bsc/core/state/snapshot/generate.go

763 lines
28 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math/big"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
var (
// emptyRoot is the known root hash of an empty trie.
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
// emptyCode is the known hash of the empty EVM bytecode.
emptyCode = crypto.Keccak256Hash(nil)
// accountCheckRange is the upper limit of the number of accounts involved in
// each range check. This is a value estimated based on experience. If this
// value is too large, the failure rate of range prove will increase. Otherwise
// the the value is too small, the efficiency of the state recovery will decrease.
accountCheckRange = 128
// storageCheckRange is the upper limit of the number of storage slots involved
// in each range check. This is a value estimated based on experience. If this
// value is too large, the failure rate of range prove will increase. Otherwise
// the the value is too small, the efficiency of the state recovery will decrease.
storageCheckRange = 1024
// errMissingTrie is returned if the target trie is missing while the generation
// is running. In this case the generation is aborted and wait the new signal.
errMissingTrie = errors.New("missing trie")
)
// Metrics in generation
var (
snapGeneratedAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/generated", nil)
snapRecoveredAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/recovered", nil)
snapWipedAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/wiped", nil)
snapMissallAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/missall", nil)
snapGeneratedStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/generated", nil)
snapRecoveredStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/recovered", nil)
snapWipedStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/wiped", nil)
snapMissallStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/missall", nil)
snapSuccessfulRangeProofMeter = metrics.NewRegisteredMeter("state/snapshot/generation/proof/success", nil)
snapFailedRangeProofMeter = metrics.NewRegisteredMeter("state/snapshot/generation/proof/failure", nil)
// snapAccountProveCounter measures time spent on the account proving
snapAccountProveCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/prove", nil)
// snapAccountTrieReadCounter measures time spent on the account trie iteration
snapAccountTrieReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/trieread", nil)
// snapAccountSnapReadCounter measues time spent on the snapshot account iteration
snapAccountSnapReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/snapread", nil)
// snapAccountWriteCounter measures time spent on writing/updating/deleting accounts
snapAccountWriteCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/write", nil)
// snapStorageProveCounter measures time spent on storage proving
snapStorageProveCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/prove", nil)
// snapStorageTrieReadCounter measures time spent on the storage trie iteration
snapStorageTrieReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/trieread", nil)
// snapStorageSnapReadCounter measures time spent on the snapshot storage iteration
snapStorageSnapReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/snapread", nil)
// snapStorageWriteCounter measures time spent on writing/updating/deleting storages
snapStorageWriteCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/write", nil)
)
// generatorStats is a collection of statistics gathered by the snapshot generator
// for logging purposes.
type generatorStats struct {
origin uint64 // Origin prefix where generation started
start time.Time // Timestamp when generation started
accounts uint64 // Number of accounts indexed(generated or recovered)
slots uint64 // Number of storage slots indexed(generated or recovered)
storage common.StorageSize // Total account and storage slot size(generation or recovery)
}
// Log creates an contextual log with the given message and the context pulled
// from the internally maintained statistics.
func (gs *generatorStats) Log(msg string, root common.Hash, marker []byte) {
var ctx []interface{}
if root != (common.Hash{}) {
ctx = append(ctx, []interface{}{"root", root}...)
}
// Figure out whether we're after or within an account
switch len(marker) {
case common.HashLength:
ctx = append(ctx, []interface{}{"at", common.BytesToHash(marker)}...)
case 2 * common.HashLength:
ctx = append(ctx, []interface{}{
"in", common.BytesToHash(marker[:common.HashLength]),
"at", common.BytesToHash(marker[common.HashLength:]),
}...)
}
// Add the usual measurements
ctx = append(ctx, []interface{}{
"accounts", gs.accounts,
"slots", gs.slots,
"storage", gs.storage,
"elapsed", common.PrettyDuration(time.Since(gs.start)),
}...)
// Calculate the estimated indexing time based on current stats
if len(marker) > 0 {
if done := binary.BigEndian.Uint64(marker[:8]) - gs.origin; done > 0 {
left := math.MaxUint64 - binary.BigEndian.Uint64(marker[:8])
speed := done/uint64(time.Since(gs.start)/time.Millisecond+1) + 1 // +1s to avoid division by zero
ctx = append(ctx, []interface{}{
"eta", common.PrettyDuration(time.Duration(left/speed) * time.Millisecond),
}...)
}
}
log.Info(msg, ctx...)
}
// generateSnapshot regenerates a brand new snapshot based on an existing state
// database and head block asynchronously. The snapshot is returned immediately
// and generation is continued in the background until done.
func generateSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int, root common.Hash) *diskLayer {
// Create a new disk layer with an initialized state marker at zero
var (
stats = &generatorStats{start: time.Now()}
batch = diskdb.NewBatch()
genMarker = []byte{} // Initialized but empty!
)
rawdb.WriteSnapshotRoot(batch, root)
journalProgress(batch, genMarker, stats)
if err := batch.Write(); err != nil {
log.Crit("Failed to write initialized state marker", "err", err)
}
base := &diskLayer{
diskdb: diskdb,
triedb: triedb,
root: root,
cache: fastcache.New(cache * 1024 * 1024),
genMarker: genMarker,
genPending: make(chan struct{}),
genAbort: make(chan chan *generatorStats),
}
go base.generate(stats)
log.Debug("Start snapshot generation", "root", root)
return base
}
// journalProgress persists the generator stats into the database to resume later.
func journalProgress(db ethdb.KeyValueWriter, marker []byte, stats *generatorStats) {
// Write out the generator marker. Note it's a standalone disk layer generator
// which is not mixed with journal. It's ok if the generator is persisted while
// journal is not.
entry := journalGenerator{
Done: marker == nil,
Marker: marker,
}
if stats != nil {
entry.Accounts = stats.accounts
entry.Slots = stats.slots
entry.Storage = uint64(stats.storage)
}
blob, err := rlp.EncodeToBytes(entry)
if err != nil {
panic(err) // Cannot happen, here to catch dev errors
}
var logstr string
switch {
case marker == nil:
logstr = "done"
case bytes.Equal(marker, []byte{}):
logstr = "empty"
case len(marker) == common.HashLength:
logstr = fmt.Sprintf("%#x", marker)
default:
logstr = fmt.Sprintf("%#x:%#x", marker[:common.HashLength], marker[common.HashLength:])
}
log.Debug("Journalled generator progress", "progress", logstr)
rawdb.WriteSnapshotGenerator(db, blob)
}
// proofResult contains the output of range proving which can be used
// for further processing regardless if it is successful or not.
type proofResult struct {
keys [][]byte // The key set of all elements being iterated, even proving is failed
vals [][]byte // The val set of all elements being iterated, even proving is failed
diskMore bool // Set when the database has extra snapshot states since last iteration
trieMore bool // Set when the trie has extra snapshot states(only meaningful for successful proving)
proofErr error // Indicator whether the given state range is valid or not
tr *trie.Trie // The trie, in case the trie was resolved by the prover (may be nil)
}
// valid returns the indicator that range proof is successful or not.
func (result *proofResult) valid() bool {
return result.proofErr == nil
}
// last returns the last verified element key regardless of whether the range proof is
// successful or not. Nil is returned if nothing involved in the proving.
func (result *proofResult) last() []byte {
var last []byte
if len(result.keys) > 0 {
last = result.keys[len(result.keys)-1]
}
return last
}
// forEach iterates all the visited elements and applies the given callback on them.
// The iteration is aborted if the callback returns non-nil error.
func (result *proofResult) forEach(callback func(key []byte, val []byte) error) error {
for i := 0; i < len(result.keys); i++ {
key, val := result.keys[i], result.vals[i]
if err := callback(key, val); err != nil {
return err
}
}
return nil
}
// proveRange proves the snapshot segment with particular prefix is "valid".
// The iteration start point will be assigned if the iterator is restored from
// the last interruption. Max will be assigned in order to limit the maximum
// amount of data involved in each iteration.
//
// The proof result will be returned if the range proving is finished, otherwise
// the error will be returned to abort the entire procedure.
func (dl *diskLayer) proveRange(stats *generatorStats, root common.Hash, prefix []byte, kind string, origin []byte, max int, valueConvertFn func([]byte) ([]byte, error)) (*proofResult, error) {
var (
keys [][]byte
vals [][]byte
proof = rawdb.NewMemoryDatabase()
diskMore = false
)
iter := dl.diskdb.NewIterator(prefix, origin)
defer iter.Release()
var start = time.Now()
for iter.Next() {
key := iter.Key()
if len(key) != len(prefix)+common.HashLength {
continue
}
if len(keys) == max {
// Break if we've reached the max size, and signal that we're not
// done yet.
diskMore = true
break
}
keys = append(keys, common.CopyBytes(key[len(prefix):]))
if valueConvertFn == nil {
vals = append(vals, common.CopyBytes(iter.Value()))
} else {
val, err := valueConvertFn(iter.Value())
if err != nil {
// Special case, the state data is corrupted (invalid slim-format account),
// don't abort the entire procedure directly. Instead, let the fallback
// generation to heal the invalid data.
//
// Here append the original value to ensure that the number of key and
// value are the same.
vals = append(vals, common.CopyBytes(iter.Value()))
log.Error("Failed to convert account state data", "err", err)
} else {
vals = append(vals, val)
}
}
}
// Update metrics for database iteration and merkle proving
if kind == "storage" {
snapStorageSnapReadCounter.Inc(time.Since(start).Nanoseconds())
} else {
snapAccountSnapReadCounter.Inc(time.Since(start).Nanoseconds())
}
defer func(start time.Time) {
if kind == "storage" {
snapStorageProveCounter.Inc(time.Since(start).Nanoseconds())
} else {
snapAccountProveCounter.Inc(time.Since(start).Nanoseconds())
}
}(time.Now())
// The snap state is exhausted, pass the entire key/val set for verification
if origin == nil && !diskMore {
stackTr := trie.NewStackTrie(nil)
for i, key := range keys {
stackTr.TryUpdate(key, vals[i])
}
if gotRoot := stackTr.Hash(); gotRoot != root {
return &proofResult{
keys: keys,
vals: vals,
proofErr: fmt.Errorf("wrong root: have %#x want %#x", gotRoot, root),
}, nil
}
return &proofResult{keys: keys, vals: vals}, nil
}
// Snap state is chunked, generate edge proofs for verification.
tr, err := trie.New(root, dl.triedb)
if err != nil {
stats.Log("Trie missing, state snapshotting paused", dl.root, dl.genMarker)
return nil, errMissingTrie
}
// Firstly find out the key of last iterated element.
var last []byte
if len(keys) > 0 {
last = keys[len(keys)-1]
}
// Generate the Merkle proofs for the first and last element
if origin == nil {
origin = common.Hash{}.Bytes()
}
if err := tr.Prove(origin, 0, proof); err != nil {
log.Debug("Failed to prove range", "kind", kind, "origin", origin, "err", err)
return &proofResult{
keys: keys,
vals: vals,
diskMore: diskMore,
proofErr: err,
tr: tr,
}, nil
}
if last != nil {
if err := tr.Prove(last, 0, proof); err != nil {
log.Debug("Failed to prove range", "kind", kind, "last", last, "err", err)
return &proofResult{
keys: keys,
vals: vals,
diskMore: diskMore,
proofErr: err,
tr: tr,
}, nil
}
}
// Verify the snapshot segment with range prover, ensure that all flat states
// in this range correspond to merkle trie.
cont, err := trie.VerifyRangeProof(root, origin, last, keys, vals, proof)
return &proofResult{
keys: keys,
vals: vals,
diskMore: diskMore,
trieMore: cont,
proofErr: err,
tr: tr},
nil
}
// onStateCallback is a function that is called by generateRange, when processing a range of
// accounts or storage slots. For each element, the callback is invoked.
// If 'delete' is true, then this element (and potential slots) needs to be deleted from the snapshot.
// If 'write' is true, then this element needs to be updated with the 'val'.
// If 'write' is false, then this element is already correct, and needs no update. However,
// for accounts, the storage trie of the account needs to be checked.
// The 'val' is the canonical encoding of the value (not the slim format for accounts)
type onStateCallback func(key []byte, val []byte, write bool, delete bool) error
// generateRange generates the state segment with particular prefix. Generation can
// either verify the correctness of existing state through rangeproof and skip
// generation, or iterate trie to regenerate state on demand.
func (dl *diskLayer) generateRange(root common.Hash, prefix []byte, kind string, origin []byte, max int, stats *generatorStats, onState onStateCallback, valueConvertFn func([]byte) ([]byte, error)) (bool, []byte, error) {
// Use range prover to check the validity of the flat state in the range
result, err := dl.proveRange(stats, root, prefix, kind, origin, max, valueConvertFn)
if err != nil {
return false, nil, err
}
last := result.last()
// Construct contextual logger
logCtx := []interface{}{"kind", kind, "prefix", hexutil.Encode(prefix)}
if len(origin) > 0 {
logCtx = append(logCtx, "origin", hexutil.Encode(origin))
}
logger := log.New(logCtx...)
// The range prover says the range is correct, skip trie iteration
if result.valid() {
snapSuccessfulRangeProofMeter.Mark(1)
logger.Trace("Proved state range", "last", hexutil.Encode(last))
// The verification is passed, process each state with the given
// callback function. If this state represents a contract, the
// corresponding storage check will be performed in the callback
if err := result.forEach(func(key []byte, val []byte) error { return onState(key, val, false, false) }); err != nil {
return false, nil, err
}
// Only abort the iteration when both database and trie are exhausted
return !result.diskMore && !result.trieMore, last, nil
}
logger.Trace("Detected outdated state range", "last", hexutil.Encode(last), "err", result.proofErr)
snapFailedRangeProofMeter.Mark(1)
// Special case, the entire trie is missing. In the original trie scheme,
// all the duplicated subtries will be filter out(only one copy of data
// will be stored). While in the snapshot model, all the storage tries
// belong to different contracts will be kept even they are duplicated.
// Track it to a certain extent remove the noise data used for statistics.
if origin == nil && last == nil {
meter := snapMissallAccountMeter
if kind == "storage" {
meter = snapMissallStorageMeter
}
meter.Mark(1)
}
// We use the snap data to build up a cache which can be used by the
// main account trie as a primary lookup when resolving hashes
var snapNodeCache ethdb.KeyValueStore
if len(result.keys) > 0 {
snapNodeCache = memorydb.New()
snapTrieDb := trie.NewDatabase(snapNodeCache)
snapTrie, _ := trie.New(common.Hash{}, snapTrieDb)
for i, key := range result.keys {
snapTrie.Update(key, result.vals[i])
}
root, _ := snapTrie.Commit(nil)
snapTrieDb.Commit(root, false, nil)
}
tr := result.tr
if tr == nil {
tr, err = trie.New(root, dl.triedb)
if err != nil {
stats.Log("Trie missing, state snapshotting paused", dl.root, dl.genMarker)
return false, nil, errMissingTrie
}
}
var (
trieMore bool
nodeIt = tr.NodeIterator(origin)
iter = trie.NewIterator(nodeIt)
kvkeys, kvvals = result.keys, result.vals
// counters
count = 0 // number of states delivered by iterator
created = 0 // states created from the trie
updated = 0 // states updated from the trie
deleted = 0 // states not in trie, but were in snapshot
untouched = 0 // states already correct
// timers
start = time.Now()
internal time.Duration
)
nodeIt.AddResolver(snapNodeCache)
for iter.Next() {
if last != nil && bytes.Compare(iter.Key, last) > 0 {
trieMore = true
break
}
count++
write := true
created++
for len(kvkeys) > 0 {
if cmp := bytes.Compare(kvkeys[0], iter.Key); cmp < 0 {
// delete the key
istart := time.Now()
if err := onState(kvkeys[0], nil, false, true); err != nil {
return false, nil, err
}
kvkeys = kvkeys[1:]
kvvals = kvvals[1:]
deleted++
internal += time.Since(istart)
continue
} else if cmp == 0 {
// the snapshot key can be overwritten
created--
if write = !bytes.Equal(kvvals[0], iter.Value); write {
updated++
} else {
untouched++
}
kvkeys = kvkeys[1:]
kvvals = kvvals[1:]
}
break
}
istart := time.Now()
if err := onState(iter.Key, iter.Value, write, false); err != nil {
return false, nil, err
}
internal += time.Since(istart)
}
if iter.Err != nil {
return false, nil, iter.Err
}
// Delete all stale snapshot states remaining
istart := time.Now()
for _, key := range kvkeys {
if err := onState(key, nil, false, true); err != nil {
return false, nil, err
}
deleted += 1
}
internal += time.Since(istart)
// Update metrics for counting trie iteration
if kind == "storage" {
snapStorageTrieReadCounter.Inc((time.Since(start) - internal).Nanoseconds())
} else {
snapAccountTrieReadCounter.Inc((time.Since(start) - internal).Nanoseconds())
}
logger.Debug("Regenerated state range", "root", root, "last", hexutil.Encode(last),
"count", count, "created", created, "updated", updated, "untouched", untouched, "deleted", deleted)
// If there are either more trie items, or there are more snap items
// (in the next segment), then we need to keep working
return !trieMore && !result.diskMore, last, nil
}
// generate is a background thread that iterates over the state and storage tries,
// constructing the state snapshot. All the arguments are purely for statistics
// gathering and logging, since the method surfs the blocks as they arrive, often
// being restarted.
func (dl *diskLayer) generate(stats *generatorStats) {
var (
accMarker []byte
accountRange = accountCheckRange
)
if len(dl.genMarker) > 0 { // []byte{} is the start, use nil for that
// Always reset the initial account range as 1
// whenever recover from the interruption.
accMarker, accountRange = dl.genMarker[:common.HashLength], 1
}
var (
batch = dl.diskdb.NewBatch()
logged = time.Now()
accOrigin = common.CopyBytes(accMarker)
abort chan *generatorStats
)
stats.Log("Resuming state snapshot generation", dl.root, dl.genMarker)
checkAndFlush := func(currentLocation []byte) error {
select {
case abort = <-dl.genAbort:
default:
}
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Flush out the batch anyway no matter it's empty or not.
// It's possible that all the states are recovered and the
// generation indeed makes progress.
journalProgress(batch, currentLocation, stats)
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
dl.lock.Lock()
dl.genMarker = currentLocation
dl.lock.Unlock()
if abort != nil {
stats.Log("Aborting state snapshot generation", dl.root, currentLocation)
return errors.New("aborted")
}
}
if time.Since(logged) > 8*time.Second {
stats.Log("Generating state snapshot", dl.root, currentLocation)
logged = time.Now()
}
return nil
}
onAccount := func(key []byte, val []byte, write bool, delete bool) error {
var (
start = time.Now()
accountHash = common.BytesToHash(key)
)
if delete {
rawdb.DeleteAccountSnapshot(batch, accountHash)
snapWipedAccountMeter.Mark(1)
// Ensure that any previous snapshot storage values are cleared
prefix := append(rawdb.SnapshotStoragePrefix, accountHash.Bytes()...)
keyLen := len(rawdb.SnapshotStoragePrefix) + 2*common.HashLength
if err := wipeKeyRange(dl.diskdb, "storage", prefix, nil, nil, keyLen, snapWipedStorageMeter, false); err != nil {
return err
}
snapAccountWriteCounter.Inc(time.Since(start).Nanoseconds())
return nil
}
// Retrieve the current account and flatten it into the internal format
var acc struct {
Nonce uint64
Balance *big.Int
Root common.Hash
CodeHash []byte
}
if err := rlp.DecodeBytes(val, &acc); err != nil {
log.Crit("Invalid account encountered during snapshot creation", "err", err)
}
// If the account is not yet in-progress, write it out
if accMarker == nil || !bytes.Equal(accountHash[:], accMarker) {
dataLen := len(val) // Approximate size, saves us a round of RLP-encoding
if !write {
if bytes.Equal(acc.CodeHash, emptyCode[:]) {
dataLen -= 32
}
if acc.Root == emptyRoot {
dataLen -= 32
}
snapRecoveredAccountMeter.Mark(1)
} else {
data := SlimAccountRLP(acc.Nonce, acc.Balance, acc.Root, acc.CodeHash)
dataLen = len(data)
rawdb.WriteAccountSnapshot(batch, accountHash, data)
snapGeneratedAccountMeter.Mark(1)
}
stats.storage += common.StorageSize(1 + common.HashLength + dataLen)
stats.accounts++
}
// If we've exceeded our batch allowance or termination was requested, flush to disk
if err := checkAndFlush(accountHash[:]); err != nil {
return err
}
// If the iterated account is the contract, create a further loop to
// verify or regenerate the contract storage.
if acc.Root == emptyRoot {
// If the root is empty, we still need to ensure that any previous snapshot
// storage values are cleared
// TODO: investigate if this can be avoided, this will be very costly since it
// affects every single EOA account
// - Perhaps we can avoid if where codeHash is emptyCode
prefix := append(rawdb.SnapshotStoragePrefix, accountHash.Bytes()...)
keyLen := len(rawdb.SnapshotStoragePrefix) + 2*common.HashLength
if err := wipeKeyRange(dl.diskdb, "storage", prefix, nil, nil, keyLen, snapWipedStorageMeter, false); err != nil {
return err
}
snapAccountWriteCounter.Inc(time.Since(start).Nanoseconds())
} else {
snapAccountWriteCounter.Inc(time.Since(start).Nanoseconds())
var storeMarker []byte
if accMarker != nil && bytes.Equal(accountHash[:], accMarker) && len(dl.genMarker) > common.HashLength {
storeMarker = dl.genMarker[common.HashLength:]
}
onStorage := func(key []byte, val []byte, write bool, delete bool) error {
defer func(start time.Time) {
snapStorageWriteCounter.Inc(time.Since(start).Nanoseconds())
}(time.Now())
if delete {
rawdb.DeleteStorageSnapshot(batch, accountHash, common.BytesToHash(key))
snapWipedStorageMeter.Mark(1)
return nil
}
if write {
rawdb.WriteStorageSnapshot(batch, accountHash, common.BytesToHash(key), val)
snapGeneratedStorageMeter.Mark(1)
} else {
snapRecoveredStorageMeter.Mark(1)
}
stats.storage += common.StorageSize(1 + 2*common.HashLength + len(val))
stats.slots++
// If we've exceeded our batch allowance or termination was requested, flush to disk
if err := checkAndFlush(append(accountHash[:], key...)); err != nil {
return err
}
return nil
}
var storeOrigin = common.CopyBytes(storeMarker)
for {
exhausted, last, err := dl.generateRange(acc.Root, append(rawdb.SnapshotStoragePrefix, accountHash.Bytes()...), "storage", storeOrigin, storageCheckRange, stats, onStorage, nil)
if err != nil {
return err
}
if exhausted {
break
}
if storeOrigin = increaseKey(last); storeOrigin == nil {
break // special case, the last is 0xffffffff...fff
}
}
}
// Some account processed, unmark the marker
accMarker = nil
return nil
}
// Global loop for regerating the entire state trie + all layered storage tries.
for {
exhausted, last, err := dl.generateRange(dl.root, rawdb.SnapshotAccountPrefix, "account", accOrigin, accountRange, stats, onAccount, FullAccountRLP)
// The procedure it aborted, either by external signal or internal error
if err != nil {
if abort == nil { // aborted by internal error, wait the signal
abort = <-dl.genAbort
}
abort <- stats
return
}
// Abort the procedure if the entire snapshot is generated
if exhausted {
break
}
if accOrigin = increaseKey(last); accOrigin == nil {
break // special case, the last is 0xffffffff...fff
}
accountRange = accountCheckRange
}
// Snapshot fully generated, set the marker to nil.
// Note even there is nothing to commit, persist the
// generator anyway to mark the snapshot is complete.
journalProgress(batch, nil, stats)
if err := batch.Write(); err != nil {
log.Error("Failed to flush batch", "err", err)
abort = <-dl.genAbort
abort <- stats
return
}
batch.Reset()
log.Info("Generated state snapshot", "accounts", stats.accounts, "slots", stats.slots,
"storage", stats.storage, "elapsed", common.PrettyDuration(time.Since(stats.start)))
dl.lock.Lock()
dl.genMarker = nil
close(dl.genPending)
dl.lock.Unlock()
// Someone will be looking for us, wait it out
abort = <-dl.genAbort
abort <- nil
}
// increaseKey increase the input key by one bit. Return nil if the entire
// addition operation overflows,
func increaseKey(key []byte) []byte {
for i := len(key) - 1; i >= 0; i-- {
key[i]++
if key[i] != 0x0 {
return key
}
}
return nil
}