bsc/core/state_prefetcher.go
2024-08-14 15:02:20 +08:00

179 lines
6.2 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/params"
)
const prefetchThread = 3
const checkInterval = 10
// statePrefetcher is a basic Prefetcher, which blindly executes a block on top
// of an arbitrary state with the goal of prefetching potentially useful state
// data from disk before the main block processor start executing.
type statePrefetcher struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus.Engine // Consensus engine used for block rewards
}
// NewStatePrefetcher initialises a new statePrefetcher.
func NewStatePrefetcher(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *statePrefetcher {
return &statePrefetcher{
config: config,
bc: bc,
engine: engine,
}
}
// Prefetch processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb, but any changes are discarded. The
// only goal is to pre-cache transaction signatures and state trie nodes.
func (p *statePrefetcher) Prefetch(block *types.Block, statedb *state.StateDB, cfg *vm.Config, interruptCh <-chan struct{}) {
panic("prefetcher not support")
var (
header = block.Header()
signer = types.MakeSigner(p.config, header.Number, header.Time)
)
transactions := block.Transactions()
txChan := make(chan int, prefetchThread)
// No need to execute the first batch, since the main processor will do it.
for i := 0; i < prefetchThread; i++ {
go func() {
newStatedb := statedb.CopyDoPrefetch()
if !p.config.IsHertzfix(header.Number) {
newStatedb.EnableWriteOnSharedStorage()
}
gaspool := new(GasPool).AddGas(block.GasLimit())
blockContext := NewEVMBlockContext(header, p.bc, nil)
evm := vm.NewEVM(blockContext, vm.TxContext{}, statedb, p.config, *cfg)
// Iterate over and process the individual transactions
for {
select {
case txIndex := <-txChan:
tx := transactions[txIndex]
// Convert the transaction into an executable message and pre-cache its sender
msg, err := TransactionToMessage(tx, signer, header.BaseFee)
msg.SkipAccountChecks = true
if err != nil {
return // Also invalid block, bail out
}
newStatedb.SetTxContext(tx.Hash(), txIndex)
precacheTransaction(msg, p.config, gaspool, newStatedb, header, evm)
case <-interruptCh:
// If block precaching was interrupted, abort
return
}
}
}()
}
// it should be in a separate goroutine, to avoid blocking the critical path.
for i := 0; i < len(transactions); i++ {
select {
case txChan <- i:
case <-interruptCh:
return
}
}
}
// PrefetchMining processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb, but any changes are discarded. The
// only goal is to pre-cache transaction signatures and snapshot clean state. Only used for mining stage
func (p *statePrefetcher) PrefetchMining(txs TransactionsByPriceAndNonce, header *types.Header, gasLimit uint64, statedb *state.StateDB, cfg vm.Config, interruptCh <-chan struct{}, txCurr **types.Transaction) {
panic("prefetcher not support")
var signer = types.MakeSigner(p.config, header.Number, header.Time)
txCh := make(chan *types.Transaction, 2*prefetchThread)
for i := 0; i < prefetchThread; i++ {
go func(startCh <-chan *types.Transaction, stopCh <-chan struct{}) {
idx := 0
newStatedb := statedb.CopyDoPrefetch()
if !p.config.IsHertzfix(header.Number) {
newStatedb.EnableWriteOnSharedStorage()
}
gaspool := new(GasPool).AddGas(gasLimit)
blockContext := NewEVMBlockContext(header, p.bc, nil)
evm := vm.NewEVM(blockContext, vm.TxContext{}, statedb, p.config, cfg)
// Iterate over and process the individual transactions
for {
select {
case tx := <-startCh:
// Convert the transaction into an executable message and pre-cache its sender
msg, err := TransactionToMessage(tx, signer, header.BaseFee)
msg.SkipAccountChecks = true
if err != nil {
return // Also invalid block, bail out
}
idx++
newStatedb.SetTxContext(tx.Hash(), idx)
precacheTransaction(msg, p.config, gaspool, newStatedb, header, evm)
gaspool = new(GasPool).AddGas(gasLimit)
case <-stopCh:
return
}
}
}(txCh, interruptCh)
}
go func(txset TransactionsByPriceAndNonce) {
count := 0
for {
select {
case <-interruptCh:
return
default:
if count++; count%checkInterval == 0 {
txset.Forward(*txCurr)
}
tx := txset.PeekWithUnwrap()
if tx == nil {
return
}
select {
case <-interruptCh:
return
case txCh <- tx:
}
txset.Shift()
}
}
}(txs)
}
// precacheTransaction attempts to apply a transaction to the given state database
// and uses the input parameters for its environment. The goal is not to execute
// the transaction successfully, rather to warm up touched data slots.
func precacheTransaction(msg *Message, config *params.ChainConfig, gaspool *GasPool, statedb *state.StateDB, header *types.Header, evm *vm.EVM) error {
// Update the evm with the new transaction context.
evm.Reset(NewEVMTxContext(msg), statedb)
// Add addresses to access list if applicable
_, err := ApplyMessage(evm, msg, gaspool)
if err == nil {
statedb.Finalise(true)
}
return err
}