bsc/whisper/whisperv6/envelope.go
Guillaume Ballet 367c329b88 whisper: remove linter warnings (#15972)
* whisper: fixes warnings from the code linter

* whisper: more non-API-breaking changes

The remaining lint errors are because of auto-generated
files and one is because an exported function has a non-
exported return type. Changing this would break the API,
and will be part of another commit for easier reversal.

* whisper: un-export NewSentMessage to please the linter

This is an API change, which is why it's in its own commit.
This change was initiated after the linter complained that
the returned type wasn't exported. I chose to un-export
the function instead of exporting the type, because that
type is an implementation detail that I would like to
change in the near future to make the code more
readable and with an increased coverage.

* whisper: update gencodec output after upgrading it to new lint standards
2018-01-26 13:45:10 +02:00

261 lines
7.3 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains the Whisper protocol Envelope element.
package whisperv6
import (
"crypto/ecdsa"
"encoding/binary"
"fmt"
gmath "math"
"math/big"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/rlp"
)
// Envelope represents a clear-text data packet to transmit through the Whisper
// network. Its contents may or may not be encrypted and signed.
type Envelope struct {
Expiry uint32
TTL uint32
Topic TopicType
Data []byte
Nonce uint64
pow float64 // Message-specific PoW as described in the Whisper specification.
// the following variables should not be accessed directly, use the corresponding function instead: Hash(), Bloom()
hash common.Hash // Cached hash of the envelope to avoid rehashing every time.
bloom []byte
}
// size returns the size of envelope as it is sent (i.e. public fields only)
func (e *Envelope) size() int {
return EnvelopeHeaderLength + len(e.Data)
}
// rlpWithoutNonce returns the RLP encoded envelope contents, except the nonce.
func (e *Envelope) rlpWithoutNonce() []byte {
res, _ := rlp.EncodeToBytes([]interface{}{e.Expiry, e.TTL, e.Topic, e.Data})
return res
}
// NewEnvelope wraps a Whisper message with expiration and destination data
// included into an envelope for network forwarding.
func NewEnvelope(ttl uint32, topic TopicType, msg *sentMessage) *Envelope {
env := Envelope{
Expiry: uint32(time.Now().Add(time.Second * time.Duration(ttl)).Unix()),
TTL: ttl,
Topic: topic,
Data: msg.Raw,
Nonce: 0,
}
return &env
}
// Seal closes the envelope by spending the requested amount of time as a proof
// of work on hashing the data.
func (e *Envelope) Seal(options *MessageParams) error {
var target, bestBit int
if options.PoW == 0 {
// adjust for the duration of Seal() execution only if execution time is predefined unconditionally
e.Expiry += options.WorkTime
} else {
target = e.powToFirstBit(options.PoW)
if target < 1 {
target = 1
}
}
buf := make([]byte, 64)
h := crypto.Keccak256(e.rlpWithoutNonce())
copy(buf[:32], h)
finish := time.Now().Add(time.Duration(options.WorkTime) * time.Second).UnixNano()
for nonce := uint64(0); time.Now().UnixNano() < finish; {
for i := 0; i < 1024; i++ {
binary.BigEndian.PutUint64(buf[56:], nonce)
d := new(big.Int).SetBytes(crypto.Keccak256(buf))
firstBit := math.FirstBitSet(d)
if firstBit > bestBit {
e.Nonce, bestBit = nonce, firstBit
if target > 0 && bestBit >= target {
return nil
}
}
nonce++
}
}
if target > 0 && bestBit < target {
return fmt.Errorf("failed to reach the PoW target, specified pow time (%d seconds) was insufficient", options.WorkTime)
}
return nil
}
// PoW computes (if necessary) and returns the proof of work target
// of the envelope.
func (e *Envelope) PoW() float64 {
if e.pow == 0 {
e.calculatePoW(0)
}
return e.pow
}
func (e *Envelope) calculatePoW(diff uint32) {
buf := make([]byte, 64)
h := crypto.Keccak256(e.rlpWithoutNonce())
copy(buf[:32], h)
binary.BigEndian.PutUint64(buf[56:], e.Nonce)
d := new(big.Int).SetBytes(crypto.Keccak256(buf))
firstBit := math.FirstBitSet(d)
x := gmath.Pow(2, float64(firstBit))
x /= float64(e.size())
x /= float64(e.TTL + diff)
e.pow = x
}
func (e *Envelope) powToFirstBit(pow float64) int {
x := pow
x *= float64(e.size())
x *= float64(e.TTL)
bits := gmath.Log2(x)
bits = gmath.Ceil(bits)
return int(bits)
}
// Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
func (e *Envelope) Hash() common.Hash {
if (e.hash == common.Hash{}) {
encoded, _ := rlp.EncodeToBytes(e)
e.hash = crypto.Keccak256Hash(encoded)
}
return e.hash
}
// DecodeRLP decodes an Envelope from an RLP data stream.
func (e *Envelope) DecodeRLP(s *rlp.Stream) error {
raw, err := s.Raw()
if err != nil {
return err
}
// The decoding of Envelope uses the struct fields but also needs
// to compute the hash of the whole RLP-encoded envelope. This
// type has the same structure as Envelope but is not an
// rlp.Decoder (does not implement DecodeRLP function).
// Only public members will be encoded.
type rlpenv Envelope
if err := rlp.DecodeBytes(raw, (*rlpenv)(e)); err != nil {
return err
}
e.hash = crypto.Keccak256Hash(raw)
return nil
}
// OpenAsymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
func (e *Envelope) OpenAsymmetric(key *ecdsa.PrivateKey) (*ReceivedMessage, error) {
message := &ReceivedMessage{Raw: e.Data}
err := message.decryptAsymmetric(key)
switch err {
case nil:
return message, nil
case ecies.ErrInvalidPublicKey: // addressed to somebody else
return nil, err
default:
return nil, fmt.Errorf("unable to open envelope, decrypt failed: %v", err)
}
}
// OpenSymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
func (e *Envelope) OpenSymmetric(key []byte) (msg *ReceivedMessage, err error) {
msg = &ReceivedMessage{Raw: e.Data}
err = msg.decryptSymmetric(key)
if err != nil {
msg = nil
}
return msg, err
}
// Open tries to decrypt an envelope, and populates the message fields in case of success.
func (e *Envelope) Open(watcher *Filter) (msg *ReceivedMessage) {
// The API interface forbids filters doing both symmetric and
// asymmetric encryption.
if watcher.expectsAsymmetricEncryption() && watcher.expectsSymmetricEncryption() {
return nil
}
if watcher.expectsAsymmetricEncryption() {
msg, _ = e.OpenAsymmetric(watcher.KeyAsym)
if msg != nil {
msg.Dst = &watcher.KeyAsym.PublicKey
}
} else if watcher.expectsSymmetricEncryption() {
msg, _ = e.OpenSymmetric(watcher.KeySym)
if msg != nil {
msg.SymKeyHash = crypto.Keccak256Hash(watcher.KeySym)
}
}
if msg != nil {
ok := msg.Validate()
if !ok {
return nil
}
msg.Topic = e.Topic
msg.PoW = e.PoW()
msg.TTL = e.TTL
msg.Sent = e.Expiry - e.TTL
msg.EnvelopeHash = e.Hash()
}
return msg
}
// Bloom maps 4-bytes Topic into 64-byte bloom filter with 3 bits set (at most).
func (e *Envelope) Bloom() []byte {
if e.bloom == nil {
e.bloom = TopicToBloom(e.Topic)
}
return e.bloom
}
// TopicToBloom converts the topic (4 bytes) to the bloom filter (64 bytes)
func TopicToBloom(topic TopicType) []byte {
b := make([]byte, bloomFilterSize)
var index [3]int
for j := 0; j < 3; j++ {
index[j] = int(topic[j])
if (topic[3] & (1 << uint(j))) != 0 {
index[j] += 256
}
}
for j := 0; j < 3; j++ {
byteIndex := index[j] / 8
bitIndex := index[j] % 8
b[byteIndex] = (1 << uint(bitIndex))
}
return b
}