bsc/core/state/statedb_test.go
rjl493456442 9842301376
all: remove database commit callback, rework noderesolver (#26637)
This change ports some changes from the main PBSS PR:

  - get rid of callback function in `trie.Database.Commit` which is not required anymore
  - rework the `nodeResolver` in `trie.Iterator` to make it compatible with multiple state scheme
  - some other shallow changes in tests and typo-fixes
2023-02-08 06:14:34 -05:00

1001 lines
34 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package state
import (
"bytes"
"encoding/binary"
"fmt"
"math"
"math/big"
"math/rand"
"reflect"
"strings"
"sync"
"testing"
"testing/quick"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
)
// Tests that updating a state trie does not leak any database writes prior to
// actually committing the state.
func TestUpdateLeaks(t *testing.T) {
// Create an empty state database
db := rawdb.NewMemoryDatabase()
state, _ := New(common.Hash{}, NewDatabase(db), nil)
// Update it with some accounts
for i := byte(0); i < 255; i++ {
addr := common.BytesToAddress([]byte{i})
state.AddBalance(addr, big.NewInt(int64(11*i)))
state.SetNonce(addr, uint64(42*i))
if i%2 == 0 {
state.SetState(addr, common.BytesToHash([]byte{i, i, i}), common.BytesToHash([]byte{i, i, i, i}))
}
if i%3 == 0 {
state.SetCode(addr, []byte{i, i, i, i, i})
}
}
root := state.IntermediateRoot(false)
if err := state.Database().TrieDB().Commit(root, false); err != nil {
t.Errorf("can not commit trie %v to persistent database", root.Hex())
}
// Ensure that no data was leaked into the database
it := db.NewIterator(nil, nil)
for it.Next() {
t.Errorf("State leaked into database: %x -> %x", it.Key(), it.Value())
}
it.Release()
}
// Tests that no intermediate state of an object is stored into the database,
// only the one right before the commit.
func TestIntermediateLeaks(t *testing.T) {
// Create two state databases, one transitioning to the final state, the other final from the beginning
transDb := rawdb.NewMemoryDatabase()
finalDb := rawdb.NewMemoryDatabase()
transState, _ := New(common.Hash{}, NewDatabase(transDb), nil)
finalState, _ := New(common.Hash{}, NewDatabase(finalDb), nil)
modify := func(state *StateDB, addr common.Address, i, tweak byte) {
state.SetBalance(addr, big.NewInt(int64(11*i)+int64(tweak)))
state.SetNonce(addr, uint64(42*i+tweak))
if i%2 == 0 {
state.SetState(addr, common.Hash{i, i, i, 0}, common.Hash{})
state.SetState(addr, common.Hash{i, i, i, tweak}, common.Hash{i, i, i, i, tweak})
}
if i%3 == 0 {
state.SetCode(addr, []byte{i, i, i, i, i, tweak})
}
}
// Modify the transient state.
for i := byte(0); i < 255; i++ {
modify(transState, common.Address{i}, i, 0)
}
// Write modifications to trie.
transState.IntermediateRoot(false)
// Overwrite all the data with new values in the transient database.
for i := byte(0); i < 255; i++ {
modify(transState, common.Address{i}, i, 99)
modify(finalState, common.Address{i}, i, 99)
}
// Commit and cross check the databases.
transRoot, err := transState.Commit(false)
if err != nil {
t.Fatalf("failed to commit transition state: %v", err)
}
if err = transState.Database().TrieDB().Commit(transRoot, false); err != nil {
t.Errorf("can not commit trie %v to persistent database", transRoot.Hex())
}
finalRoot, err := finalState.Commit(false)
if err != nil {
t.Fatalf("failed to commit final state: %v", err)
}
if err = finalState.Database().TrieDB().Commit(finalRoot, false); err != nil {
t.Errorf("can not commit trie %v to persistent database", finalRoot.Hex())
}
it := finalDb.NewIterator(nil, nil)
for it.Next() {
key, fvalue := it.Key(), it.Value()
tvalue, err := transDb.Get(key)
if err != nil {
t.Errorf("entry missing from the transition database: %x -> %x", key, fvalue)
}
if !bytes.Equal(fvalue, tvalue) {
t.Errorf("value mismatch at key %x: %x in transition database, %x in final database", key, tvalue, fvalue)
}
}
it.Release()
it = transDb.NewIterator(nil, nil)
for it.Next() {
key, tvalue := it.Key(), it.Value()
fvalue, err := finalDb.Get(key)
if err != nil {
t.Errorf("extra entry in the transition database: %x -> %x", key, it.Value())
}
if !bytes.Equal(fvalue, tvalue) {
t.Errorf("value mismatch at key %x: %x in transition database, %x in final database", key, tvalue, fvalue)
}
}
}
// TestCopy tests that copying a StateDB object indeed makes the original and
// the copy independent of each other. This test is a regression test against
// https://github.com/ethereum/go-ethereum/pull/15549.
func TestCopy(t *testing.T) {
// Create a random state test to copy and modify "independently"
orig, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
for i := byte(0); i < 255; i++ {
obj := orig.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
obj.AddBalance(big.NewInt(int64(i)))
orig.updateStateObject(obj)
}
orig.Finalise(false)
// Copy the state
copy := orig.Copy()
// Copy the copy state
ccopy := copy.Copy()
// modify all in memory
for i := byte(0); i < 255; i++ {
origObj := orig.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
copyObj := copy.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
ccopyObj := ccopy.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
origObj.AddBalance(big.NewInt(2 * int64(i)))
copyObj.AddBalance(big.NewInt(3 * int64(i)))
ccopyObj.AddBalance(big.NewInt(4 * int64(i)))
orig.updateStateObject(origObj)
copy.updateStateObject(copyObj)
ccopy.updateStateObject(copyObj)
}
// Finalise the changes on all concurrently
finalise := func(wg *sync.WaitGroup, db *StateDB) {
defer wg.Done()
db.Finalise(true)
}
var wg sync.WaitGroup
wg.Add(3)
go finalise(&wg, orig)
go finalise(&wg, copy)
go finalise(&wg, ccopy)
wg.Wait()
// Verify that the three states have been updated independently
for i := byte(0); i < 255; i++ {
origObj := orig.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
copyObj := copy.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
ccopyObj := ccopy.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
if want := big.NewInt(3 * int64(i)); origObj.Balance().Cmp(want) != 0 {
t.Errorf("orig obj %d: balance mismatch: have %v, want %v", i, origObj.Balance(), want)
}
if want := big.NewInt(4 * int64(i)); copyObj.Balance().Cmp(want) != 0 {
t.Errorf("copy obj %d: balance mismatch: have %v, want %v", i, copyObj.Balance(), want)
}
if want := big.NewInt(5 * int64(i)); ccopyObj.Balance().Cmp(want) != 0 {
t.Errorf("copy obj %d: balance mismatch: have %v, want %v", i, ccopyObj.Balance(), want)
}
}
}
func TestSnapshotRandom(t *testing.T) {
config := &quick.Config{MaxCount: 1000}
err := quick.Check((*snapshotTest).run, config)
if cerr, ok := err.(*quick.CheckError); ok {
test := cerr.In[0].(*snapshotTest)
t.Errorf("%v:\n%s", test.err, test)
} else if err != nil {
t.Error(err)
}
}
// A snapshotTest checks that reverting StateDB snapshots properly undoes all changes
// captured by the snapshot. Instances of this test with pseudorandom content are created
// by Generate.
//
// The test works as follows:
//
// A new state is created and all actions are applied to it. Several snapshots are taken
// in between actions. The test then reverts each snapshot. For each snapshot the actions
// leading up to it are replayed on a fresh, empty state. The behaviour of all public
// accessor methods on the reverted state must match the return value of the equivalent
// methods on the replayed state.
type snapshotTest struct {
addrs []common.Address // all account addresses
actions []testAction // modifications to the state
snapshots []int // actions indexes at which snapshot is taken
err error // failure details are reported through this field
}
type testAction struct {
name string
fn func(testAction, *StateDB)
args []int64
noAddr bool
}
// newTestAction creates a random action that changes state.
func newTestAction(addr common.Address, r *rand.Rand) testAction {
actions := []testAction{
{
name: "SetBalance",
fn: func(a testAction, s *StateDB) {
s.SetBalance(addr, big.NewInt(a.args[0]))
},
args: make([]int64, 1),
},
{
name: "AddBalance",
fn: func(a testAction, s *StateDB) {
s.AddBalance(addr, big.NewInt(a.args[0]))
},
args: make([]int64, 1),
},
{
name: "SetNonce",
fn: func(a testAction, s *StateDB) {
s.SetNonce(addr, uint64(a.args[0]))
},
args: make([]int64, 1),
},
{
name: "SetState",
fn: func(a testAction, s *StateDB) {
var key, val common.Hash
binary.BigEndian.PutUint16(key[:], uint16(a.args[0]))
binary.BigEndian.PutUint16(val[:], uint16(a.args[1]))
s.SetState(addr, key, val)
},
args: make([]int64, 2),
},
{
name: "SetCode",
fn: func(a testAction, s *StateDB) {
code := make([]byte, 16)
binary.BigEndian.PutUint64(code, uint64(a.args[0]))
binary.BigEndian.PutUint64(code[8:], uint64(a.args[1]))
s.SetCode(addr, code)
},
args: make([]int64, 2),
},
{
name: "CreateAccount",
fn: func(a testAction, s *StateDB) {
s.CreateAccount(addr)
},
},
{
name: "Suicide",
fn: func(a testAction, s *StateDB) {
s.Suicide(addr)
},
},
{
name: "AddRefund",
fn: func(a testAction, s *StateDB) {
s.AddRefund(uint64(a.args[0]))
},
args: make([]int64, 1),
noAddr: true,
},
{
name: "AddLog",
fn: func(a testAction, s *StateDB) {
data := make([]byte, 2)
binary.BigEndian.PutUint16(data, uint16(a.args[0]))
s.AddLog(&types.Log{Address: addr, Data: data})
},
args: make([]int64, 1),
},
{
name: "AddPreimage",
fn: func(a testAction, s *StateDB) {
preimage := []byte{1}
hash := common.BytesToHash(preimage)
s.AddPreimage(hash, preimage)
},
args: make([]int64, 1),
},
{
name: "AddAddressToAccessList",
fn: func(a testAction, s *StateDB) {
s.AddAddressToAccessList(addr)
},
},
{
name: "AddSlotToAccessList",
fn: func(a testAction, s *StateDB) {
s.AddSlotToAccessList(addr,
common.Hash{byte(a.args[0])})
},
args: make([]int64, 1),
},
{
name: "SetTransientState",
fn: func(a testAction, s *StateDB) {
var key, val common.Hash
binary.BigEndian.PutUint16(key[:], uint16(a.args[0]))
binary.BigEndian.PutUint16(val[:], uint16(a.args[1]))
s.SetTransientState(addr, key, val)
},
args: make([]int64, 2),
},
}
action := actions[r.Intn(len(actions))]
var nameargs []string
if !action.noAddr {
nameargs = append(nameargs, addr.Hex())
}
for i := range action.args {
action.args[i] = rand.Int63n(100)
nameargs = append(nameargs, fmt.Sprint(action.args[i]))
}
action.name += strings.Join(nameargs, ", ")
return action
}
// Generate returns a new snapshot test of the given size. All randomness is
// derived from r.
func (*snapshotTest) Generate(r *rand.Rand, size int) reflect.Value {
// Generate random actions.
addrs := make([]common.Address, 50)
for i := range addrs {
addrs[i][0] = byte(i)
}
actions := make([]testAction, size)
for i := range actions {
addr := addrs[r.Intn(len(addrs))]
actions[i] = newTestAction(addr, r)
}
// Generate snapshot indexes.
nsnapshots := int(math.Sqrt(float64(size)))
if size > 0 && nsnapshots == 0 {
nsnapshots = 1
}
snapshots := make([]int, nsnapshots)
snaplen := len(actions) / nsnapshots
for i := range snapshots {
// Try to place the snapshots some number of actions apart from each other.
snapshots[i] = (i * snaplen) + r.Intn(snaplen)
}
return reflect.ValueOf(&snapshotTest{addrs, actions, snapshots, nil})
}
func (test *snapshotTest) String() string {
out := new(bytes.Buffer)
sindex := 0
for i, action := range test.actions {
if len(test.snapshots) > sindex && i == test.snapshots[sindex] {
fmt.Fprintf(out, "---- snapshot %d ----\n", sindex)
sindex++
}
fmt.Fprintf(out, "%4d: %s\n", i, action.name)
}
return out.String()
}
func (test *snapshotTest) run() bool {
// Run all actions and create snapshots.
var (
state, _ = New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
snapshotRevs = make([]int, len(test.snapshots))
sindex = 0
)
for i, action := range test.actions {
if len(test.snapshots) > sindex && i == test.snapshots[sindex] {
snapshotRevs[sindex] = state.Snapshot()
sindex++
}
action.fn(action, state)
}
// Revert all snapshots in reverse order. Each revert must yield a state
// that is equivalent to fresh state with all actions up the snapshot applied.
for sindex--; sindex >= 0; sindex-- {
checkstate, _ := New(common.Hash{}, state.Database(), nil)
for _, action := range test.actions[:test.snapshots[sindex]] {
action.fn(action, checkstate)
}
state.RevertToSnapshot(snapshotRevs[sindex])
if err := test.checkEqual(state, checkstate); err != nil {
test.err = fmt.Errorf("state mismatch after revert to snapshot %d\n%v", sindex, err)
return false
}
}
return true
}
// checkEqual checks that methods of state and checkstate return the same values.
func (test *snapshotTest) checkEqual(state, checkstate *StateDB) error {
for _, addr := range test.addrs {
var err error
checkeq := func(op string, a, b interface{}) bool {
if err == nil && !reflect.DeepEqual(a, b) {
err = fmt.Errorf("got %s(%s) == %v, want %v", op, addr.Hex(), a, b)
return false
}
return true
}
// Check basic accessor methods.
checkeq("Exist", state.Exist(addr), checkstate.Exist(addr))
checkeq("HasSuicided", state.HasSuicided(addr), checkstate.HasSuicided(addr))
checkeq("GetBalance", state.GetBalance(addr), checkstate.GetBalance(addr))
checkeq("GetNonce", state.GetNonce(addr), checkstate.GetNonce(addr))
checkeq("GetCode", state.GetCode(addr), checkstate.GetCode(addr))
checkeq("GetCodeHash", state.GetCodeHash(addr), checkstate.GetCodeHash(addr))
checkeq("GetCodeSize", state.GetCodeSize(addr), checkstate.GetCodeSize(addr))
// Check storage.
if obj := state.getStateObject(addr); obj != nil {
state.ForEachStorage(addr, func(key, value common.Hash) bool {
return checkeq("GetState("+key.Hex()+")", checkstate.GetState(addr, key), value)
})
checkstate.ForEachStorage(addr, func(key, value common.Hash) bool {
return checkeq("GetState("+key.Hex()+")", checkstate.GetState(addr, key), value)
})
}
if err != nil {
return err
}
}
if state.GetRefund() != checkstate.GetRefund() {
return fmt.Errorf("got GetRefund() == %d, want GetRefund() == %d",
state.GetRefund(), checkstate.GetRefund())
}
if !reflect.DeepEqual(state.GetLogs(common.Hash{}, 0, common.Hash{}), checkstate.GetLogs(common.Hash{}, 0, common.Hash{})) {
return fmt.Errorf("got GetLogs(common.Hash{}) == %v, want GetLogs(common.Hash{}) == %v",
state.GetLogs(common.Hash{}, 0, common.Hash{}), checkstate.GetLogs(common.Hash{}, 0, common.Hash{}))
}
return nil
}
func TestTouchDelete(t *testing.T) {
s := newStateTest()
s.state.GetOrNewStateObject(common.Address{})
root, _ := s.state.Commit(false)
s.state, _ = New(root, s.state.db, s.state.snaps)
snapshot := s.state.Snapshot()
s.state.AddBalance(common.Address{}, new(big.Int))
if len(s.state.journal.dirties) != 1 {
t.Fatal("expected one dirty state object")
}
s.state.RevertToSnapshot(snapshot)
if len(s.state.journal.dirties) != 0 {
t.Fatal("expected no dirty state object")
}
}
// TestCopyOfCopy tests that modified objects are carried over to the copy, and the copy of the copy.
// See https://github.com/ethereum/go-ethereum/pull/15225#issuecomment-380191512
func TestCopyOfCopy(t *testing.T) {
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
addr := common.HexToAddress("aaaa")
state.SetBalance(addr, big.NewInt(42))
if got := state.Copy().GetBalance(addr).Uint64(); got != 42 {
t.Fatalf("1st copy fail, expected 42, got %v", got)
}
if got := state.Copy().Copy().GetBalance(addr).Uint64(); got != 42 {
t.Fatalf("2nd copy fail, expected 42, got %v", got)
}
}
// Tests a regression where committing a copy lost some internal meta information,
// leading to corrupted subsequent copies.
//
// See https://github.com/ethereum/go-ethereum/issues/20106.
func TestCopyCommitCopy(t *testing.T) {
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
// Create an account and check if the retrieved balance is correct
addr := common.HexToAddress("0xaffeaffeaffeaffeaffeaffeaffeaffeaffeaffe")
skey := common.HexToHash("aaa")
sval := common.HexToHash("bbb")
state.SetBalance(addr, big.NewInt(42)) // Change the account trie
state.SetCode(addr, []byte("hello")) // Change an external metadata
state.SetState(addr, skey, sval) // Change the storage trie
if balance := state.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("initial balance mismatch: have %v, want %v", balance, 42)
}
if code := state.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("initial code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := state.GetState(addr, skey); val != sval {
t.Fatalf("initial non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := state.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("initial committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the non-committed state database and check pre/post commit balance
copyOne := state.Copy()
if balance := copyOne.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("first copy pre-commit balance mismatch: have %v, want %v", balance, 42)
}
if code := copyOne.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("first copy pre-commit code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyOne.GetState(addr, skey); val != sval {
t.Fatalf("first copy pre-commit non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyOne.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("first copy pre-commit committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
copyOne.Commit(false)
if balance := copyOne.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("first copy post-commit balance mismatch: have %v, want %v", balance, 42)
}
if code := copyOne.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("first copy post-commit code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyOne.GetState(addr, skey); val != sval {
t.Fatalf("first copy post-commit non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyOne.GetCommittedState(addr, skey); val != sval {
t.Fatalf("first copy post-commit committed storage slot mismatch: have %x, want %x", val, sval)
}
// Copy the copy and check the balance once more
copyTwo := copyOne.Copy()
if balance := copyTwo.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("second copy balance mismatch: have %v, want %v", balance, 42)
}
if code := copyTwo.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("second copy code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyTwo.GetState(addr, skey); val != sval {
t.Fatalf("second copy non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyTwo.GetCommittedState(addr, skey); val != sval {
t.Fatalf("second copy post-commit committed storage slot mismatch: have %x, want %x", val, sval)
}
}
// Tests a regression where committing a copy lost some internal meta information,
// leading to corrupted subsequent copies.
//
// See https://github.com/ethereum/go-ethereum/issues/20106.
func TestCopyCopyCommitCopy(t *testing.T) {
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
// Create an account and check if the retrieved balance is correct
addr := common.HexToAddress("0xaffeaffeaffeaffeaffeaffeaffeaffeaffeaffe")
skey := common.HexToHash("aaa")
sval := common.HexToHash("bbb")
state.SetBalance(addr, big.NewInt(42)) // Change the account trie
state.SetCode(addr, []byte("hello")) // Change an external metadata
state.SetState(addr, skey, sval) // Change the storage trie
if balance := state.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("initial balance mismatch: have %v, want %v", balance, 42)
}
if code := state.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("initial code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := state.GetState(addr, skey); val != sval {
t.Fatalf("initial non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := state.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("initial committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the non-committed state database and check pre/post commit balance
copyOne := state.Copy()
if balance := copyOne.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("first copy balance mismatch: have %v, want %v", balance, 42)
}
if code := copyOne.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("first copy code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyOne.GetState(addr, skey); val != sval {
t.Fatalf("first copy non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyOne.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("first copy committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the copy and check the balance once more
copyTwo := copyOne.Copy()
if balance := copyTwo.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("second copy pre-commit balance mismatch: have %v, want %v", balance, 42)
}
if code := copyTwo.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("second copy pre-commit code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyTwo.GetState(addr, skey); val != sval {
t.Fatalf("second copy pre-commit non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyTwo.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("second copy pre-commit committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
copyTwo.Commit(false)
if balance := copyTwo.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("second copy post-commit balance mismatch: have %v, want %v", balance, 42)
}
if code := copyTwo.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("second copy post-commit code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyTwo.GetState(addr, skey); val != sval {
t.Fatalf("second copy post-commit non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyTwo.GetCommittedState(addr, skey); val != sval {
t.Fatalf("second copy post-commit committed storage slot mismatch: have %x, want %x", val, sval)
}
// Copy the copy-copy and check the balance once more
copyThree := copyTwo.Copy()
if balance := copyThree.GetBalance(addr); balance.Cmp(big.NewInt(42)) != 0 {
t.Fatalf("third copy balance mismatch: have %v, want %v", balance, 42)
}
if code := copyThree.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("third copy code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyThree.GetState(addr, skey); val != sval {
t.Fatalf("third copy non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyThree.GetCommittedState(addr, skey); val != sval {
t.Fatalf("third copy committed storage slot mismatch: have %x, want %x", val, sval)
}
}
// TestDeleteCreateRevert tests a weird state transition corner case that we hit
// while changing the internals of StateDB. The workflow is that a contract is
// self-destructed, then in a follow-up transaction (but same block) it's created
// again and the transaction reverted.
//
// The original StateDB implementation flushed dirty objects to the tries after
// each transaction, so this works ok. The rework accumulated writes in memory
// first, but the journal wiped the entire state object on create-revert.
func TestDeleteCreateRevert(t *testing.T) {
// Create an initial state with a single contract
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
addr := common.BytesToAddress([]byte("so"))
state.SetBalance(addr, big.NewInt(1))
root, _ := state.Commit(false)
state, _ = New(root, state.db, state.snaps)
// Simulate self-destructing in one transaction, then create-reverting in another
state.Suicide(addr)
state.Finalise(true)
id := state.Snapshot()
state.SetBalance(addr, big.NewInt(2))
state.RevertToSnapshot(id)
// Commit the entire state and make sure we don't crash and have the correct state
root, _ = state.Commit(true)
state, _ = New(root, state.db, state.snaps)
if state.getStateObject(addr) != nil {
t.Fatalf("self-destructed contract came alive")
}
}
// TestMissingTrieNodes tests that if the StateDB fails to load parts of the trie,
// the Commit operation fails with an error
// If we are missing trie nodes, we should not continue writing to the trie
func TestMissingTrieNodes(t *testing.T) {
// Create an initial state with a few accounts
memDb := rawdb.NewMemoryDatabase()
db := NewDatabase(memDb)
var root common.Hash
state, _ := New(common.Hash{}, db, nil)
addr := common.BytesToAddress([]byte("so"))
{
state.SetBalance(addr, big.NewInt(1))
state.SetCode(addr, []byte{1, 2, 3})
a2 := common.BytesToAddress([]byte("another"))
state.SetBalance(a2, big.NewInt(100))
state.SetCode(a2, []byte{1, 2, 4})
root, _ = state.Commit(false)
t.Logf("root: %x", root)
// force-flush
state.Database().TrieDB().Cap(0)
}
// Create a new state on the old root
state, _ = New(root, db, nil)
// Now we clear out the memdb
it := memDb.NewIterator(nil, nil)
for it.Next() {
k := it.Key()
// Leave the root intact
if !bytes.Equal(k, root[:]) {
t.Logf("key: %x", k)
memDb.Delete(k)
}
}
balance := state.GetBalance(addr)
// The removed elem should lead to it returning zero balance
if exp, got := uint64(0), balance.Uint64(); got != exp {
t.Errorf("expected %d, got %d", exp, got)
}
// Modify the state
state.SetBalance(addr, big.NewInt(2))
root, err := state.Commit(false)
if err == nil {
t.Fatalf("expected error, got root :%x", root)
}
}
func TestStateDBAccessList(t *testing.T) {
// Some helpers
addr := func(a string) common.Address {
return common.HexToAddress(a)
}
slot := func(a string) common.Hash {
return common.HexToHash(a)
}
memDb := rawdb.NewMemoryDatabase()
db := NewDatabase(memDb)
state, _ := New(common.Hash{}, db, nil)
state.accessList = newAccessList()
verifyAddrs := func(astrings ...string) {
t.Helper()
// convert to common.Address form
var addresses []common.Address
var addressMap = make(map[common.Address]struct{})
for _, astring := range astrings {
address := addr(astring)
addresses = append(addresses, address)
addressMap[address] = struct{}{}
}
// Check that the given addresses are in the access list
for _, address := range addresses {
if !state.AddressInAccessList(address) {
t.Fatalf("expected %x to be in access list", address)
}
}
// Check that only the expected addresses are present in the access list
for address := range state.accessList.addresses {
if _, exist := addressMap[address]; !exist {
t.Fatalf("extra address %x in access list", address)
}
}
}
verifySlots := func(addrString string, slotStrings ...string) {
if !state.AddressInAccessList(addr(addrString)) {
t.Fatalf("scope missing address/slots %v", addrString)
}
var address = addr(addrString)
// convert to common.Hash form
var slots []common.Hash
var slotMap = make(map[common.Hash]struct{})
for _, slotString := range slotStrings {
s := slot(slotString)
slots = append(slots, s)
slotMap[s] = struct{}{}
}
// Check that the expected items are in the access list
for i, s := range slots {
if _, slotPresent := state.SlotInAccessList(address, s); !slotPresent {
t.Fatalf("input %d: scope missing slot %v (address %v)", i, s, addrString)
}
}
// Check that no extra elements are in the access list
index := state.accessList.addresses[address]
if index >= 0 {
stateSlots := state.accessList.slots[index]
for s := range stateSlots {
if _, slotPresent := slotMap[s]; !slotPresent {
t.Fatalf("scope has extra slot %v (address %v)", s, addrString)
}
}
}
}
state.AddAddressToAccessList(addr("aa")) // 1
state.AddSlotToAccessList(addr("bb"), slot("01")) // 2,3
state.AddSlotToAccessList(addr("bb"), slot("02")) // 4
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02")
// Make a copy
stateCopy1 := state.Copy()
if exp, got := 4, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
// same again, should cause no journal entries
state.AddSlotToAccessList(addr("bb"), slot("01"))
state.AddSlotToAccessList(addr("bb"), slot("02"))
state.AddAddressToAccessList(addr("aa"))
if exp, got := 4, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
// some new ones
state.AddSlotToAccessList(addr("bb"), slot("03")) // 5
state.AddSlotToAccessList(addr("aa"), slot("01")) // 6
state.AddSlotToAccessList(addr("cc"), slot("01")) // 7,8
state.AddAddressToAccessList(addr("cc"))
if exp, got := 8, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
verifyAddrs("aa", "bb", "cc")
verifySlots("aa", "01")
verifySlots("bb", "01", "02", "03")
verifySlots("cc", "01")
// now start rolling back changes
state.journal.revert(state, 7)
if _, ok := state.SlotInAccessList(addr("cc"), slot("01")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb", "cc")
verifySlots("aa", "01")
verifySlots("bb", "01", "02", "03")
state.journal.revert(state, 6)
if state.AddressInAccessList(addr("cc")) {
t.Fatalf("addr present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("aa", "01")
verifySlots("bb", "01", "02", "03")
state.journal.revert(state, 5)
if _, ok := state.SlotInAccessList(addr("aa"), slot("01")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02", "03")
state.journal.revert(state, 4)
if _, ok := state.SlotInAccessList(addr("bb"), slot("03")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02")
state.journal.revert(state, 3)
if _, ok := state.SlotInAccessList(addr("bb"), slot("02")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("bb", "01")
state.journal.revert(state, 2)
if _, ok := state.SlotInAccessList(addr("bb"), slot("01")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
state.journal.revert(state, 1)
if state.AddressInAccessList(addr("bb")) {
t.Fatalf("addr present, expected missing")
}
verifyAddrs("aa")
state.journal.revert(state, 0)
if state.AddressInAccessList(addr("aa")) {
t.Fatalf("addr present, expected missing")
}
if got, exp := len(state.accessList.addresses), 0; got != exp {
t.Fatalf("expected empty, got %d", got)
}
if got, exp := len(state.accessList.slots), 0; got != exp {
t.Fatalf("expected empty, got %d", got)
}
// Check the copy
// Make a copy
state = stateCopy1
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02")
if got, exp := len(state.accessList.addresses), 2; got != exp {
t.Fatalf("expected empty, got %d", got)
}
if got, exp := len(state.accessList.slots), 1; got != exp {
t.Fatalf("expected empty, got %d", got)
}
}
// Tests that account and storage tries are flushed in the correct order and that
// no data loss occurs.
func TestFlushOrderDataLoss(t *testing.T) {
// Create a state trie with many accounts and slots
var (
memdb = rawdb.NewMemoryDatabase()
statedb = NewDatabase(memdb)
state, _ = New(common.Hash{}, statedb, nil)
)
for a := byte(0); a < 10; a++ {
state.CreateAccount(common.Address{a})
for s := byte(0); s < 10; s++ {
state.SetState(common.Address{a}, common.Hash{a, s}, common.Hash{a, s})
}
}
root, err := state.Commit(false)
if err != nil {
t.Fatalf("failed to commit state trie: %v", err)
}
statedb.TrieDB().Reference(root, common.Hash{})
if err := statedb.TrieDB().Cap(1024); err != nil {
t.Fatalf("failed to cap trie dirty cache: %v", err)
}
if err := statedb.TrieDB().Commit(root, false); err != nil {
t.Fatalf("failed to commit state trie: %v", err)
}
// Reopen the state trie from flushed disk and verify it
state, err = New(root, NewDatabase(memdb), nil)
if err != nil {
t.Fatalf("failed to reopen state trie: %v", err)
}
for a := byte(0); a < 10; a++ {
for s := byte(0); s < 10; s++ {
if have := state.GetState(common.Address{a}, common.Hash{a, s}); have != (common.Hash{a, s}) {
t.Errorf("account %d: slot %d: state mismatch: have %x, want %x", a, s, have, common.Hash{a, s})
}
}
}
}
func TestStateDBTransientStorage(t *testing.T) {
memDb := rawdb.NewMemoryDatabase()
db := NewDatabase(memDb)
state, _ := New(common.Hash{}, db, nil)
key := common.Hash{0x01}
value := common.Hash{0x02}
addr := common.Address{}
state.SetTransientState(addr, key, value)
if exp, got := 1, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
// the retrieved value should equal what was set
if got := state.GetTransientState(addr, key); got != value {
t.Fatalf("transient storage mismatch: have %x, want %x", got, value)
}
// revert the transient state being set and then check that the
// value is now the empty hash
state.journal.revert(state, 0)
if got, exp := state.GetTransientState(addr, key), (common.Hash{}); exp != got {
t.Fatalf("transient storage mismatch: have %x, want %x", got, exp)
}
// set transient state and then copy the statedb and ensure that
// the transient state is copied
state.SetTransientState(addr, key, value)
cpy := state.Copy()
if got := cpy.GetTransientState(addr, key); got != value {
t.Fatalf("transient storage mismatch: have %x, want %x", got, value)
}
}