bsc/core/tx_pool_test.go
Jeffrey Wilcke f0cbebb19f core: added basic chain configuration
Added chain configuration options and write out during genesis database
insertion. If no "config" was found, nothing is written to the database.

Configurations are written on a per genesis base. This means
that any chain (which is identified by it's genesis hash) can have their
own chain settings.
2016-04-01 01:01:10 +02:00

538 lines
18 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"crypto/ecdsa"
"math/big"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
)
func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, big.NewInt(1), nil).SignECDSA(key)
return tx
}
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
var m event.TypeMux
key, _ := crypto.GenerateKey()
newPool := NewTxPool(testChainConfig(), &m, func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
newPool.resetState()
return newPool, key
}
func TestInvalidTransactions(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
if err := pool.Add(tx); err != ErrNonExistentAccount {
t.Error("expected", ErrNonExistentAccount)
}
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
if err := pool.Add(tx); err != ErrInsufficientFunds {
t.Error("expected", ErrInsufficientFunds)
}
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice()))
currentState.AddBalance(from, balance)
if err := pool.Add(tx); err != ErrIntrinsicGas {
t.Error("expected", ErrIntrinsicGas, "got", err)
}
currentState.SetNonce(from, 1)
currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
tx = transaction(0, big.NewInt(100000), key)
if err := pool.Add(tx); err != ErrNonce {
t.Error("expected", ErrNonce)
}
tx = transaction(1, big.NewInt(100000), key)
pool.minGasPrice = big.NewInt(1000)
if err := pool.Add(tx); err != ErrCheap {
t.Error("expected", ErrCheap, "got", err)
}
pool.SetLocal(tx)
if err := pool.Add(tx); err != nil {
t.Error("expected", nil, "got", err)
}
}
func TestTransactionQueue(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.queueTx(tx.Hash(), tx)
pool.checkQueue()
if len(pool.pending) != 1 {
t.Error("expected valid txs to be 1 is", len(pool.pending))
}
tx = transaction(1, big.NewInt(100), key)
from, _ = tx.From()
currentState.SetNonce(from, 2)
pool.queueTx(tx.Hash(), tx)
pool.checkQueue()
if _, ok := pool.pending[tx.Hash()]; ok {
t.Error("expected transaction to be in tx pool")
}
if len(pool.queue[from]) > 0 {
t.Error("expected transaction queue to be empty. is", len(pool.queue[from]))
}
pool, key = setupTxPool()
tx1 := transaction(0, big.NewInt(100), key)
tx2 := transaction(10, big.NewInt(100), key)
tx3 := transaction(11, big.NewInt(100), key)
from, _ = tx1.From()
currentState, _ = pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.queueTx(tx1.Hash(), tx1)
pool.queueTx(tx2.Hash(), tx2)
pool.queueTx(tx3.Hash(), tx3)
pool.checkQueue()
if len(pool.pending) != 1 {
t.Error("expected tx pool to be 1, got", len(pool.pending))
}
if len(pool.queue[from]) != 2 {
t.Error("expected len(queue) == 2, got", len(pool.queue[from]))
}
}
func TestRemoveTx(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
pool.queueTx(tx.Hash(), tx)
pool.addTx(tx.Hash(), from, tx)
if len(pool.queue) != 1 {
t.Error("expected queue to be 1, got", len(pool.queue))
}
if len(pool.pending) != 1 {
t.Error("expected txs to be 1, got", len(pool.pending))
}
pool.RemoveTx(tx.Hash())
if len(pool.queue) > 0 {
t.Error("expected queue to be 0, got", len(pool.queue))
}
if len(pool.pending) > 0 {
t.Error("expected txs to be 0, got", len(pool.pending))
}
}
func TestNegativeValue(t *testing.T) {
pool, key := setupTxPool()
tx, _ := types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil).SignECDSA(key)
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
if err := pool.Add(tx); err != ErrNegativeValue {
t.Error("expected", ErrNegativeValue, "got", err)
}
}
func TestTransactionChainFork(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
}
resetState()
tx := transaction(0, big.NewInt(100000), key)
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
pool.RemoveTransactions([]*types.Transaction{tx})
// reset the pool's internal state
resetState()
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
}
func TestTransactionDoubleNonce(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
}
resetState()
tx := transaction(0, big.NewInt(100000), key)
tx2 := transaction(0, big.NewInt(1000000), key)
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
if err := pool.add(tx2); err != nil {
t.Error("didn't expect error", err)
}
pool.checkQueue()
if len(pool.pending) != 2 {
t.Error("expected 2 pending txs. Got", len(pool.pending))
}
}
func TestMissingNonce(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
tx := transaction(1, big.NewInt(100000), key)
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
if len(pool.pending) != 0 {
t.Error("expected 0 pending transactions, got", len(pool.pending))
}
if len(pool.queue[addr]) != 1 {
t.Error("expected 1 queued transaction, got", len(pool.queue[addr]))
}
}
func TestNonceRecovery(t *testing.T) {
const n = 10
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
currentState, _ := pool.currentState()
currentState.SetNonce(addr, n)
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
tx := transaction(n, big.NewInt(100000), key)
if err := pool.Add(tx); err != nil {
t.Error(err)
}
// simulate some weird re-order of transactions and missing nonce(s)
currentState.SetNonce(addr, n-1)
pool.resetState()
if fn := pool.pendingState.GetNonce(addr); fn != n+1 {
t.Errorf("expected nonce to be %d, got %d", n+1, fn)
}
}
func TestRemovedTxEvent(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(1000000), key)
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1000000000000))
pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}})
pool.eventMux.Post(ChainHeadEvent{nil})
if len(pool.pending) != 1 {
t.Error("expected 1 pending tx, got", len(pool.pending))
}
}
// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add some pending and some queued transactions
var (
tx0 = transaction(0, big.NewInt(100), key)
tx1 = transaction(1, big.NewInt(200), key)
tx10 = transaction(10, big.NewInt(100), key)
tx11 = transaction(11, big.NewInt(200), key)
)
pool.addTx(tx0.Hash(), account, tx0)
pool.addTx(tx1.Hash(), account, tx1)
pool.queueTx(tx10.Hash(), tx10)
pool.queueTx(tx11.Hash(), tx11)
// Check that pre and post validations leave the pool as is
if len(pool.pending) != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), 2)
}
if len(pool.queue[account]) != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 2)
}
pool.resetState()
if len(pool.pending) != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), 2)
}
if len(pool.queue[account]) != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 2)
}
// Reduce the balance of the account, and check that invalidated transactions are dropped
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[tx0.Hash()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[tx1.Hash()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account][tx10.Hash()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account][tx11.Hash()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx11)
}
}
// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
// postponed back into the future queue to prevent broadcasting them.
func TestTransactionPostponing(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add a batch consecutive pending transactions for validation
txns := []*types.Transaction{}
for i := 0; i < 100; i++ {
var tx *types.Transaction
if i%2 == 0 {
tx = transaction(uint64(i), big.NewInt(100), key)
} else {
tx = transaction(uint64(i), big.NewInt(500), key)
}
pool.addTx(tx.Hash(), account, tx)
txns = append(txns, tx)
}
// Check that pre and post validations leave the pool as is
if len(pool.pending) != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns))
}
if len(pool.queue[account]) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0)
}
pool.resetState()
if len(pool.pending) != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns))
}
if len(pool.queue[account]) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0)
}
// Reduce the balance of the account, and check that transactions are reorganised
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[txns[0].Hash()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
}
if _, ok := pool.queue[account][txns[0].Hash()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
}
for i, tx := range txns[1:] {
if i%2 == 1 {
if _, ok := pool.pending[tx.Hash()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account][tx.Hash()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
}
} else {
if _, ok := pool.pending[tx.Hash()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account][tx.Hash()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
}
}
}
}
// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(1); i <= maxQueued+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != 0 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
}
if i <= maxQueued {
if len(pool.queue[account]) != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), i)
}
} else {
if len(pool.queue[account]) != maxQueued {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, len(pool.queue[account]), maxQueued)
}
}
}
}
// Tests that even if the transaction count belonging to a single account goes
// above some threshold, as long as the transactions are executable, they are
// accepted.
func TestTransactionPendingLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(0); i < maxQueued+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != int(i)+1 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), i+1)
}
if len(pool.queue[account]) != 0 {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), 0)
}
}
}
// Tests that the transaction limits are enforced the same way irrelevant whether
// the transactions are added one by one or in batches.
func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) }
func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }
func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
// Add a batch of transactions to a pool one by one
pool1, key1 := setupTxPool()
account1, _ := transaction(0, big.NewInt(0), key1).From()
state1, _ := pool1.currentState()
state1.AddBalance(account1, big.NewInt(1000000))
for i := uint64(0); i < maxQueued+5; i++ {
if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Add a batch of transactions to a pool in one bit batch
pool2, key2 := setupTxPool()
account2, _ := transaction(0, big.NewInt(0), key2).From()
state2, _ := pool2.currentState()
state2.AddBalance(account2, big.NewInt(1000000))
txns := []*types.Transaction{}
for i := uint64(0); i < maxQueued+5; i++ {
txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
}
pool2.AddTransactions(txns)
// Ensure the batch optimization honors the same pool mechanics
if len(pool1.pending) != len(pool2.pending) {
t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
}
if len(pool1.queue[account1]) != len(pool2.queue[account2]) {
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue[account1]), len(pool2.queue[account2]))
}
}
// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkValidatePool100(b *testing.B) { benchmarkValidatePool(b, 100) }
func BenchmarkValidatePool1000(b *testing.B) { benchmarkValidatePool(b, 1000) }
func BenchmarkValidatePool10000(b *testing.B) { benchmarkValidatePool(b, 10000) }
func benchmarkValidatePool(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(i), big.NewInt(100000), key)
pool.addTx(tx.Hash(), account, tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.validatePool()
}
}
// Benchmarks the speed of scheduling the contents of the future queue of the
// transaction pool.
func BenchmarkCheckQueue100(b *testing.B) { benchmarkCheckQueue(b, 100) }
func BenchmarkCheckQueue1000(b *testing.B) { benchmarkCheckQueue(b, 1000) }
func BenchmarkCheckQueue10000(b *testing.B) { benchmarkCheckQueue(b, 10000) }
func benchmarkCheckQueue(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(1+i), big.NewInt(100000), key)
pool.queueTx(tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.checkQueue()
}
}