bsc/core/state_transition.go
Martin HS a5a4fa7032
all: use uint256 in state (#28598)
This change makes use of uin256 to represent balance in state. It touches primarily upon statedb, stateobject and state processing, trying to avoid changes in transaction pools, core types, rpc and tracers.
2024-01-23 14:51:58 +01:00

499 lines
18 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"fmt"
"math"
"math/big"
"github.com/ethereum/go-ethereum/common"
cmath "github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto/kzg4844"
"github.com/ethereum/go-ethereum/params"
"github.com/holiman/uint256"
)
// ExecutionResult includes all output after executing given evm
// message no matter the execution itself is successful or not.
type ExecutionResult struct {
UsedGas uint64 // Total used gas, not including the refunded gas
RefundedGas uint64 // Total gas refunded after execution
Err error // Any error encountered during the execution(listed in core/vm/errors.go)
ReturnData []byte // Returned data from evm(function result or data supplied with revert opcode)
}
// Unwrap returns the internal evm error which allows us for further
// analysis outside.
func (result *ExecutionResult) Unwrap() error {
return result.Err
}
// Failed returns the indicator whether the execution is successful or not
func (result *ExecutionResult) Failed() bool { return result.Err != nil }
// Return is a helper function to help caller distinguish between revert reason
// and function return. Return returns the data after execution if no error occurs.
func (result *ExecutionResult) Return() []byte {
if result.Err != nil {
return nil
}
return common.CopyBytes(result.ReturnData)
}
// Revert returns the concrete revert reason if the execution is aborted by `REVERT`
// opcode. Note the reason can be nil if no data supplied with revert opcode.
func (result *ExecutionResult) Revert() []byte {
if result.Err != vm.ErrExecutionReverted {
return nil
}
return common.CopyBytes(result.ReturnData)
}
// IntrinsicGas computes the 'intrinsic gas' for a message with the given data.
func IntrinsicGas(data []byte, accessList types.AccessList, isContractCreation bool, isHomestead, isEIP2028 bool, isEIP3860 bool) (uint64, error) {
// Set the starting gas for the raw transaction
var gas uint64
if isContractCreation && isHomestead {
gas = params.TxGasContractCreation
} else {
gas = params.TxGas
}
dataLen := uint64(len(data))
// Bump the required gas by the amount of transactional data
if dataLen > 0 {
// Zero and non-zero bytes are priced differently
var nz uint64
for _, byt := range data {
if byt != 0 {
nz++
}
}
// Make sure we don't exceed uint64 for all data combinations
nonZeroGas := params.TxDataNonZeroGasFrontier
if isEIP2028 {
nonZeroGas = params.TxDataNonZeroGasEIP2028
}
if (math.MaxUint64-gas)/nonZeroGas < nz {
return 0, ErrGasUintOverflow
}
gas += nz * nonZeroGas
z := dataLen - nz
if (math.MaxUint64-gas)/params.TxDataZeroGas < z {
return 0, ErrGasUintOverflow
}
gas += z * params.TxDataZeroGas
if isContractCreation && isEIP3860 {
lenWords := toWordSize(dataLen)
if (math.MaxUint64-gas)/params.InitCodeWordGas < lenWords {
return 0, ErrGasUintOverflow
}
gas += lenWords * params.InitCodeWordGas
}
}
if accessList != nil {
gas += uint64(len(accessList)) * params.TxAccessListAddressGas
gas += uint64(accessList.StorageKeys()) * params.TxAccessListStorageKeyGas
}
return gas, nil
}
// toWordSize returns the ceiled word size required for init code payment calculation.
func toWordSize(size uint64) uint64 {
if size > math.MaxUint64-31 {
return math.MaxUint64/32 + 1
}
return (size + 31) / 32
}
// A Message contains the data derived from a single transaction that is relevant to state
// processing.
type Message struct {
To *common.Address
From common.Address
Nonce uint64
Value *big.Int
GasLimit uint64
GasPrice *big.Int
GasFeeCap *big.Int
GasTipCap *big.Int
Data []byte
AccessList types.AccessList
BlobGasFeeCap *big.Int
BlobHashes []common.Hash
// When SkipAccountChecks is true, the message nonce is not checked against the
// account nonce in state. It also disables checking that the sender is an EOA.
// This field will be set to true for operations like RPC eth_call.
SkipAccountChecks bool
}
// TransactionToMessage converts a transaction into a Message.
func TransactionToMessage(tx *types.Transaction, s types.Signer, baseFee *big.Int) (*Message, error) {
msg := &Message{
Nonce: tx.Nonce(),
GasLimit: tx.Gas(),
GasPrice: new(big.Int).Set(tx.GasPrice()),
GasFeeCap: new(big.Int).Set(tx.GasFeeCap()),
GasTipCap: new(big.Int).Set(tx.GasTipCap()),
To: tx.To(),
Value: tx.Value(),
Data: tx.Data(),
AccessList: tx.AccessList(),
SkipAccountChecks: false,
BlobHashes: tx.BlobHashes(),
BlobGasFeeCap: tx.BlobGasFeeCap(),
}
// If baseFee provided, set gasPrice to effectiveGasPrice.
if baseFee != nil {
msg.GasPrice = cmath.BigMin(msg.GasPrice.Add(msg.GasTipCap, baseFee), msg.GasFeeCap)
}
var err error
msg.From, err = types.Sender(s, tx)
return msg, err
}
// ApplyMessage computes the new state by applying the given message
// against the old state within the environment.
//
// ApplyMessage returns the bytes returned by any EVM execution (if it took place),
// the gas used (which includes gas refunds) and an error if it failed. An error always
// indicates a core error meaning that the message would always fail for that particular
// state and would never be accepted within a block.
func ApplyMessage(evm *vm.EVM, msg *Message, gp *GasPool) (*ExecutionResult, error) {
return NewStateTransition(evm, msg, gp).TransitionDb()
}
// StateTransition represents a state transition.
//
// == The State Transitioning Model
//
// A state transition is a change made when a transaction is applied to the current world
// state. The state transitioning model does all the necessary work to work out a valid new
// state root.
//
// 1. Nonce handling
// 2. Pre pay gas
// 3. Create a new state object if the recipient is nil
// 4. Value transfer
//
// == If contract creation ==
//
// 4a. Attempt to run transaction data
// 4b. If valid, use result as code for the new state object
//
// == end ==
//
// 5. Run Script section
// 6. Derive new state root
type StateTransition struct {
gp *GasPool
msg *Message
gasRemaining uint64
initialGas uint64
state vm.StateDB
evm *vm.EVM
}
// NewStateTransition initialises and returns a new state transition object.
func NewStateTransition(evm *vm.EVM, msg *Message, gp *GasPool) *StateTransition {
return &StateTransition{
gp: gp,
evm: evm,
msg: msg,
state: evm.StateDB,
}
}
// to returns the recipient of the message.
func (st *StateTransition) to() common.Address {
if st.msg == nil || st.msg.To == nil /* contract creation */ {
return common.Address{}
}
return *st.msg.To
}
func (st *StateTransition) buyGas() error {
mgval := new(big.Int).SetUint64(st.msg.GasLimit)
mgval = mgval.Mul(mgval, st.msg.GasPrice)
balanceCheck := new(big.Int).Set(mgval)
if st.msg.GasFeeCap != nil {
balanceCheck.SetUint64(st.msg.GasLimit)
balanceCheck = balanceCheck.Mul(balanceCheck, st.msg.GasFeeCap)
balanceCheck.Add(balanceCheck, st.msg.Value)
}
if st.evm.ChainConfig().IsCancun(st.evm.Context.BlockNumber, st.evm.Context.Time) {
if blobGas := st.blobGasUsed(); blobGas > 0 {
// Check that the user has enough funds to cover blobGasUsed * tx.BlobGasFeeCap
blobBalanceCheck := new(big.Int).SetUint64(blobGas)
blobBalanceCheck.Mul(blobBalanceCheck, st.msg.BlobGasFeeCap)
balanceCheck.Add(balanceCheck, blobBalanceCheck)
// Pay for blobGasUsed * actual blob fee
blobFee := new(big.Int).SetUint64(blobGas)
blobFee.Mul(blobFee, st.evm.Context.BlobBaseFee)
mgval.Add(mgval, blobFee)
}
}
balanceCheckU256, overflow := uint256.FromBig(balanceCheck)
if overflow {
return fmt.Errorf("%w: address %v required balance exceeds 256 bits", ErrInsufficientFunds, st.msg.From.Hex())
}
if have, want := st.state.GetBalance(st.msg.From), balanceCheckU256; have.Cmp(want) < 0 {
return fmt.Errorf("%w: address %v have %v want %v", ErrInsufficientFunds, st.msg.From.Hex(), have, want)
}
if err := st.gp.SubGas(st.msg.GasLimit); err != nil {
return err
}
st.gasRemaining += st.msg.GasLimit
st.initialGas = st.msg.GasLimit
mgvalU256, _ := uint256.FromBig(mgval)
st.state.SubBalance(st.msg.From, mgvalU256)
return nil
}
func (st *StateTransition) preCheck() error {
// Only check transactions that are not fake
msg := st.msg
if !msg.SkipAccountChecks {
// Make sure this transaction's nonce is correct.
stNonce := st.state.GetNonce(msg.From)
if msgNonce := msg.Nonce; stNonce < msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooHigh,
msg.From.Hex(), msgNonce, stNonce)
} else if stNonce > msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooLow,
msg.From.Hex(), msgNonce, stNonce)
} else if stNonce+1 < stNonce {
return fmt.Errorf("%w: address %v, nonce: %d", ErrNonceMax,
msg.From.Hex(), stNonce)
}
// Make sure the sender is an EOA
codeHash := st.state.GetCodeHash(msg.From)
if codeHash != (common.Hash{}) && codeHash != types.EmptyCodeHash {
return fmt.Errorf("%w: address %v, codehash: %s", ErrSenderNoEOA,
msg.From.Hex(), codeHash)
}
}
// Make sure that transaction gasFeeCap is greater than the baseFee (post london)
if st.evm.ChainConfig().IsLondon(st.evm.Context.BlockNumber) {
// Skip the checks if gas fields are zero and baseFee was explicitly disabled (eth_call)
skipCheck := st.evm.Config.NoBaseFee && msg.GasFeeCap.BitLen() == 0 && msg.GasTipCap.BitLen() == 0
if !skipCheck {
if l := msg.GasFeeCap.BitLen(); l > 256 {
return fmt.Errorf("%w: address %v, maxFeePerGas bit length: %d", ErrFeeCapVeryHigh,
msg.From.Hex(), l)
}
if l := msg.GasTipCap.BitLen(); l > 256 {
return fmt.Errorf("%w: address %v, maxPriorityFeePerGas bit length: %d", ErrTipVeryHigh,
msg.From.Hex(), l)
}
if msg.GasFeeCap.Cmp(msg.GasTipCap) < 0 {
return fmt.Errorf("%w: address %v, maxPriorityFeePerGas: %s, maxFeePerGas: %s", ErrTipAboveFeeCap,
msg.From.Hex(), msg.GasTipCap, msg.GasFeeCap)
}
// This will panic if baseFee is nil, but basefee presence is verified
// as part of header validation.
if msg.GasFeeCap.Cmp(st.evm.Context.BaseFee) < 0 {
return fmt.Errorf("%w: address %v, maxFeePerGas: %s, baseFee: %s", ErrFeeCapTooLow,
msg.From.Hex(), msg.GasFeeCap, st.evm.Context.BaseFee)
}
}
}
// Check the blob version validity
if msg.BlobHashes != nil {
// The to field of a blob tx type is mandatory, and a `BlobTx` transaction internally
// has it as a non-nillable value, so any msg derived from blob transaction has it non-nil.
// However, messages created through RPC (eth_call) don't have this restriction.
if msg.To == nil {
return ErrBlobTxCreate
}
if len(msg.BlobHashes) == 0 {
return ErrMissingBlobHashes
}
for i, hash := range msg.BlobHashes {
if !kzg4844.IsValidVersionedHash(hash[:]) {
return fmt.Errorf("blob %d has invalid hash version", i)
}
}
}
// Check that the user is paying at least the current blob fee
if st.evm.ChainConfig().IsCancun(st.evm.Context.BlockNumber, st.evm.Context.Time) {
if st.blobGasUsed() > 0 {
// Skip the checks if gas fields are zero and blobBaseFee was explicitly disabled (eth_call)
skipCheck := st.evm.Config.NoBaseFee && msg.BlobGasFeeCap.BitLen() == 0
if !skipCheck {
// This will panic if blobBaseFee is nil, but blobBaseFee presence
// is verified as part of header validation.
if msg.BlobGasFeeCap.Cmp(st.evm.Context.BlobBaseFee) < 0 {
return fmt.Errorf("%w: address %v blobGasFeeCap: %v, blobBaseFee: %v", ErrBlobFeeCapTooLow,
msg.From.Hex(), msg.BlobGasFeeCap, st.evm.Context.BlobBaseFee)
}
}
}
}
return st.buyGas()
}
// TransitionDb will transition the state by applying the current message and
// returning the evm execution result with following fields.
//
// - used gas: total gas used (including gas being refunded)
// - returndata: the returned data from evm
// - concrete execution error: various EVM errors which abort the execution, e.g.
// ErrOutOfGas, ErrExecutionReverted
//
// However if any consensus issue encountered, return the error directly with
// nil evm execution result.
func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {
// First check this message satisfies all consensus rules before
// applying the message. The rules include these clauses
//
// 1. the nonce of the message caller is correct
// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
// 3. the amount of gas required is available in the block
// 4. the purchased gas is enough to cover intrinsic usage
// 5. there is no overflow when calculating intrinsic gas
// 6. caller has enough balance to cover asset transfer for **topmost** call
// Check clauses 1-3, buy gas if everything is correct
if err := st.preCheck(); err != nil {
return nil, err
}
if tracer := st.evm.Config.Tracer; tracer != nil {
tracer.CaptureTxStart(st.initialGas)
defer func() {
tracer.CaptureTxEnd(st.gasRemaining)
}()
}
var (
msg = st.msg
sender = vm.AccountRef(msg.From)
rules = st.evm.ChainConfig().Rules(st.evm.Context.BlockNumber, st.evm.Context.Random != nil, st.evm.Context.Time)
contractCreation = msg.To == nil
)
// Check clauses 4-5, subtract intrinsic gas if everything is correct
gas, err := IntrinsicGas(msg.Data, msg.AccessList, contractCreation, rules.IsHomestead, rules.IsIstanbul, rules.IsShanghai)
if err != nil {
return nil, err
}
if st.gasRemaining < gas {
return nil, fmt.Errorf("%w: have %d, want %d", ErrIntrinsicGas, st.gasRemaining, gas)
}
st.gasRemaining -= gas
// Check clause 6
value, overflow := uint256.FromBig(msg.Value)
if overflow {
return nil, fmt.Errorf("%w: address %v", ErrInsufficientFundsForTransfer, msg.From.Hex())
}
if !value.IsZero() && !st.evm.Context.CanTransfer(st.state, msg.From, value) {
return nil, fmt.Errorf("%w: address %v", ErrInsufficientFundsForTransfer, msg.From.Hex())
}
// Check whether the init code size has been exceeded.
if rules.IsShanghai && contractCreation && len(msg.Data) > params.MaxInitCodeSize {
return nil, fmt.Errorf("%w: code size %v limit %v", ErrMaxInitCodeSizeExceeded, len(msg.Data), params.MaxInitCodeSize)
}
// Execute the preparatory steps for state transition which includes:
// - prepare accessList(post-berlin)
// - reset transient storage(eip 1153)
st.state.Prepare(rules, msg.From, st.evm.Context.Coinbase, msg.To, vm.ActivePrecompiles(rules), msg.AccessList)
var (
ret []byte
vmerr error // vm errors do not effect consensus and are therefore not assigned to err
)
if contractCreation {
ret, _, st.gasRemaining, vmerr = st.evm.Create(sender, msg.Data, st.gasRemaining, value)
} else {
// Increment the nonce for the next transaction
st.state.SetNonce(msg.From, st.state.GetNonce(sender.Address())+1)
ret, st.gasRemaining, vmerr = st.evm.Call(sender, st.to(), msg.Data, st.gasRemaining, value)
}
var gasRefund uint64
if !rules.IsLondon {
// Before EIP-3529: refunds were capped to gasUsed / 2
gasRefund = st.refundGas(params.RefundQuotient)
} else {
// After EIP-3529: refunds are capped to gasUsed / 5
gasRefund = st.refundGas(params.RefundQuotientEIP3529)
}
effectiveTip := msg.GasPrice
if rules.IsLondon {
effectiveTip = cmath.BigMin(msg.GasTipCap, new(big.Int).Sub(msg.GasFeeCap, st.evm.Context.BaseFee))
}
effectiveTipU256, _ := uint256.FromBig(effectiveTip)
if st.evm.Config.NoBaseFee && msg.GasFeeCap.Sign() == 0 && msg.GasTipCap.Sign() == 0 {
// Skip fee payment when NoBaseFee is set and the fee fields
// are 0. This avoids a negative effectiveTip being applied to
// the coinbase when simulating calls.
} else {
fee := new(uint256.Int).SetUint64(st.gasUsed())
fee.Mul(fee, effectiveTipU256)
st.state.AddBalance(st.evm.Context.Coinbase, fee)
}
return &ExecutionResult{
UsedGas: st.gasUsed(),
RefundedGas: gasRefund,
Err: vmerr,
ReturnData: ret,
}, nil
}
func (st *StateTransition) refundGas(refundQuotient uint64) uint64 {
// Apply refund counter, capped to a refund quotient
refund := st.gasUsed() / refundQuotient
if refund > st.state.GetRefund() {
refund = st.state.GetRefund()
}
st.gasRemaining += refund
// Return ETH for remaining gas, exchanged at the original rate.
remaining := uint256.NewInt(st.gasRemaining)
remaining = remaining.Mul(remaining, uint256.MustFromBig(st.msg.GasPrice))
st.state.AddBalance(st.msg.From, remaining)
// Also return remaining gas to the block gas counter so it is
// available for the next transaction.
st.gp.AddGas(st.gasRemaining)
return refund
}
// gasUsed returns the amount of gas used up by the state transition.
func (st *StateTransition) gasUsed() uint64 {
return st.initialGas - st.gasRemaining
}
// blobGasUsed returns the amount of blob gas used by the message.
func (st *StateTransition) blobGasUsed() uint64 {
return uint64(len(st.msg.BlobHashes) * params.BlobTxBlobGasPerBlob)
}