bsc/metrics/timer.go
Martin Holst Swende 8b6cf128af
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below. 

### Split up interfaces, write vs read

The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_. 

Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part: 

```golang
type MeterSnapshot interface {
	Count() int64
	Rate1() float64
	Rate5() float64
	Rate15() float64
	RateMean() float64
}

// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
	Mark(int64)
	Snapshot() MeterSnapshot
	Stop()
}
```

### A note about concurrency

This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it. 

- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe. 
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe. 

TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe. 

For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots. 

Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.

Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it: 
```golang
		ms := metric.Snapshot()
                ...
		fields := map[string]interface{}{
			"count":    ms.Count(),
			"max":      ms.Max(),
			"mean":     ms.Mean(),
			"min":      ms.Min(),
			"stddev":   ms.StdDev(),
			"variance": ms.Variance(),
```

TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).

### Sample changes

I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once. 

The same thing has been done for runtimehistogram. 

### ResettingTimer API

Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`. 

1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`. 
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`. 

This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type. 

The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead. 

### Unexport types

A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 13:13:47 -04:00

185 lines
5.4 KiB
Go

package metrics
import (
"sync"
"time"
)
type TimerSnapshot interface {
HistogramSnapshot
MeterSnapshot
}
// Timers capture the duration and rate of events.
type Timer interface {
Snapshot() TimerSnapshot
Stop()
Time(func())
UpdateSince(time.Time)
Update(time.Duration)
}
// GetOrRegisterTimer returns an existing Timer or constructs and registers a
// new StandardTimer.
// Be sure to unregister the meter from the registry once it is of no use to
// allow for garbage collection.
func GetOrRegisterTimer(name string, r Registry) Timer {
if nil == r {
r = DefaultRegistry
}
return r.GetOrRegister(name, NewTimer).(Timer)
}
// NewCustomTimer constructs a new StandardTimer from a Histogram and a Meter.
// Be sure to call Stop() once the timer is of no use to allow for garbage collection.
func NewCustomTimer(h Histogram, m Meter) Timer {
if !Enabled {
return NilTimer{}
}
return &StandardTimer{
histogram: h,
meter: m,
}
}
// NewRegisteredTimer constructs and registers a new StandardTimer.
// Be sure to unregister the meter from the registry once it is of no use to
// allow for garbage collection.
func NewRegisteredTimer(name string, r Registry) Timer {
c := NewTimer()
if nil == r {
r = DefaultRegistry
}
r.Register(name, c)
return c
}
// NewTimer constructs a new StandardTimer using an exponentially-decaying
// sample with the same reservoir size and alpha as UNIX load averages.
// Be sure to call Stop() once the timer is of no use to allow for garbage collection.
func NewTimer() Timer {
if !Enabled {
return NilTimer{}
}
return &StandardTimer{
histogram: NewHistogram(NewExpDecaySample(1028, 0.015)),
meter: NewMeter(),
}
}
// NilTimer is a no-op Timer.
type NilTimer struct{}
func (NilTimer) Snapshot() TimerSnapshot { return (*emptySnapshot)(nil) }
func (NilTimer) Stop() {}
func (NilTimer) Time(f func()) { f() }
func (NilTimer) Update(time.Duration) {}
func (NilTimer) UpdateSince(time.Time) {}
// StandardTimer is the standard implementation of a Timer and uses a Histogram
// and Meter.
type StandardTimer struct {
histogram Histogram
meter Meter
mutex sync.Mutex
}
// Snapshot returns a read-only copy of the timer.
func (t *StandardTimer) Snapshot() TimerSnapshot {
t.mutex.Lock()
defer t.mutex.Unlock()
return &timerSnapshot{
histogram: t.histogram.Snapshot(),
meter: t.meter.Snapshot(),
}
}
// Stop stops the meter.
func (t *StandardTimer) Stop() {
t.meter.Stop()
}
// Record the duration of the execution of the given function.
func (t *StandardTimer) Time(f func()) {
ts := time.Now()
f()
t.Update(time.Since(ts))
}
// Record the duration of an event.
func (t *StandardTimer) Update(d time.Duration) {
t.mutex.Lock()
defer t.mutex.Unlock()
t.histogram.Update(int64(d))
t.meter.Mark(1)
}
// Record the duration of an event that started at a time and ends now.
func (t *StandardTimer) UpdateSince(ts time.Time) {
t.mutex.Lock()
defer t.mutex.Unlock()
t.histogram.Update(int64(time.Since(ts)))
t.meter.Mark(1)
}
// timerSnapshot is a read-only copy of another Timer.
type timerSnapshot struct {
histogram HistogramSnapshot
meter MeterSnapshot
}
// Count returns the number of events recorded at the time the snapshot was
// taken.
func (t *timerSnapshot) Count() int64 { return t.histogram.Count() }
// Max returns the maximum value at the time the snapshot was taken.
func (t *timerSnapshot) Max() int64 { return t.histogram.Max() }
// Size returns the size of the sample at the time the snapshot was taken.
func (t *timerSnapshot) Size() int { return t.histogram.Size() }
// Mean returns the mean value at the time the snapshot was taken.
func (t *timerSnapshot) Mean() float64 { return t.histogram.Mean() }
// Min returns the minimum value at the time the snapshot was taken.
func (t *timerSnapshot) Min() int64 { return t.histogram.Min() }
// Percentile returns an arbitrary percentile of sampled values at the time the
// snapshot was taken.
func (t *timerSnapshot) Percentile(p float64) float64 {
return t.histogram.Percentile(p)
}
// Percentiles returns a slice of arbitrary percentiles of sampled values at
// the time the snapshot was taken.
func (t *timerSnapshot) Percentiles(ps []float64) []float64 {
return t.histogram.Percentiles(ps)
}
// Rate1 returns the one-minute moving average rate of events per second at the
// time the snapshot was taken.
func (t *timerSnapshot) Rate1() float64 { return t.meter.Rate1() }
// Rate5 returns the five-minute moving average rate of events per second at
// the time the snapshot was taken.
func (t *timerSnapshot) Rate5() float64 { return t.meter.Rate5() }
// Rate15 returns the fifteen-minute moving average rate of events per second
// at the time the snapshot was taken.
func (t *timerSnapshot) Rate15() float64 { return t.meter.Rate15() }
// RateMean returns the meter's mean rate of events per second at the time the
// snapshot was taken.
func (t *timerSnapshot) RateMean() float64 { return t.meter.RateMean() }
// StdDev returns the standard deviation of the values at the time the snapshot
// was taken.
func (t *timerSnapshot) StdDev() float64 { return t.histogram.StdDev() }
// Sum returns the sum at the time the snapshot was taken.
func (t *timerSnapshot) Sum() int64 { return t.histogram.Sum() }
// Variance returns the variance of the values at the time the snapshot was
// taken.
func (t *timerSnapshot) Variance() float64 { return t.histogram.Variance() }