(w.accounts, accs[i])
w.paths[accs[i].Address] = paths[i]
}
}
// Shift the self-derivation forward
// TODO(karalabe): don't overwrite changes from wallet.SelfDerive
w.deriveNextAddr = nextAddr
w.deriveNextPath = nextPath
w.stateLock.Unlock()
// Notify the user of termination and loop after a bit of time (to avoid trashing)
reqc <- struct{}{}
if err == nil {
select {
case errc = <-w.deriveQuit:
// Termination requested, abort
case <-time.After(ledgerSelfDeriveThrottling):
// Waited enough, willing to self-derive again
}
}
}
// In case of error, wait for termination
if err != nil {
w.log.Debug("Ledger self-derivation failed", "err", err)
errc = <-w.deriveQuit
}
errc <- err
}
// Contains implements accounts.Wallet, returning whether a particular account is
// or is not pinned into this Ledger instance. Although we could attempt to resolve
// unpinned accounts, that would be an non-negligible hardware operation.
func (w *ledgerWallet) Contains(account accounts.Account) bool {
w.stateLock.RLock()
defer w.stateLock.RUnlock()
_, exists := w.paths[account.Address]
return exists
}
// Derive implements accounts.Wallet, deriving a new account at the specific
// derivation path. If pin is set to true, the account will be added to the list
// of tracked accounts.
func (w *ledgerWallet) Derive(path accounts.DerivationPath, pin bool) (accounts.Account, error) {
// Try to derive the actual account and update its URL if successful
w.stateLock.RLock() // Avoid device disappearing during derivation
if w.device == nil || w.offline() {
w.stateLock.RUnlock()
return accounts.Account{}, accounts.ErrWalletClosed
}
<-w.commsLock // Avoid concurrent hardware access
address, err := w.ledgerDerive(path)
w.commsLock <- struct{}{}
w.stateLock.RUnlock()
// If an error occurred or no pinning was requested, return
if err != nil {
return accounts.Account{}, err
}
account := accounts.Account{
Address: address,
URL: accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)},
}
if !pin {
return account, nil
}
// Pinning needs to modify the state
w.stateLock.Lock()
defer w.stateLock.Unlock()
if _, ok := w.paths[address]; !ok {
w.accounts = append(w.accounts, account)
w.paths[address] = path
}
return account, nil
}
// SelfDerive implements accounts.Wallet, trying to discover accounts that the
// user used previously (based on the chain state), but ones that he/she did not
// explicitly pin to the wallet manually. To avoid chain head monitoring, self
// derivation only runs during account listing (and even then throttled).
func (w *ledgerWallet) SelfDerive(base accounts.DerivationPath, chain ethereum.ChainStateReader) {
w.stateLock.Lock()
defer w.stateLock.Unlock()
w.deriveNextPath = make(accounts.DerivationPath, len(base))
copy(w.deriveNextPath[:], base[:])
w.deriveNextAddr = common.Address{}
w.deriveChain = chain
}
// SignHash implements accounts.Wallet, however signing arbitrary data is not
// supported for Ledger wallets, so this method will always return an error.
func (w *ledgerWallet) SignHash(acc accounts.Account, hash []byte) ([]byte, error) {
return nil, accounts.ErrNotSupported
}
// SignTx implements accounts.Wallet. It sends the transaction over to the Ledger
// wallet to request a confirmation from the user. It returns either the signed
// transaction or a failure if the user denied the transaction.
//
// Note, if the version of the Ethereum application running on the Ledger wallet is
// too old to sign EIP-155 transactions, but such is requested nonetheless, an error
// will be returned opposed to silently signing in Homestead mode.
func (w *ledgerWallet) SignTx(account accounts.Account, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
w.stateLock.RLock() // Comms have own mutex, this is for the state fields
defer w.stateLock.RUnlock()
// If the wallet is closed, or the Ethereum app doesn't run, abort
if w.device == nil || w.offline() {
return nil, accounts.ErrWalletClosed
}
// Make sure the requested account is contained within
path, ok := w.paths[account.Address]
if !ok {
return nil, accounts.ErrUnknownAccount
}
// Ensure the wallet is capable of signing the given transaction
if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 {
return nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2])
}
// All infos gathered and metadata checks out, request signing
<-w.commsLock
defer func() { w.commsLock <- struct{}{} }()
return w.ledgerSign(path, account.Address, tx, chainID)
}
// SignHashWithPassphrase implements accounts.Wallet, however signing arbitrary
// data is not supported for Ledger wallets, so this method will always return
// an error.
func (w *ledgerWallet) SignHashWithPassphrase(account accounts.Account, passphrase string, hash []byte) ([]byte, error) {
return nil, accounts.ErrNotSupported
}
// SignTxWithPassphrase implements accounts.Wallet, attempting to sign the given
// transaction with the given account using passphrase as extra authentication.
// Since the Ledger does not support extra passphrases, it is silently ignored.
func (w *ledgerWallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
return w.SignTx(account, tx, chainID)
}
// ledgerVersion retrieves the current version of the Ethereum wallet app running
// on the Ledger wallet.
//
// The version retrieval protocol is defined as follows:
//
// CLA | INS | P1 | P2 | Lc | Le
// ----+-----+----+----+----+---
// E0 | 06 | 00 | 00 | 00 | 04
//
// With no input data, and the output data being:
//
// Description | Length
// ---------------------------------------------------+--------
// Flags 01: arbitrary data signature enabled by user | 1 byte
// Application major version | 1 byte
// Application minor version | 1 byte
// Application patch version | 1 byte
func (w *ledgerWallet) ledgerVersion() ([3]byte, error) {
// Send the request and wait for the response
reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil)
if err != nil {
return [3]byte{}, err
}
if len(reply) != 4 {
return [3]byte{}, errInvalidVersionReply
}
// Cache the version for future reference
var version [3]byte
copy(version[:], reply[1:])
return version, nil
}
// ledgerDerive retrieves the currently active Ethereum address from a Ledger
// wallet at the specified derivation path.
//
// The address derivation protocol is defined as follows:
//
// CLA | INS | P1 | P2 | Lc | Le
// ----+-----+----+----+-----+---
// E0 | 02 | 00 return address
// 01 display address and confirm before returning
// | 00: do not return the chain code
// | 01: return the chain code
// | var | 00
//
// Where the input data is:
//
// Description | Length
// -------------------------------------------------+--------
// Number of BIP 32 derivations to perform (max 10) | 1 byte
// First derivation index (big endian) | 4 bytes
// ... | 4 bytes
// Last derivation index (big endian) | 4 bytes
//
// And the output data is:
//
// Description | Length
// ------------------------+-------------------
// Public Key length | 1 byte
// Uncompressed Public Key | arbitrary
// Ethereum address length | 1 byte
// Ethereum address | 40 bytes hex ascii
// Chain code if requested | 32 bytes
func (w *ledgerWallet) ledgerDerive(derivationPath []uint32) (common.Address, error) {
// Flatten the derivation path into the Ledger request
path := make([]byte, 1+4*len(derivationPath))
path[0] = byte(len(derivationPath))
for i, component := range derivationPath {
binary.BigEndian.PutUint32(path[1+4*i:], component)
}
// Send the request and wait for the response
reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path)
if err != nil {
return common.Address{}, err
}
// Discard the public key, we don't need that for now
if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
return common.Address{}, errors.New("reply lacks public key entry")
}
reply = reply[1+int(reply[0]):]
// Extract the Ethereum hex address string
if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
return common.Address{}, errors.New("reply lacks address entry")
}
hexstr := reply[1 : 1+int(reply[0])]
// Decode the hex sting into an Ethereum address and return
var address common.Address
hex.Decode(address[:], hexstr)
return address, nil
}
// ledgerSign sends the transaction to the Ledger wallet, and waits for the user
// to confirm or deny the transaction.
//
// The transaction signing protocol is defined as follows:
//
// CLA | INS | P1 | P2 | Lc | Le
// ----+-----+----+----+-----+---
// E0 | 04 | 00: first transaction data block
// 80: subsequent transaction data block
// | 00 | variable | variable
//
// Where the input for the first transaction block (first 255 bytes) is:
//
// Description | Length
// -------------------------------------------------+----------
// Number of BIP 32 derivations to perform (max 10) | 1 byte
// First derivation index (big endian) | 4 bytes
// ... | 4 bytes
// Last derivation index (big endian) | 4 bytes
// RLP transaction chunk | arbitrary
//
// And the input for subsequent transaction blocks (first 255 bytes) are:
//
// Description | Length
// ----------------------+----------
// RLP transaction chunk | arbitrary
//
// And the output data is:
//
// Description | Length
// ------------+---------
// signature V | 1 byte
// signature R | 32 bytes
// signature S | 32 bytes
func (w *ledgerWallet) ledgerSign(derivationPath []uint32, address common.Address, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
// Flatten the derivation path into the Ledger request
path := make([]byte, 1+4*len(derivationPath))
path[0] = byte(len(derivationPath))
for i, component := range derivationPath {
binary.BigEndian.PutUint32(path[1+4*i:], component)
}
// Create the transaction RLP based on whether legacy or EIP155 signing was requeste
var (
txrlp []byte
err error
)
if chainID == nil {
if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil {
return nil, err
}
} else {
if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil {
return nil, err
}
}
payload := append(path, txrlp...)
// Send the request and wait for the response
var (
op = ledgerP1InitTransactionData
reply []byte
)
for len(payload) > 0 {
// Calculate the size of the next data chunk
chunk := 255
if chunk > len(payload) {
chunk = len(payload)
}
// Send the chunk over, ensuring it's processed correctly
reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk])
if err != nil {
return nil, err
}
// Shift the payload and ensure subsequent chunks are marked as such
payload = payload[chunk:]
op = ledgerP1ContTransactionData
}
// Extract the Ethereum signature and do a sanity validation
if len(reply) != 65 {
return nil, errors.New("reply lacks signature")
}
signature := append(reply[1:], reply[0])
// Create the correct signer and signature transform based on the chain ID
var signer types.Signer
if chainID == nil {
signer = new(types.HomesteadSigner)
} else {
signer = types.NewEIP155Signer(chainID)
signature[64] = signature[64] - byte(chainID.Uint64()*2+35)
}
// Inject the final signature into the transaction and sanity check the sender
signed, err := tx.WithSignature(signer, signature)
if err != nil {
return nil, err
}
sender, err := types.Sender(signer, signed)
if err != nil {
return nil, err
}
if sender != address {
return nil, fmt.Errorf("signer mismatch: expected %s, got %s", address.Hex(), sender.Hex())
}
return signed, nil
}
// ledgerExchange performs a data exchange with the Ledger wallet, sending it a
// message and retrieving the response.
//
// The common transport header is defined as follows:
//
// Description | Length
// --------------------------------------+----------
// Communication channel ID (big endian) | 2 bytes
// Command tag | 1 byte
// Packet sequence index (big endian) | 2 bytes
// Payload | arbitrary
//
// The Communication channel ID allows commands multiplexing over the same
// physical link. It is not used for the time being, and should be set to 0101
// to avoid compatibility issues with implementations ignoring a leading 00 byte.
//
// The Command tag describes the message content. Use TAG_APDU (0x05) for standard
// APDU payloads, or TAG_PING (0x02) for a simple link test.
//
// The Packet sequence index describes the current sequence for fragmented payloads.
// The first fragment index is 0x00.
//
// APDU Command payloads are encoded as follows:
//
// Description | Length
// -----------------------------------
// APDU length (big endian) | 2 bytes
// APDU CLA | 1 byte
// APDU INS | 1 byte
// APDU P1 | 1 byte
// APDU P2 | 1 byte
// APDU length | 1 byte
// Optional APDU data | arbitrary
func (w *ledgerWallet) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) {
// Construct the message payload, possibly split into multiple chunks
apdu := make([]byte, 2, 7+len(data))
binary.BigEndian.PutUint16(apdu, uint16(5+len(data)))
apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...)
apdu = append(apdu, data...)
// Stream all the chunks to the device
header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended
chunk := make([]byte, 64)
space := len(chunk) - len(header)
for i := 0; len(apdu) > 0; i++ {
// Construct the new message to stream
chunk = append(chunk[:0], header...)
binary.BigEndian.PutUint16(chunk[3:], uint16(i))
if len(apdu) > space {
chunk = append(chunk, apdu[:space]...)
apdu = apdu[space:]
} else {
chunk = append(chunk, apdu...)
apdu = nil
}
// Send over to the device
w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk))
if _, err := w.device.Write(chunk); err != nil {
return nil, err
}
}
// Stream the reply back from the wallet in 64 byte chunks
var reply []byte
chunk = chunk[:64] // Yeah, we surely have enough space
for {
// Read the next chunk from the Ledger wallet
if _, err := io.ReadFull(w.device, chunk); err != nil {
return nil, err
}
w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk))
// Make sure the transport header matches
if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 {
return nil, errReplyInvalidHeader
}
// If it's the first chunk, retrieve the total message length
var payload []byte
if chunk[3] == 0x00 && chunk[4] == 0x00 {
reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7])))
payload = chunk[7:]
} else {
payload = chunk[5:]
}
// Append to the reply and stop when filled up
if left := cap(reply) - len(reply); left > len(payload) {
reply = append(reply, payload...)
} else {
reply = append(reply, payload[:left]...)
break
}
}
return reply[:len(reply)-2], nil
}