bsc/les/downloader/queue.go

914 lines
31 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains the block download scheduler to collect download tasks and schedule
// them in an ordered, and throttled way.
package downloader
import (
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/trie"
)
const (
bodyType = uint(0)
receiptType = uint(1)
)
var (
blockCacheMaxItems = 8192 // Maximum number of blocks to cache before throttling the download
blockCacheInitialItems = 2048 // Initial number of blocks to start fetching, before we know the sizes of the blocks
blockCacheMemory = 256 * 1024 * 1024 // Maximum amount of memory to use for block caching
blockCacheSizeWeight = 0.1 // Multiplier to approximate the average block size based on past ones
)
var (
errNoFetchesPending = errors.New("no fetches pending")
errStaleDelivery = errors.New("stale delivery")
)
// fetchRequest is a currently running data retrieval operation.
type fetchRequest struct {
Peer *peerConnection // Peer to which the request was sent
From uint64 // [eth/62] Requested chain element index (used for skeleton fills only)
Headers []*types.Header // [eth/62] Requested headers, sorted by request order
Time time.Time // Time when the request was made
}
// fetchResult is a struct collecting partial results from data fetchers until
// all outstanding pieces complete and the result as a whole can be processed.
type fetchResult struct {
pending int32 // Flag telling what deliveries are outstanding
Header *types.Header
Uncles []*types.Header
Transactions types.Transactions
Receipts types.Receipts
}
func newFetchResult(header *types.Header, fastSync bool) *fetchResult {
item := &fetchResult{
Header: header,
}
if !header.EmptyBody() {
item.pending |= (1 << bodyType)
}
if fastSync && !header.EmptyReceipts() {
item.pending |= (1 << receiptType)
}
return item
}
// SetBodyDone flags the body as finished.
func (f *fetchResult) SetBodyDone() {
if v := atomic.LoadInt32(&f.pending); (v & (1 << bodyType)) != 0 {
atomic.AddInt32(&f.pending, -1)
}
}
// AllDone checks if item is done.
func (f *fetchResult) AllDone() bool {
return atomic.LoadInt32(&f.pending) == 0
}
// SetReceiptsDone flags the receipts as finished.
func (f *fetchResult) SetReceiptsDone() {
if v := atomic.LoadInt32(&f.pending); (v & (1 << receiptType)) != 0 {
atomic.AddInt32(&f.pending, -2)
}
}
// Done checks if the given type is done already
func (f *fetchResult) Done(kind uint) bool {
v := atomic.LoadInt32(&f.pending)
return v&(1<<kind) == 0
}
// queue represents hashes that are either need fetching or are being fetched
type queue struct {
mode SyncMode // Synchronisation mode to decide on the block parts to schedule for fetching
// Headers are "special", they download in batches, supported by a skeleton chain
headerHead common.Hash // Hash of the last queued header to verify order
headerTaskPool map[uint64]*types.Header // Pending header retrieval tasks, mapping starting indexes to skeleton headers
headerTaskQueue *prque.Prque // Priority queue of the skeleton indexes to fetch the filling headers for
headerPeerMiss map[string]map[uint64]struct{} // Set of per-peer header batches known to be unavailable
headerPendPool map[string]*fetchRequest // Currently pending header retrieval operations
headerResults []*types.Header // Result cache accumulating the completed headers
headerProced int // Number of headers already processed from the results
headerOffset uint64 // Number of the first header in the result cache
headerContCh chan bool // Channel to notify when header download finishes
// All data retrievals below are based on an already assembles header chain
blockTaskPool map[common.Hash]*types.Header // Pending block (body) retrieval tasks, mapping hashes to headers
blockTaskQueue *prque.Prque // Priority queue of the headers to fetch the blocks (bodies) for
blockPendPool map[string]*fetchRequest // Currently pending block (body) retrieval operations
receiptTaskPool map[common.Hash]*types.Header // Pending receipt retrieval tasks, mapping hashes to headers
receiptTaskQueue *prque.Prque // Priority queue of the headers to fetch the receipts for
receiptPendPool map[string]*fetchRequest // Currently pending receipt retrieval operations
resultCache *resultStore // Downloaded but not yet delivered fetch results
resultSize common.StorageSize // Approximate size of a block (exponential moving average)
lock *sync.RWMutex
active *sync.Cond
closed bool
lastStatLog time.Time
}
// newQueue creates a new download queue for scheduling block retrieval.
func newQueue(blockCacheLimit int, thresholdInitialSize int) *queue {
lock := new(sync.RWMutex)
q := &queue{
headerContCh: make(chan bool),
blockTaskQueue: prque.New(nil),
receiptTaskQueue: prque.New(nil),
active: sync.NewCond(lock),
lock: lock,
}
q.Reset(blockCacheLimit, thresholdInitialSize)
return q
}
// Reset clears out the queue contents.
func (q *queue) Reset(blockCacheLimit int, thresholdInitialSize int) {
q.lock.Lock()
defer q.lock.Unlock()
q.closed = false
q.mode = FullSync
q.headerHead = common.Hash{}
q.headerPendPool = make(map[string]*fetchRequest)
q.blockTaskPool = make(map[common.Hash]*types.Header)
q.blockTaskQueue.Reset()
q.blockPendPool = make(map[string]*fetchRequest)
q.receiptTaskPool = make(map[common.Hash]*types.Header)
q.receiptTaskQueue.Reset()
q.receiptPendPool = make(map[string]*fetchRequest)
q.resultCache = newResultStore(blockCacheLimit)
q.resultCache.SetThrottleThreshold(uint64(thresholdInitialSize))
}
// Close marks the end of the sync, unblocking Results.
// It may be called even if the queue is already closed.
func (q *queue) Close() {
q.lock.Lock()
q.closed = true
q.active.Signal()
q.lock.Unlock()
}
// PendingHeaders retrieves the number of header requests pending for retrieval.
func (q *queue) PendingHeaders() int {
q.lock.Lock()
defer q.lock.Unlock()
return q.headerTaskQueue.Size()
}
// PendingBlocks retrieves the number of block (body) requests pending for retrieval.
func (q *queue) PendingBlocks() int {
q.lock.Lock()
defer q.lock.Unlock()
return q.blockTaskQueue.Size()
}
// PendingReceipts retrieves the number of block receipts pending for retrieval.
func (q *queue) PendingReceipts() int {
q.lock.Lock()
defer q.lock.Unlock()
return q.receiptTaskQueue.Size()
}
// InFlightHeaders retrieves whether there are header fetch requests currently
// in flight.
func (q *queue) InFlightHeaders() bool {
q.lock.Lock()
defer q.lock.Unlock()
return len(q.headerPendPool) > 0
}
// InFlightBlocks retrieves whether there are block fetch requests currently in
// flight.
func (q *queue) InFlightBlocks() bool {
q.lock.Lock()
defer q.lock.Unlock()
return len(q.blockPendPool) > 0
}
// InFlightReceipts retrieves whether there are receipt fetch requests currently
// in flight.
func (q *queue) InFlightReceipts() bool {
q.lock.Lock()
defer q.lock.Unlock()
return len(q.receiptPendPool) > 0
}
// Idle returns if the queue is fully idle or has some data still inside.
func (q *queue) Idle() bool {
q.lock.Lock()
defer q.lock.Unlock()
queued := q.blockTaskQueue.Size() + q.receiptTaskQueue.Size()
pending := len(q.blockPendPool) + len(q.receiptPendPool)
return (queued + pending) == 0
}
// ScheduleSkeleton adds a batch of header retrieval tasks to the queue to fill
// up an already retrieved header skeleton.
func (q *queue) ScheduleSkeleton(from uint64, skeleton []*types.Header) {
q.lock.Lock()
defer q.lock.Unlock()
// No skeleton retrieval can be in progress, fail hard if so (huge implementation bug)
if q.headerResults != nil {
panic("skeleton assembly already in progress")
}
// Schedule all the header retrieval tasks for the skeleton assembly
q.headerTaskPool = make(map[uint64]*types.Header)
q.headerTaskQueue = prque.New(nil)
q.headerPeerMiss = make(map[string]map[uint64]struct{}) // Reset availability to correct invalid chains
q.headerResults = make([]*types.Header, len(skeleton)*MaxHeaderFetch)
q.headerProced = 0
q.headerOffset = from
q.headerContCh = make(chan bool, 1)
for i, header := range skeleton {
index := from + uint64(i*MaxHeaderFetch)
q.headerTaskPool[index] = header
q.headerTaskQueue.Push(index, -int64(index))
}
}
// RetrieveHeaders retrieves the header chain assemble based on the scheduled
// skeleton.
func (q *queue) RetrieveHeaders() ([]*types.Header, int) {
q.lock.Lock()
defer q.lock.Unlock()
headers, proced := q.headerResults, q.headerProced
q.headerResults, q.headerProced = nil, 0
return headers, proced
}
// Schedule adds a set of headers for the download queue for scheduling, returning
// the new headers encountered.
func (q *queue) Schedule(headers []*types.Header, from uint64) []*types.Header {
q.lock.Lock()
defer q.lock.Unlock()
// Insert all the headers prioritised by the contained block number
inserts := make([]*types.Header, 0, len(headers))
for _, header := range headers {
// Make sure chain order is honoured and preserved throughout
hash := header.Hash()
if header.Number == nil || header.Number.Uint64() != from {
log.Warn("Header broke chain ordering", "number", header.Number, "hash", hash, "expected", from)
break
}
if q.headerHead != (common.Hash{}) && q.headerHead != header.ParentHash {
log.Warn("Header broke chain ancestry", "number", header.Number, "hash", hash)
break
}
// Make sure no duplicate requests are executed
// We cannot skip this, even if the block is empty, since this is
// what triggers the fetchResult creation.
if _, ok := q.blockTaskPool[hash]; ok {
log.Warn("Header already scheduled for block fetch", "number", header.Number, "hash", hash)
} else {
q.blockTaskPool[hash] = header
q.blockTaskQueue.Push(header, -int64(header.Number.Uint64()))
}
// Queue for receipt retrieval
if q.mode == FastSync && !header.EmptyReceipts() {
if _, ok := q.receiptTaskPool[hash]; ok {
log.Warn("Header already scheduled for receipt fetch", "number", header.Number, "hash", hash)
} else {
q.receiptTaskPool[hash] = header
q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64()))
}
}
inserts = append(inserts, header)
q.headerHead = hash
from++
}
return inserts
}
// Results retrieves and permanently removes a batch of fetch results from
// the cache. the result slice will be empty if the queue has been closed.
// Results can be called concurrently with Deliver and Schedule,
// but assumes that there are not two simultaneous callers to Results
func (q *queue) Results(block bool) []*fetchResult {
// Abort early if there are no items and non-blocking requested
if !block && !q.resultCache.HasCompletedItems() {
return nil
}
closed := false
for !closed && !q.resultCache.HasCompletedItems() {
// In order to wait on 'active', we need to obtain the lock.
// That may take a while, if someone is delivering at the same
// time, so after obtaining the lock, we check again if there
// are any results to fetch.
// Also, in-between we ask for the lock and the lock is obtained,
// someone can have closed the queue. In that case, we should
// return the available results and stop blocking
q.lock.Lock()
if q.resultCache.HasCompletedItems() || q.closed {
q.lock.Unlock()
break
}
// No items available, and not closed
q.active.Wait()
closed = q.closed
q.lock.Unlock()
}
// Regardless if closed or not, we can still deliver whatever we have
results := q.resultCache.GetCompleted(maxResultsProcess)
for _, result := range results {
// Recalculate the result item weights to prevent memory exhaustion
size := result.Header.Size()
for _, uncle := range result.Uncles {
size += uncle.Size()
}
for _, receipt := range result.Receipts {
size += receipt.Size()
}
for _, tx := range result.Transactions {
size += tx.Size()
}
q.resultSize = common.StorageSize(blockCacheSizeWeight)*size +
(1-common.StorageSize(blockCacheSizeWeight))*q.resultSize
}
// Using the newly calibrated resultsize, figure out the new throttle limit
// on the result cache
throttleThreshold := uint64((common.StorageSize(blockCacheMemory) + q.resultSize - 1) / q.resultSize)
throttleThreshold = q.resultCache.SetThrottleThreshold(throttleThreshold)
// Log some info at certain times
if time.Since(q.lastStatLog) > 60*time.Second {
q.lastStatLog = time.Now()
info := q.Stats()
info = append(info, "throttle", throttleThreshold)
log.Info("Downloader queue stats", info...)
}
return results
}
func (q *queue) Stats() []interface{} {
q.lock.RLock()
defer q.lock.RUnlock()
return q.stats()
}
func (q *queue) stats() []interface{} {
return []interface{}{
"receiptTasks", q.receiptTaskQueue.Size(),
"blockTasks", q.blockTaskQueue.Size(),
"itemSize", q.resultSize,
}
}
// ReserveHeaders reserves a set of headers for the given peer, skipping any
// previously failed batches.
func (q *queue) ReserveHeaders(p *peerConnection, count int) *fetchRequest {
q.lock.Lock()
defer q.lock.Unlock()
// Short circuit if the peer's already downloading something (sanity check to
// not corrupt state)
if _, ok := q.headerPendPool[p.id]; ok {
return nil
}
// Retrieve a batch of hashes, skipping previously failed ones
send, skip := uint64(0), []uint64{}
for send == 0 && !q.headerTaskQueue.Empty() {
from, _ := q.headerTaskQueue.Pop()
if q.headerPeerMiss[p.id] != nil {
if _, ok := q.headerPeerMiss[p.id][from.(uint64)]; ok {
skip = append(skip, from.(uint64))
continue
}
}
send = from.(uint64)
}
// Merge all the skipped batches back
for _, from := range skip {
q.headerTaskQueue.Push(from, -int64(from))
}
// Assemble and return the block download request
if send == 0 {
return nil
}
request := &fetchRequest{
Peer: p,
From: send,
Time: time.Now(),
}
q.headerPendPool[p.id] = request
return request
}
// ReserveBodies reserves a set of body fetches for the given peer, skipping any
// previously failed downloads. Beside the next batch of needed fetches, it also
// returns a flag whether empty blocks were queued requiring processing.
func (q *queue) ReserveBodies(p *peerConnection, count int) (*fetchRequest, bool, bool) {
q.lock.Lock()
defer q.lock.Unlock()
return q.reserveHeaders(p, count, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, bodyType)
}
// ReserveReceipts reserves a set of receipt fetches for the given peer, skipping
// any previously failed downloads. Beside the next batch of needed fetches, it
// also returns a flag whether empty receipts were queued requiring importing.
func (q *queue) ReserveReceipts(p *peerConnection, count int) (*fetchRequest, bool, bool) {
q.lock.Lock()
defer q.lock.Unlock()
return q.reserveHeaders(p, count, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, receiptType)
}
// reserveHeaders reserves a set of data download operations for a given peer,
// skipping any previously failed ones. This method is a generic version used
// by the individual special reservation functions.
//
// Note, this method expects the queue lock to be already held for writing. The
// reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
//
// Returns:
// item - the fetchRequest
// progress - whether any progress was made
// throttle - if the caller should throttle for a while
func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque,
pendPool map[string]*fetchRequest, kind uint) (*fetchRequest, bool, bool) {
// Short circuit if the pool has been depleted, or if the peer's already
// downloading something (sanity check not to corrupt state)
if taskQueue.Empty() {
return nil, false, true
}
if _, ok := pendPool[p.id]; ok {
return nil, false, false
}
// Retrieve a batch of tasks, skipping previously failed ones
send := make([]*types.Header, 0, count)
skip := make([]*types.Header, 0)
progress := false
throttled := false
for proc := 0; len(send) < count && !taskQueue.Empty(); proc++ {
// the task queue will pop items in order, so the highest prio block
// is also the lowest block number.
h, _ := taskQueue.Peek()
header := h.(*types.Header)
// we can ask the resultcache if this header is within the
// "prioritized" segment of blocks. If it is not, we need to throttle
stale, throttle, item, err := q.resultCache.AddFetch(header, q.mode == FastSync)
if stale {
// Don't put back in the task queue, this item has already been
// delivered upstream
taskQueue.PopItem()
progress = true
delete(taskPool, header.Hash())
proc = proc - 1
log.Error("Fetch reservation already delivered", "number", header.Number.Uint64())
continue
}
if throttle {
// There are no resultslots available. Leave it in the task queue
// However, if there are any left as 'skipped', we should not tell
// the caller to throttle, since we still want some other
// peer to fetch those for us
throttled = len(skip) == 0
break
}
if err != nil {
// this most definitely should _not_ happen
log.Warn("Failed to reserve headers", "err", err)
// There are no resultslots available. Leave it in the task queue
break
}
if item.Done(kind) {
// If it's a noop, we can skip this task
delete(taskPool, header.Hash())
taskQueue.PopItem()
proc = proc - 1
progress = true
continue
}
// Remove it from the task queue
taskQueue.PopItem()
// Otherwise unless the peer is known not to have the data, add to the retrieve list
if p.Lacks(header.Hash()) {
skip = append(skip, header)
} else {
send = append(send, header)
}
}
// Merge all the skipped headers back
for _, header := range skip {
taskQueue.Push(header, -int64(header.Number.Uint64()))
}
if q.resultCache.HasCompletedItems() {
// Wake Results, resultCache was modified
q.active.Signal()
}
// Assemble and return the block download request
if len(send) == 0 {
return nil, progress, throttled
}
request := &fetchRequest{
Peer: p,
Headers: send,
Time: time.Now(),
}
pendPool[p.id] = request
return request, progress, throttled
}
// CancelHeaders aborts a fetch request, returning all pending skeleton indexes to the queue.
func (q *queue) CancelHeaders(request *fetchRequest) {
q.lock.Lock()
defer q.lock.Unlock()
q.cancel(request, q.headerTaskQueue, q.headerPendPool)
}
// CancelBodies aborts a body fetch request, returning all pending headers to the
// task queue.
func (q *queue) CancelBodies(request *fetchRequest) {
q.lock.Lock()
defer q.lock.Unlock()
q.cancel(request, q.blockTaskQueue, q.blockPendPool)
}
// CancelReceipts aborts a body fetch request, returning all pending headers to
// the task queue.
func (q *queue) CancelReceipts(request *fetchRequest) {
q.lock.Lock()
defer q.lock.Unlock()
q.cancel(request, q.receiptTaskQueue, q.receiptPendPool)
}
// Cancel aborts a fetch request, returning all pending hashes to the task queue.
func (q *queue) cancel(request *fetchRequest, taskQueue *prque.Prque, pendPool map[string]*fetchRequest) {
if request.From > 0 {
taskQueue.Push(request.From, -int64(request.From))
}
for _, header := range request.Headers {
taskQueue.Push(header, -int64(header.Number.Uint64()))
}
delete(pendPool, request.Peer.id)
}
// Revoke cancels all pending requests belonging to a given peer. This method is
// meant to be called during a peer drop to quickly reassign owned data fetches
// to remaining nodes.
func (q *queue) Revoke(peerID string) {
q.lock.Lock()
defer q.lock.Unlock()
if request, ok := q.blockPendPool[peerID]; ok {
for _, header := range request.Headers {
q.blockTaskQueue.Push(header, -int64(header.Number.Uint64()))
}
delete(q.blockPendPool, peerID)
}
if request, ok := q.receiptPendPool[peerID]; ok {
for _, header := range request.Headers {
q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64()))
}
delete(q.receiptPendPool, peerID)
}
}
// ExpireHeaders checks for in flight requests that exceeded a timeout allowance,
// canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireHeaders(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.headerPendPool, q.headerTaskQueue, headerTimeoutMeter)
}
// ExpireBodies checks for in flight block body requests that exceeded a timeout
// allowance, canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireBodies(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.blockPendPool, q.blockTaskQueue, bodyTimeoutMeter)
}
// ExpireReceipts checks for in flight receipt requests that exceeded a timeout
// allowance, canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireReceipts(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.receiptPendPool, q.receiptTaskQueue, receiptTimeoutMeter)
}
// expire is the generic check that move expired tasks from a pending pool back
// into a task pool, returning all entities caught with expired tasks.
//
// Note, this method expects the queue lock to be already held. The
// reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) expire(timeout time.Duration, pendPool map[string]*fetchRequest, taskQueue *prque.Prque, timeoutMeter metrics.Meter) map[string]int {
// Iterate over the expired requests and return each to the queue
expiries := make(map[string]int)
for id, request := range pendPool {
if time.Since(request.Time) > timeout {
// Update the metrics with the timeout
timeoutMeter.Mark(1)
// Return any non satisfied requests to the pool
if request.From > 0 {
taskQueue.Push(request.From, -int64(request.From))
}
for _, header := range request.Headers {
taskQueue.Push(header, -int64(header.Number.Uint64()))
}
// Add the peer to the expiry report along the number of failed requests
expiries[id] = len(request.Headers)
// Remove the expired requests from the pending pool directly
delete(pendPool, id)
}
}
return expiries
}
// DeliverHeaders injects a header retrieval response into the header results
// cache. This method either accepts all headers it received, or none of them
// if they do not map correctly to the skeleton.
//
// If the headers are accepted, the method makes an attempt to deliver the set
// of ready headers to the processor to keep the pipeline full. However it will
// not block to prevent stalling other pending deliveries.
func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh chan []*types.Header) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
var logger log.Logger
if len(id) < 16 {
// Tests use short IDs, don't choke on them
logger = log.New("peer", id)
} else {
logger = log.New("peer", id[:16])
}
// Short circuit if the data was never requested
request := q.headerPendPool[id]
if request == nil {
return 0, errNoFetchesPending
}
headerReqTimer.UpdateSince(request.Time)
delete(q.headerPendPool, id)
// Ensure headers can be mapped onto the skeleton chain
target := q.headerTaskPool[request.From].Hash()
accepted := len(headers) == MaxHeaderFetch
if accepted {
if headers[0].Number.Uint64() != request.From {
logger.Trace("First header broke chain ordering", "number", headers[0].Number, "hash", headers[0].Hash(), "expected", request.From)
accepted = false
} else if headers[len(headers)-1].Hash() != target {
logger.Trace("Last header broke skeleton structure ", "number", headers[len(headers)-1].Number, "hash", headers[len(headers)-1].Hash(), "expected", target)
accepted = false
}
}
if accepted {
parentHash := headers[0].Hash()
for i, header := range headers[1:] {
hash := header.Hash()
if want := request.From + 1 + uint64(i); header.Number.Uint64() != want {
logger.Warn("Header broke chain ordering", "number", header.Number, "hash", hash, "expected", want)
accepted = false
break
}
if parentHash != header.ParentHash {
logger.Warn("Header broke chain ancestry", "number", header.Number, "hash", hash)
accepted = false
break
}
// Set-up parent hash for next round
parentHash = hash
}
}
// If the batch of headers wasn't accepted, mark as unavailable
if !accepted {
logger.Trace("Skeleton filling not accepted", "from", request.From)
miss := q.headerPeerMiss[id]
if miss == nil {
q.headerPeerMiss[id] = make(map[uint64]struct{})
miss = q.headerPeerMiss[id]
}
miss[request.From] = struct{}{}
q.headerTaskQueue.Push(request.From, -int64(request.From))
return 0, errors.New("delivery not accepted")
}
// Clean up a successful fetch and try to deliver any sub-results
copy(q.headerResults[request.From-q.headerOffset:], headers)
delete(q.headerTaskPool, request.From)
ready := 0
for q.headerProced+ready < len(q.headerResults) && q.headerResults[q.headerProced+ready] != nil {
ready += MaxHeaderFetch
}
if ready > 0 {
// Headers are ready for delivery, gather them and push forward (non blocking)
process := make([]*types.Header, ready)
copy(process, q.headerResults[q.headerProced:q.headerProced+ready])
select {
case headerProcCh <- process:
logger.Trace("Pre-scheduled new headers", "count", len(process), "from", process[0].Number)
q.headerProced += len(process)
default:
}
}
// Check for termination and return
if len(q.headerTaskPool) == 0 {
q.headerContCh <- false
}
return len(headers), nil
}
// DeliverBodies injects a block body retrieval response into the results queue.
// The method returns the number of blocks bodies accepted from the delivery and
// also wakes any threads waiting for data delivery.
func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLists [][]*types.Header) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
trieHasher := trie.NewStackTrie(nil)
validate := func(index int, header *types.Header) error {
if types.DeriveSha(types.Transactions(txLists[index]), trieHasher) != header.TxHash {
return errInvalidBody
}
if types.CalcUncleHash(uncleLists[index]) != header.UncleHash {
return errInvalidBody
}
return nil
}
reconstruct := func(index int, result *fetchResult) {
result.Transactions = txLists[index]
result.Uncles = uncleLists[index]
result.SetBodyDone()
}
return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool,
bodyReqTimer, len(txLists), validate, reconstruct)
}
// DeliverReceipts injects a receipt retrieval response into the results queue.
// The method returns the number of transaction receipts accepted from the delivery
// and also wakes any threads waiting for data delivery.
func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
trieHasher := trie.NewStackTrie(nil)
validate := func(index int, header *types.Header) error {
if types.DeriveSha(types.Receipts(receiptList[index]), trieHasher) != header.ReceiptHash {
return errInvalidReceipt
}
return nil
}
reconstruct := func(index int, result *fetchResult) {
result.Receipts = receiptList[index]
result.SetReceiptsDone()
}
return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool,
receiptReqTimer, len(receiptList), validate, reconstruct)
}
// deliver injects a data retrieval response into the results queue.
//
// Note, this method expects the queue lock to be already held for writing. The
// reason this lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header,
taskQueue *prque.Prque, pendPool map[string]*fetchRequest, reqTimer metrics.Timer,
results int, validate func(index int, header *types.Header) error,
reconstruct func(index int, result *fetchResult)) (int, error) {
// Short circuit if the data was never requested
request := pendPool[id]
if request == nil {
return 0, errNoFetchesPending
}
reqTimer.UpdateSince(request.Time)
delete(pendPool, id)
// If no data items were retrieved, mark them as unavailable for the origin peer
if results == 0 {
for _, header := range request.Headers {
request.Peer.MarkLacking(header.Hash())
}
}
// Assemble each of the results with their headers and retrieved data parts
var (
accepted int
failure error
i int
hashes []common.Hash
)
for _, header := range request.Headers {
// Short circuit assembly if no more fetch results are found
if i >= results {
break
}
// Validate the fields
if err := validate(i, header); err != nil {
failure = err
break
}
hashes = append(hashes, header.Hash())
i++
}
for _, header := range request.Headers[:i] {
if res, stale, err := q.resultCache.GetDeliverySlot(header.Number.Uint64()); err == nil {
reconstruct(accepted, res)
} else {
// else: betweeen here and above, some other peer filled this result,
// or it was indeed a no-op. This should not happen, but if it does it's
// not something to panic about
log.Error("Delivery stale", "stale", stale, "number", header.Number.Uint64(), "err", err)
failure = errStaleDelivery
}
// Clean up a successful fetch
delete(taskPool, hashes[accepted])
accepted++
}
// Return all failed or missing fetches to the queue
for _, header := range request.Headers[accepted:] {
taskQueue.Push(header, -int64(header.Number.Uint64()))
}
// Wake up Results
if accepted > 0 {
q.active.Signal()
}
if failure == nil {
return accepted, nil
}
// If none of the data was good, it's a stale delivery
if accepted > 0 {
return accepted, fmt.Errorf("partial failure: %v", failure)
}
return accepted, fmt.Errorf("%w: %v", failure, errStaleDelivery)
}
// Prepare configures the result cache to allow accepting and caching inbound
// fetch results.
func (q *queue) Prepare(offset uint64, mode SyncMode) {
q.lock.Lock()
defer q.lock.Unlock()
// Prepare the queue for sync results
q.resultCache.Prepare(offset)
q.mode = mode
}