bsc/swarm/network/kademlia/kademlia_test.go
holisticode 32516c768e cmd/swarm: add config file (#15548)
This commit adds a TOML configuration option to swarm. It reuses
the TOML configuration structure used in geth with swarm
customized items.

The commit:

* Adds a "dumpconfig" command to the swarm executable which
  allows printing the (default) configuration to stdout, which
  then can be redirected to a file in order to customize it.
* Adds a "--config <file>" option to the swarm executable which will
  allow to load a configuration file in TOML format from the
  specified location in order to initialize the Swarm node The
  override priorities are like follows: environment variables
  override command line arguments override config file override
  default config.
2017-12-11 22:56:06 +01:00

393 lines
9.2 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package kademlia
import (
"fmt"
"math"
"math/rand"
"os"
"path/filepath"
"reflect"
"testing"
"testing/quick"
"time"
)
var (
quickrand = rand.New(rand.NewSource(time.Now().Unix()))
quickcfgFindClosest = &quick.Config{MaxCount: 50, Rand: quickrand}
quickcfgBootStrap = &quick.Config{MaxCount: 100, Rand: quickrand}
)
type testNode struct {
addr Address
}
func (n *testNode) String() string {
return fmt.Sprintf("%x", n.addr[:])
}
func (n *testNode) Addr() Address {
return n.addr
}
func (n *testNode) Drop() {
}
func (n *testNode) Url() string {
return ""
}
func (n *testNode) LastActive() time.Time {
return time.Now()
}
func TestOn(t *testing.T) {
addr, ok1 := gen(Address{}, quickrand).(Address)
other, ok2 := gen(Address{}, quickrand).(Address)
if !ok1 || !ok2 {
t.Errorf("oops")
}
kad := New(addr, NewDefaultKadParams())
err := kad.On(&testNode{addr: other}, nil)
_ = err
}
func TestBootstrap(t *testing.T) {
test := func(test *bootstrapTest) bool {
// for any node kad.le, Target and N
params := NewDefaultKadParams()
params.MaxProx = test.MaxProx
params.BucketSize = test.BucketSize
params.ProxBinSize = test.BucketSize
kad := New(test.Self, params)
var err error
for p := 0; p < 9; p++ {
var nrs []*NodeRecord
n := math.Pow(float64(2), float64(7-p))
for i := 0; i < int(n); i++ {
addr := RandomAddressAt(test.Self, p)
nrs = append(nrs, &NodeRecord{
Addr: addr,
})
}
kad.Add(nrs)
}
node := &testNode{test.Self}
n := 0
for n < 100 {
err = kad.On(node, nil)
if err != nil {
t.Fatalf("backend not accepting node: %v", err)
}
record, need, _ := kad.Suggest()
if !need {
break
}
n++
if record == nil {
continue
}
node = &testNode{record.Addr}
}
exp := test.BucketSize * (test.MaxProx + 1)
if kad.Count() != exp {
t.Errorf("incorrect number of peers, expected %d, got %d\n%v", exp, kad.Count(), kad)
return false
}
return true
}
if err := quick.Check(test, quickcfgBootStrap); err != nil {
t.Error(err)
}
}
func TestFindClosest(t *testing.T) {
test := func(test *FindClosestTest) bool {
// for any node kad.le, Target and N
params := NewDefaultKadParams()
params.MaxProx = 7
kad := New(test.Self, params)
var err error
for _, node := range test.All {
err = kad.On(node, nil)
if err != nil && err.Error() != "bucket full" {
t.Fatalf("backend not accepting node: %v", err)
}
}
if len(test.All) == 0 || test.N == 0 {
return true
}
nodes := kad.FindClosest(test.Target, test.N)
// check that the number of results is min(N, kad.len)
wantN := test.N
if tlen := kad.Count(); tlen < test.N {
wantN = tlen
}
if len(nodes) != wantN {
t.Errorf("wrong number of nodes: got %d, want %d", len(nodes), wantN)
return false
}
if hasDuplicates(nodes) {
t.Errorf("result contains duplicates")
return false
}
if !sortedByDistanceTo(test.Target, nodes) {
t.Errorf("result is not sorted by distance to target")
return false
}
// check that the result nodes have minimum distance to target.
farthestResult := nodes[len(nodes)-1].Addr()
for i, b := range kad.buckets {
for j, n := range b {
if contains(nodes, n.Addr()) {
continue // don't run the check below for nodes in result
}
if test.Target.ProxCmp(n.Addr(), farthestResult) < 0 {
_ = i * j
t.Errorf("kad.le contains node that is closer to target but it's not in result")
return false
}
}
}
return true
}
if err := quick.Check(test, quickcfgFindClosest); err != nil {
t.Error(err)
}
}
type proxTest struct {
add bool
index int
addr Address
}
var (
addresses []Address
)
func TestProxAdjust(t *testing.T) {
r := rand.New(rand.NewSource(time.Now().UnixNano()))
self := gen(Address{}, r).(Address)
params := NewDefaultKadParams()
params.MaxProx = 7
kad := New(self, params)
var err error
for i := 0; i < 100; i++ {
a := gen(Address{}, r).(Address)
addresses = append(addresses, a)
err = kad.On(&testNode{addr: a}, nil)
if err != nil && err.Error() != "bucket full" {
t.Fatalf("backend not accepting node: %v", err)
}
if !kad.proxCheck(t) {
return
}
}
test := func(test *proxTest) bool {
node := &testNode{test.addr}
if test.add {
kad.On(node, nil)
} else {
kad.Off(node, nil)
}
return kad.proxCheck(t)
}
if err := quick.Check(test, quickcfgFindClosest); err != nil {
t.Error(err)
}
}
func TestSaveLoad(t *testing.T) {
r := rand.New(rand.NewSource(time.Now().UnixNano()))
addresses := gen([]Address{}, r).([]Address)
self := RandomAddress()
params := NewDefaultKadParams()
params.MaxProx = 7
kad := New(self, params)
var err error
for _, a := range addresses {
err = kad.On(&testNode{addr: a}, nil)
if err != nil && err.Error() != "bucket full" {
t.Fatalf("backend not accepting node: %v", err)
}
}
nodes := kad.FindClosest(self, 100)
path := filepath.Join(os.TempDir(), "bzz-kad-test-save-load.peers")
err = kad.Save(path, nil)
if err != nil && err.Error() != "bucket full" {
t.Fatalf("unepected error saving kaddb: %v", err)
}
kad = New(self, params)
err = kad.Load(path, nil)
if err != nil && err.Error() != "bucket full" {
t.Fatalf("unepected error loading kaddb: %v", err)
}
for _, b := range kad.db.Nodes {
for _, node := range b {
err = kad.On(&testNode{node.Addr}, nil)
if err != nil && err.Error() != "bucket full" {
t.Fatalf("backend not accepting node: %v", err)
}
}
}
loadednodes := kad.FindClosest(self, 100)
for i, node := range loadednodes {
if nodes[i].Addr() != node.Addr() {
t.Errorf("node mismatch at %d/%d: %v != %v", i, len(nodes), nodes[i].Addr(), node.Addr())
}
}
}
func (self *Kademlia) proxCheck(t *testing.T) bool {
var sum int
for i, b := range self.buckets {
l := len(b)
// if we are in the high prox multibucket
if i >= self.proxLimit {
sum += l
} else if l == 0 {
t.Errorf("bucket %d empty, yet proxLimit is %d\n%v", len(b), self.proxLimit, self)
return false
}
}
// check if merged high prox bucket does not exceed size
if sum > 0 {
if sum != self.proxSize {
t.Errorf("proxSize incorrect, expected %v, got %v", sum, self.proxSize)
return false
}
last := len(self.buckets[self.proxLimit])
if last > 0 && sum >= self.ProxBinSize+last {
t.Errorf("proxLimit %v incorrect, redundant non-empty bucket %d added to proxBin with %v (target %v)\n%v", self.proxLimit, last, sum-last, self.ProxBinSize, self)
return false
}
if self.proxLimit > 0 && sum < self.ProxBinSize {
t.Errorf("proxLimit %v incorrect. proxSize %v is less than target %v, yet there is more peers", self.proxLimit, sum, self.ProxBinSize)
return false
}
}
return true
}
type bootstrapTest struct {
MaxProx int
BucketSize int
Self Address
}
func (*bootstrapTest) Generate(rand *rand.Rand, size int) reflect.Value {
t := &bootstrapTest{
Self: gen(Address{}, rand).(Address),
MaxProx: 5 + rand.Intn(2),
BucketSize: rand.Intn(3) + 1,
}
return reflect.ValueOf(t)
}
type FindClosestTest struct {
Self Address
Target Address
All []Node
N int
}
func (c FindClosestTest) String() string {
return fmt.Sprintf("A: %064x\nT: %064x\n(%d)\n", c.Self[:], c.Target[:], c.N)
}
func (*FindClosestTest) Generate(rand *rand.Rand, size int) reflect.Value {
t := &FindClosestTest{
Self: gen(Address{}, rand).(Address),
Target: gen(Address{}, rand).(Address),
N: rand.Intn(bucketSize),
}
for _, a := range gen([]Address{}, rand).([]Address) {
t.All = append(t.All, &testNode{addr: a})
}
return reflect.ValueOf(t)
}
func (*proxTest) Generate(rand *rand.Rand, size int) reflect.Value {
var add bool
if rand.Intn(1) == 0 {
add = true
}
var t *proxTest
if add {
t = &proxTest{
addr: gen(Address{}, rand).(Address),
add: add,
}
} else {
t = &proxTest{
index: rand.Intn(len(addresses)),
add: add,
}
}
return reflect.ValueOf(t)
}
func hasDuplicates(slice []Node) bool {
seen := make(map[Address]bool)
for _, node := range slice {
if seen[node.Addr()] {
return true
}
seen[node.Addr()] = true
}
return false
}
func contains(nodes []Node, addr Address) bool {
for _, n := range nodes {
if n.Addr() == addr {
return true
}
}
return false
}
// gen wraps quick.Value so it's easier to use.
// it generates a random value of the given value's type.
func gen(typ interface{}, rand *rand.Rand) interface{} {
v, ok := quick.Value(reflect.TypeOf(typ), rand)
if !ok {
panic(fmt.Sprintf("couldn't generate random value of type %T", typ))
}
return v.Interface()
}