bsc/core/vm/instructions.go
Sina Mahmoodi 401354976b
core,eth: call frame tracing (#23087)
This change introduces 2 new optional methods; `enter()` and `exit()` for js tracers, and makes `step()` optiona. The two new methods are invoked when entering and exiting a call frame (but not invoked for the outermost scope, which has it's own methods). Currently these are the data fields passed to each of them:

    enter: type (opcode), from, to, input, gas, value
    exit: output, gasUsed, error

The PR also comes with a re-write of the callTracer. As a backup we keep the previous tracing script under the name `callTracerLegacy`. Behaviour of both tracers are equivalent for the most part, although there are some small differences (improvements), where the new tracer is more correct / has more information.
2021-09-17 09:31:22 +02:00

884 lines
28 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/params"
"github.com/holiman/uint256"
"golang.org/x/crypto/sha3"
)
func opAdd(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.Add(&x, y)
return nil, nil
}
func opSub(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.Sub(&x, y)
return nil, nil
}
func opMul(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.Mul(&x, y)
return nil, nil
}
func opDiv(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.Div(&x, y)
return nil, nil
}
func opSdiv(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.SDiv(&x, y)
return nil, nil
}
func opMod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.Mod(&x, y)
return nil, nil
}
func opSmod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.SMod(&x, y)
return nil, nil
}
func opExp(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
base, exponent := scope.Stack.pop(), scope.Stack.peek()
exponent.Exp(&base, exponent)
return nil, nil
}
func opSignExtend(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
back, num := scope.Stack.pop(), scope.Stack.peek()
num.ExtendSign(num, &back)
return nil, nil
}
func opNot(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x := scope.Stack.peek()
x.Not(x)
return nil, nil
}
func opLt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
if x.Lt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opGt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
if x.Gt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opSlt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
if x.Slt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opSgt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
if x.Sgt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opEq(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
if x.Eq(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opIszero(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x := scope.Stack.peek()
if x.IsZero() {
x.SetOne()
} else {
x.Clear()
}
return nil, nil
}
func opAnd(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.And(&x, y)
return nil, nil
}
func opOr(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.Or(&x, y)
return nil, nil
}
func opXor(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y := scope.Stack.pop(), scope.Stack.peek()
y.Xor(&x, y)
return nil, nil
}
func opByte(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
th, val := scope.Stack.pop(), scope.Stack.peek()
val.Byte(&th)
return nil, nil
}
func opAddmod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y, z := scope.Stack.pop(), scope.Stack.pop(), scope.Stack.peek()
if z.IsZero() {
z.Clear()
} else {
z.AddMod(&x, &y, z)
}
return nil, nil
}
func opMulmod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x, y, z := scope.Stack.pop(), scope.Stack.pop(), scope.Stack.peek()
z.MulMod(&x, &y, z)
return nil, nil
}
// opSHL implements Shift Left
// The SHL instruction (shift left) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the left by arg1 number of bits.
func opSHL(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
// Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards
shift, value := scope.Stack.pop(), scope.Stack.peek()
if shift.LtUint64(256) {
value.Lsh(value, uint(shift.Uint64()))
} else {
value.Clear()
}
return nil, nil
}
// opSHR implements Logical Shift Right
// The SHR instruction (logical shift right) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the right by arg1 number of bits with zero fill.
func opSHR(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
// Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards
shift, value := scope.Stack.pop(), scope.Stack.peek()
if shift.LtUint64(256) {
value.Rsh(value, uint(shift.Uint64()))
} else {
value.Clear()
}
return nil, nil
}
// opSAR implements Arithmetic Shift Right
// The SAR instruction (arithmetic shift right) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the right by arg1 number of bits with sign extension.
func opSAR(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
shift, value := scope.Stack.pop(), scope.Stack.peek()
if shift.GtUint64(256) {
if value.Sign() >= 0 {
value.Clear()
} else {
// Max negative shift: all bits set
value.SetAllOne()
}
return nil, nil
}
n := uint(shift.Uint64())
value.SRsh(value, n)
return nil, nil
}
func opSha3(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
offset, size := scope.Stack.pop(), scope.Stack.peek()
data := scope.Memory.GetPtr(int64(offset.Uint64()), int64(size.Uint64()))
if interpreter.hasher == nil {
interpreter.hasher = sha3.NewLegacyKeccak256().(keccakState)
} else {
interpreter.hasher.Reset()
}
interpreter.hasher.Write(data)
interpreter.hasher.Read(interpreter.hasherBuf[:])
evm := interpreter.evm
if evm.Config.EnablePreimageRecording {
evm.StateDB.AddPreimage(interpreter.hasherBuf, data)
}
size.SetBytes(interpreter.hasherBuf[:])
return nil, nil
}
func opAddress(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetBytes(scope.Contract.Address().Bytes()))
return nil, nil
}
func opBalance(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
slot := scope.Stack.peek()
address := common.Address(slot.Bytes20())
slot.SetFromBig(interpreter.evm.StateDB.GetBalance(address))
return nil, nil
}
func opOrigin(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetBytes(interpreter.evm.Origin.Bytes()))
return nil, nil
}
func opCaller(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetBytes(scope.Contract.Caller().Bytes()))
return nil, nil
}
func opCallValue(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
v, _ := uint256.FromBig(scope.Contract.value)
scope.Stack.push(v)
return nil, nil
}
func opCallDataLoad(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
x := scope.Stack.peek()
if offset, overflow := x.Uint64WithOverflow(); !overflow {
data := getData(scope.Contract.Input, offset, 32)
x.SetBytes(data)
} else {
x.Clear()
}
return nil, nil
}
func opCallDataSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetUint64(uint64(len(scope.Contract.Input))))
return nil, nil
}
func opCallDataCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
var (
memOffset = scope.Stack.pop()
dataOffset = scope.Stack.pop()
length = scope.Stack.pop()
)
dataOffset64, overflow := dataOffset.Uint64WithOverflow()
if overflow {
dataOffset64 = 0xffffffffffffffff
}
// These values are checked for overflow during gas cost calculation
memOffset64 := memOffset.Uint64()
length64 := length.Uint64()
scope.Memory.Set(memOffset64, length64, getData(scope.Contract.Input, dataOffset64, length64))
return nil, nil
}
func opReturnDataSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetUint64(uint64(len(interpreter.returnData))))
return nil, nil
}
func opReturnDataCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
var (
memOffset = scope.Stack.pop()
dataOffset = scope.Stack.pop()
length = scope.Stack.pop()
)
offset64, overflow := dataOffset.Uint64WithOverflow()
if overflow {
return nil, ErrReturnDataOutOfBounds
}
// we can reuse dataOffset now (aliasing it for clarity)
var end = dataOffset
end.Add(&dataOffset, &length)
end64, overflow := end.Uint64WithOverflow()
if overflow || uint64(len(interpreter.returnData)) < end64 {
return nil, ErrReturnDataOutOfBounds
}
scope.Memory.Set(memOffset.Uint64(), length.Uint64(), interpreter.returnData[offset64:end64])
return nil, nil
}
func opExtCodeSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
slot := scope.Stack.peek()
slot.SetUint64(uint64(interpreter.evm.StateDB.GetCodeSize(slot.Bytes20())))
return nil, nil
}
func opCodeSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
l := new(uint256.Int)
l.SetUint64(uint64(len(scope.Contract.Code)))
scope.Stack.push(l)
return nil, nil
}
func opCodeCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
var (
memOffset = scope.Stack.pop()
codeOffset = scope.Stack.pop()
length = scope.Stack.pop()
)
uint64CodeOffset, overflow := codeOffset.Uint64WithOverflow()
if overflow {
uint64CodeOffset = 0xffffffffffffffff
}
codeCopy := getData(scope.Contract.Code, uint64CodeOffset, length.Uint64())
scope.Memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy)
return nil, nil
}
func opExtCodeCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
var (
stack = scope.Stack
a = stack.pop()
memOffset = stack.pop()
codeOffset = stack.pop()
length = stack.pop()
)
uint64CodeOffset, overflow := codeOffset.Uint64WithOverflow()
if overflow {
uint64CodeOffset = 0xffffffffffffffff
}
addr := common.Address(a.Bytes20())
codeCopy := getData(interpreter.evm.StateDB.GetCode(addr), uint64CodeOffset, length.Uint64())
scope.Memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy)
return nil, nil
}
// opExtCodeHash returns the code hash of a specified account.
// There are several cases when the function is called, while we can relay everything
// to `state.GetCodeHash` function to ensure the correctness.
// (1) Caller tries to get the code hash of a normal contract account, state
// should return the relative code hash and set it as the result.
//
// (2) Caller tries to get the code hash of a non-existent account, state should
// return common.Hash{} and zero will be set as the result.
//
// (3) Caller tries to get the code hash for an account without contract code,
// state should return emptyCodeHash(0xc5d246...) as the result.
//
// (4) Caller tries to get the code hash of a precompiled account, the result
// should be zero or emptyCodeHash.
//
// It is worth noting that in order to avoid unnecessary create and clean,
// all precompile accounts on mainnet have been transferred 1 wei, so the return
// here should be emptyCodeHash.
// If the precompile account is not transferred any amount on a private or
// customized chain, the return value will be zero.
//
// (5) Caller tries to get the code hash for an account which is marked as suicided
// in the current transaction, the code hash of this account should be returned.
//
// (6) Caller tries to get the code hash for an account which is marked as deleted,
// this account should be regarded as a non-existent account and zero should be returned.
func opExtCodeHash(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
slot := scope.Stack.peek()
address := common.Address(slot.Bytes20())
if interpreter.evm.StateDB.Empty(address) {
slot.Clear()
} else {
slot.SetBytes(interpreter.evm.StateDB.GetCodeHash(address).Bytes())
}
return nil, nil
}
func opGasprice(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
v, _ := uint256.FromBig(interpreter.evm.GasPrice)
scope.Stack.push(v)
return nil, nil
}
func opBlockhash(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
num := scope.Stack.peek()
num64, overflow := num.Uint64WithOverflow()
if overflow {
num.Clear()
return nil, nil
}
var upper, lower uint64
upper = interpreter.evm.Context.BlockNumber.Uint64()
if upper < 257 {
lower = 0
} else {
lower = upper - 256
}
if num64 >= lower && num64 < upper {
num.SetBytes(interpreter.evm.Context.GetHash(num64).Bytes())
} else {
num.Clear()
}
return nil, nil
}
func opCoinbase(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetBytes(interpreter.evm.Context.Coinbase.Bytes()))
return nil, nil
}
func opTimestamp(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
v, _ := uint256.FromBig(interpreter.evm.Context.Time)
scope.Stack.push(v)
return nil, nil
}
func opNumber(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
v, _ := uint256.FromBig(interpreter.evm.Context.BlockNumber)
scope.Stack.push(v)
return nil, nil
}
func opDifficulty(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
v, _ := uint256.FromBig(interpreter.evm.Context.Difficulty)
scope.Stack.push(v)
return nil, nil
}
func opGasLimit(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetUint64(interpreter.evm.Context.GasLimit))
return nil, nil
}
func opPop(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.pop()
return nil, nil
}
func opMload(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
v := scope.Stack.peek()
offset := int64(v.Uint64())
v.SetBytes(scope.Memory.GetPtr(offset, 32))
return nil, nil
}
func opMstore(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
// pop value of the stack
mStart, val := scope.Stack.pop(), scope.Stack.pop()
scope.Memory.Set32(mStart.Uint64(), &val)
return nil, nil
}
func opMstore8(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
off, val := scope.Stack.pop(), scope.Stack.pop()
scope.Memory.store[off.Uint64()] = byte(val.Uint64())
return nil, nil
}
func opSload(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
loc := scope.Stack.peek()
hash := common.Hash(loc.Bytes32())
val := interpreter.evm.StateDB.GetState(scope.Contract.Address(), hash)
loc.SetBytes(val.Bytes())
return nil, nil
}
func opSstore(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
loc := scope.Stack.pop()
val := scope.Stack.pop()
interpreter.evm.StateDB.SetState(scope.Contract.Address(),
loc.Bytes32(), val.Bytes32())
return nil, nil
}
func opJump(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
pos := scope.Stack.pop()
if !scope.Contract.validJumpdest(&pos) {
return nil, ErrInvalidJump
}
*pc = pos.Uint64()
return nil, nil
}
func opJumpi(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
pos, cond := scope.Stack.pop(), scope.Stack.pop()
if !cond.IsZero() {
if !scope.Contract.validJumpdest(&pos) {
return nil, ErrInvalidJump
}
*pc = pos.Uint64()
} else {
*pc++
}
return nil, nil
}
func opJumpdest(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
return nil, nil
}
func opPc(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetUint64(*pc))
return nil, nil
}
func opMsize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetUint64(uint64(scope.Memory.Len())))
return nil, nil
}
func opGas(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.push(new(uint256.Int).SetUint64(scope.Contract.Gas))
return nil, nil
}
func opCreate(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
var (
value = scope.Stack.pop()
offset, size = scope.Stack.pop(), scope.Stack.pop()
input = scope.Memory.GetCopy(int64(offset.Uint64()), int64(size.Uint64()))
gas = scope.Contract.Gas
)
if interpreter.evm.chainRules.IsEIP150 {
gas -= gas / 64
}
// reuse size int for stackvalue
stackvalue := size
scope.Contract.UseGas(gas)
//TODO: use uint256.Int instead of converting with toBig()
var bigVal = big0
if !value.IsZero() {
bigVal = value.ToBig()
}
res, addr, returnGas, suberr := interpreter.evm.Create(scope.Contract, input, gas, bigVal)
// Push item on the stack based on the returned error. If the ruleset is
// homestead we must check for CodeStoreOutOfGasError (homestead only
// rule) and treat as an error, if the ruleset is frontier we must
// ignore this error and pretend the operation was successful.
if interpreter.evm.chainRules.IsHomestead && suberr == ErrCodeStoreOutOfGas {
stackvalue.Clear()
} else if suberr != nil && suberr != ErrCodeStoreOutOfGas {
stackvalue.Clear()
} else {
stackvalue.SetBytes(addr.Bytes())
}
scope.Stack.push(&stackvalue)
scope.Contract.Gas += returnGas
if suberr == ErrExecutionReverted {
return res, nil
}
return nil, nil
}
func opCreate2(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
var (
endowment = scope.Stack.pop()
offset, size = scope.Stack.pop(), scope.Stack.pop()
salt = scope.Stack.pop()
input = scope.Memory.GetCopy(int64(offset.Uint64()), int64(size.Uint64()))
gas = scope.Contract.Gas
)
// Apply EIP150
gas -= gas / 64
scope.Contract.UseGas(gas)
// reuse size int for stackvalue
stackvalue := size
//TODO: use uint256.Int instead of converting with toBig()
bigEndowment := big0
if !endowment.IsZero() {
bigEndowment = endowment.ToBig()
}
res, addr, returnGas, suberr := interpreter.evm.Create2(scope.Contract, input, gas,
bigEndowment, &salt)
// Push item on the stack based on the returned error.
if suberr != nil {
stackvalue.Clear()
} else {
stackvalue.SetBytes(addr.Bytes())
}
scope.Stack.push(&stackvalue)
scope.Contract.Gas += returnGas
if suberr == ErrExecutionReverted {
return res, nil
}
return nil, nil
}
func opCall(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
stack := scope.Stack
// Pop gas. The actual gas in interpreter.evm.callGasTemp.
// We can use this as a temporary value
temp := stack.pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, value, inOffset, inSize, retOffset, retSize := stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop()
toAddr := common.Address(addr.Bytes20())
// Get the arguments from the memory.
args := scope.Memory.GetPtr(int64(inOffset.Uint64()), int64(inSize.Uint64()))
var bigVal = big0
//TODO: use uint256.Int instead of converting with toBig()
// By using big0 here, we save an alloc for the most common case (non-ether-transferring contract calls),
// but it would make more sense to extend the usage of uint256.Int
if !value.IsZero() {
gas += params.CallStipend
bigVal = value.ToBig()
}
ret, returnGas, err := interpreter.evm.Call(scope.Contract, toAddr, args, gas, bigVal)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
scope.Contract.Gas += returnGas
return ret, nil
}
func opCallCode(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
stack := scope.Stack
// We use it as a temporary value
temp := stack.pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, value, inOffset, inSize, retOffset, retSize := stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop()
toAddr := common.Address(addr.Bytes20())
// Get arguments from the memory.
args := scope.Memory.GetPtr(int64(inOffset.Uint64()), int64(inSize.Uint64()))
//TODO: use uint256.Int instead of converting with toBig()
var bigVal = big0
if !value.IsZero() {
gas += params.CallStipend
bigVal = value.ToBig()
}
ret, returnGas, err := interpreter.evm.CallCode(scope.Contract, toAddr, args, gas, bigVal)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
scope.Contract.Gas += returnGas
return ret, nil
}
func opDelegateCall(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
stack := scope.Stack
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
// We use it as a temporary value
temp := stack.pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, inOffset, inSize, retOffset, retSize := stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop()
toAddr := common.Address(addr.Bytes20())
// Get arguments from the memory.
args := scope.Memory.GetPtr(int64(inOffset.Uint64()), int64(inSize.Uint64()))
ret, returnGas, err := interpreter.evm.DelegateCall(scope.Contract, toAddr, args, gas)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
scope.Contract.Gas += returnGas
return ret, nil
}
func opStaticCall(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
stack := scope.Stack
// We use it as a temporary value
temp := stack.pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, inOffset, inSize, retOffset, retSize := stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop()
toAddr := common.Address(addr.Bytes20())
// Get arguments from the memory.
args := scope.Memory.GetPtr(int64(inOffset.Uint64()), int64(inSize.Uint64()))
ret, returnGas, err := interpreter.evm.StaticCall(scope.Contract, toAddr, args, gas)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
scope.Contract.Gas += returnGas
return ret, nil
}
func opReturn(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
offset, size := scope.Stack.pop(), scope.Stack.pop()
ret := scope.Memory.GetPtr(int64(offset.Uint64()), int64(size.Uint64()))
return ret, nil
}
func opRevert(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
offset, size := scope.Stack.pop(), scope.Stack.pop()
ret := scope.Memory.GetPtr(int64(offset.Uint64()), int64(size.Uint64()))
return ret, nil
}
func opStop(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
return nil, nil
}
func opSuicide(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
beneficiary := scope.Stack.pop()
balance := interpreter.evm.StateDB.GetBalance(scope.Contract.Address())
interpreter.evm.StateDB.AddBalance(beneficiary.Bytes20(), balance)
interpreter.evm.StateDB.Suicide(scope.Contract.Address())
if interpreter.cfg.Debug {
interpreter.cfg.Tracer.CaptureEnter(SELFDESTRUCT, scope.Contract.Address(), beneficiary.Bytes20(), []byte{}, 0, balance)
interpreter.cfg.Tracer.CaptureExit([]byte{}, 0, nil)
}
return nil, nil
}
// following functions are used by the instruction jump table
// make log instruction function
func makeLog(size int) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
topics := make([]common.Hash, size)
stack := scope.Stack
mStart, mSize := stack.pop(), stack.pop()
for i := 0; i < size; i++ {
addr := stack.pop()
topics[i] = addr.Bytes32()
}
d := scope.Memory.GetCopy(int64(mStart.Uint64()), int64(mSize.Uint64()))
interpreter.evm.StateDB.AddLog(&types.Log{
Address: scope.Contract.Address(),
Topics: topics,
Data: d,
// This is a non-consensus field, but assigned here because
// core/state doesn't know the current block number.
BlockNumber: interpreter.evm.Context.BlockNumber.Uint64(),
})
return nil, nil
}
}
// opPush1 is a specialized version of pushN
func opPush1(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
var (
codeLen = uint64(len(scope.Contract.Code))
integer = new(uint256.Int)
)
*pc += 1
if *pc < codeLen {
scope.Stack.push(integer.SetUint64(uint64(scope.Contract.Code[*pc])))
} else {
scope.Stack.push(integer.Clear())
}
return nil, nil
}
// make push instruction function
func makePush(size uint64, pushByteSize int) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
codeLen := len(scope.Contract.Code)
startMin := codeLen
if int(*pc+1) < startMin {
startMin = int(*pc + 1)
}
endMin := codeLen
if startMin+pushByteSize < endMin {
endMin = startMin + pushByteSize
}
integer := new(uint256.Int)
scope.Stack.push(integer.SetBytes(common.RightPadBytes(
scope.Contract.Code[startMin:endMin], pushByteSize)))
*pc += size
return nil, nil
}
}
// make dup instruction function
func makeDup(size int64) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.dup(int(size))
return nil, nil
}
}
// make swap instruction function
func makeSwap(size int64) executionFunc {
// switch n + 1 otherwise n would be swapped with n
size++
return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) {
scope.Stack.swap(int(size))
return nil, nil
}
}