bsc/rlp/rlpgen/gen.go
Felix Lange 9b93564e21
rlp/rlpgen: RLP encoder code generator (#24251)
This change adds a code generator tool for creating EncodeRLP method
implementations. The generated methods will behave identically to the
reflect-based encoder, but run faster because there is no reflection overhead.

Package rlp now provides the EncoderBuffer type for incremental encoding. This
is used by generated code, but the new methods can also be useful for
hand-written encoders.

There is also experimental support for generating DecodeRLP, and some new
methods have been added to the existing Stream type to support this. Creating
decoders with rlpgen is not recommended at this time because the generated
methods create very poor error reporting.

More detail about package rlp changes:

* rlp: externalize struct field processing / validation

This adds a new package, rlp/internal/rlpstruct, in preparation for the
RLP encoder generator.

I think the struct field rules are subtle enough to warrant extracting
this into their own package, even though it means that a bunch of
adapter code is needed for converting to/from rlpstruct.Type.

* rlp: add more decoder methods (for rlpgen)

This adds new methods on rlp.Stream:

- Uint64, Uint32, Uint16, Uint8, BigInt
- ReadBytes for decoding into []byte
- MoreDataInList - useful for optional list elements

* rlp: expose encoder buffer (for rlpgen)

This exposes the internal encoder buffer type for use in EncodeRLP
implementations.

The new EncoderBuffer type is a sort-of 'opaque handle' for a pointer to
encBuffer. It is implemented this way to ensure the global encBuffer pool
is handled correctly.
2022-02-16 18:14:12 +01:00

736 lines
20 KiB
Go

package main
import (
"bytes"
"fmt"
"go/format"
"go/types"
"sort"
"github.com/ethereum/go-ethereum/rlp/internal/rlpstruct"
)
// buildContext keeps the data needed for make*Op.
type buildContext struct {
topType *types.Named // the type we're creating methods for
encoderIface *types.Interface
decoderIface *types.Interface
rawValueType *types.Named
typeToStructCache map[types.Type]*rlpstruct.Type
}
func newBuildContext(packageRLP *types.Package) *buildContext {
enc := packageRLP.Scope().Lookup("Encoder").Type().Underlying()
dec := packageRLP.Scope().Lookup("Decoder").Type().Underlying()
rawv := packageRLP.Scope().Lookup("RawValue").Type()
return &buildContext{
typeToStructCache: make(map[types.Type]*rlpstruct.Type),
encoderIface: enc.(*types.Interface),
decoderIface: dec.(*types.Interface),
rawValueType: rawv.(*types.Named),
}
}
func (bctx *buildContext) isEncoder(typ types.Type) bool {
return types.Implements(typ, bctx.encoderIface)
}
func (bctx *buildContext) isDecoder(typ types.Type) bool {
return types.Implements(typ, bctx.decoderIface)
}
// typeToStructType converts typ to rlpstruct.Type.
func (bctx *buildContext) typeToStructType(typ types.Type) *rlpstruct.Type {
if prev := bctx.typeToStructCache[typ]; prev != nil {
return prev // short-circuit for recursive types.
}
// Resolve named types to their underlying type, but keep the name.
name := types.TypeString(typ, nil)
for {
utype := typ.Underlying()
if utype == typ {
break
}
typ = utype
}
// Create the type and store it in cache.
t := &rlpstruct.Type{
Name: name,
Kind: typeReflectKind(typ),
IsEncoder: bctx.isEncoder(typ),
IsDecoder: bctx.isDecoder(typ),
}
bctx.typeToStructCache[typ] = t
// Assign element type.
switch typ.(type) {
case *types.Array, *types.Slice, *types.Pointer:
etype := typ.(interface{ Elem() types.Type }).Elem()
t.Elem = bctx.typeToStructType(etype)
}
return t
}
// genContext is passed to the gen* methods of op when generating
// the output code. It tracks packages to be imported by the output
// file and assigns unique names of temporary variables.
type genContext struct {
inPackage *types.Package
imports map[string]struct{}
tempCounter int
}
func newGenContext(inPackage *types.Package) *genContext {
return &genContext{
inPackage: inPackage,
imports: make(map[string]struct{}),
}
}
func (ctx *genContext) temp() string {
v := fmt.Sprintf("_tmp%d", ctx.tempCounter)
ctx.tempCounter++
return v
}
func (ctx *genContext) resetTemp() {
ctx.tempCounter = 0
}
func (ctx *genContext) addImport(path string) {
if path == ctx.inPackage.Path() {
return // avoid importing the package that we're generating in.
}
// TODO: renaming?
ctx.imports[path] = struct{}{}
}
// importsList returns all packages that need to be imported.
func (ctx *genContext) importsList() []string {
imp := make([]string, 0, len(ctx.imports))
for k := range ctx.imports {
imp = append(imp, k)
}
sort.Strings(imp)
return imp
}
// qualify is the types.Qualifier used for printing types.
func (ctx *genContext) qualify(pkg *types.Package) string {
if pkg.Path() == ctx.inPackage.Path() {
return ""
}
ctx.addImport(pkg.Path())
// TODO: renaming?
return pkg.Name()
}
type op interface {
// genWrite creates the encoder. The generated code should write v,
// which is any Go expression, to the rlp.EncoderBuffer 'w'.
genWrite(ctx *genContext, v string) string
// genDecode creates the decoder. The generated code should read
// a value from the rlp.Stream 'dec' and store it to dst.
genDecode(ctx *genContext) (string, string)
}
// basicOp handles basic types bool, uint*, string.
type basicOp struct {
typ types.Type
writeMethod string // calle write the value
writeArgType types.Type // parameter type of writeMethod
decMethod string
decResultType types.Type // return type of decMethod
decUseBitSize bool // if true, result bit size is appended to decMethod
}
func (*buildContext) makeBasicOp(typ *types.Basic) (op, error) {
op := basicOp{typ: typ}
kind := typ.Kind()
switch {
case kind == types.Bool:
op.writeMethod = "WriteBool"
op.writeArgType = types.Typ[types.Bool]
op.decMethod = "Bool"
op.decResultType = types.Typ[types.Bool]
case kind >= types.Uint8 && kind <= types.Uint64:
op.writeMethod = "WriteUint64"
op.writeArgType = types.Typ[types.Uint64]
op.decMethod = "Uint"
op.decResultType = typ
op.decUseBitSize = true
case kind == types.String:
op.writeMethod = "WriteString"
op.writeArgType = types.Typ[types.String]
op.decMethod = "String"
op.decResultType = types.Typ[types.String]
default:
return nil, fmt.Errorf("unhandled basic type: %v", typ)
}
return op, nil
}
func (*buildContext) makeByteSliceOp(typ *types.Slice) op {
if !isByte(typ.Elem()) {
panic("non-byte slice type in makeByteSliceOp")
}
bslice := types.NewSlice(types.Typ[types.Uint8])
return basicOp{
typ: typ,
writeMethod: "WriteBytes",
writeArgType: bslice,
decMethod: "Bytes",
decResultType: bslice,
}
}
func (bctx *buildContext) makeRawValueOp() op {
bslice := types.NewSlice(types.Typ[types.Uint8])
return basicOp{
typ: bctx.rawValueType,
writeMethod: "Write",
writeArgType: bslice,
decMethod: "Raw",
decResultType: bslice,
}
}
func (op basicOp) writeNeedsConversion() bool {
return !types.AssignableTo(op.typ, op.writeArgType)
}
func (op basicOp) decodeNeedsConversion() bool {
return !types.AssignableTo(op.decResultType, op.typ)
}
func (op basicOp) genWrite(ctx *genContext, v string) string {
if op.writeNeedsConversion() {
v = fmt.Sprintf("%s(%s)", op.writeArgType, v)
}
return fmt.Sprintf("w.%s(%s)\n", op.writeMethod, v)
}
func (op basicOp) genDecode(ctx *genContext) (string, string) {
var (
resultV = ctx.temp()
result = resultV
method = op.decMethod
)
if op.decUseBitSize {
// Note: For now, this only works for platform-independent integer
// sizes. makeBasicOp forbids the platform-dependent types.
var sizes types.StdSizes
method = fmt.Sprintf("%s%d", op.decMethod, sizes.Sizeof(op.typ)*8)
}
// Call the decoder method.
var b bytes.Buffer
fmt.Fprintf(&b, "%s, err := dec.%s()\n", resultV, method)
fmt.Fprintf(&b, "if err != nil { return err }\n")
if op.decodeNeedsConversion() {
conv := ctx.temp()
fmt.Fprintf(&b, "%s := %s(%s)\n", conv, types.TypeString(op.typ, ctx.qualify), resultV)
result = conv
}
return result, b.String()
}
// byteArrayOp handles [...]byte.
type byteArrayOp struct {
typ types.Type
name types.Type // name != typ for named byte array types (e.g. common.Address)
}
func (bctx *buildContext) makeByteArrayOp(name *types.Named, typ *types.Array) byteArrayOp {
nt := types.Type(name)
if name == nil {
nt = typ
}
return byteArrayOp{typ, nt}
}
func (op byteArrayOp) genWrite(ctx *genContext, v string) string {
return fmt.Sprintf("w.WriteBytes(%s[:])\n", v)
}
func (op byteArrayOp) genDecode(ctx *genContext) (string, string) {
var resultV = ctx.temp()
var b bytes.Buffer
fmt.Fprintf(&b, "var %s %s\n", resultV, types.TypeString(op.name, ctx.qualify))
fmt.Fprintf(&b, "if err := dec.ReadBytes(%s[:]); err != nil { return err }\n", resultV)
return resultV, b.String()
}
// bigIntNoPtrOp handles non-pointer big.Int.
// This exists because big.Int has it's own decoder operation on rlp.Stream,
// but the decode method returns *big.Int, so it needs to be dereferenced.
type bigIntOp struct {
pointer bool
}
func (op bigIntOp) genWrite(ctx *genContext, v string) string {
var b bytes.Buffer
fmt.Fprintf(&b, "if %s.Sign() == -1 {\n", v)
fmt.Fprintf(&b, " return rlp.ErrNegativeBigInt\n")
fmt.Fprintf(&b, "}\n")
dst := v
if !op.pointer {
dst = "&" + v
}
fmt.Fprintf(&b, "w.WriteBigInt(%s)\n", dst)
// Wrap with nil check.
if op.pointer {
code := b.String()
b.Reset()
fmt.Fprintf(&b, "if %s == nil {\n", v)
fmt.Fprintf(&b, " w.Write(rlp.EmptyString)")
fmt.Fprintf(&b, "} else {\n")
fmt.Fprint(&b, code)
fmt.Fprintf(&b, "}\n")
}
return b.String()
}
func (op bigIntOp) genDecode(ctx *genContext) (string, string) {
var resultV = ctx.temp()
var b bytes.Buffer
fmt.Fprintf(&b, "%s, err := dec.BigInt()\n", resultV)
fmt.Fprintf(&b, "if err != nil { return err }\n")
result := resultV
if !op.pointer {
result = "(*" + resultV + ")"
}
return result, b.String()
}
// encoderDecoderOp handles rlp.Encoder and rlp.Decoder.
// In order to be used with this, the type must implement both interfaces.
// This restriction may be lifted in the future by creating separate ops for
// encoding and decoding.
type encoderDecoderOp struct {
typ types.Type
}
func (op encoderDecoderOp) genWrite(ctx *genContext, v string) string {
return fmt.Sprintf("if err := %s.EncodeRLP(w); err != nil { return err }\n", v)
}
func (op encoderDecoderOp) genDecode(ctx *genContext) (string, string) {
// DecodeRLP must have pointer receiver, and this is verified in makeOp.
etyp := op.typ.(*types.Pointer).Elem()
var resultV = ctx.temp()
var b bytes.Buffer
fmt.Fprintf(&b, "%s := new(%s)\n", resultV, types.TypeString(etyp, ctx.qualify))
fmt.Fprintf(&b, "if err := %s.DecodeRLP(dec); err != nil { return err }\n", resultV)
return resultV, b.String()
}
// ptrOp handles pointer types.
type ptrOp struct {
elemTyp types.Type
elem op
nilOK bool
nilValue rlpstruct.NilKind
}
func (bctx *buildContext) makePtrOp(elemTyp types.Type, tags rlpstruct.Tags) (op, error) {
elemOp, err := bctx.makeOp(nil, elemTyp, rlpstruct.Tags{})
if err != nil {
return nil, err
}
op := ptrOp{elemTyp: elemTyp, elem: elemOp}
// Determine nil value.
if tags.NilOK {
op.nilOK = true
op.nilValue = tags.NilKind
} else {
styp := bctx.typeToStructType(elemTyp)
op.nilValue = styp.DefaultNilValue()
}
return op, nil
}
func (op ptrOp) genWrite(ctx *genContext, v string) string {
// Note: in writer functions, accesses to v are read-only, i.e. v is any Go
// expression. To make all accesses work through the pointer, we substitute
// v with (*v). This is required for most accesses including `v`, `call(v)`,
// and `v[index]` on slices.
//
// For `v.field` and `v[:]` on arrays, the dereference operation is not required.
var vv string
_, isStruct := op.elem.(structOp)
_, isByteArray := op.elem.(byteArrayOp)
if isStruct || isByteArray {
vv = v
} else {
vv = fmt.Sprintf("(*%s)", v)
}
var b bytes.Buffer
fmt.Fprintf(&b, "if %s == nil {\n", v)
fmt.Fprintf(&b, " w.Write([]byte{0x%X})\n", op.nilValue)
fmt.Fprintf(&b, "} else {\n")
fmt.Fprintf(&b, " %s", op.elem.genWrite(ctx, vv))
fmt.Fprintf(&b, "}\n")
return b.String()
}
func (op ptrOp) genDecode(ctx *genContext) (string, string) {
result, code := op.elem.genDecode(ctx)
if !op.nilOK {
// If nil pointers are not allowed, we can just decode the element.
return "&" + result, code
}
// nil is allowed, so check the kind and size first.
// If size is zero and kind matches the nilKind of the type,
// the value decodes as a nil pointer.
var (
resultV = ctx.temp()
kindV = ctx.temp()
sizeV = ctx.temp()
wantKind string
)
if op.nilValue == rlpstruct.NilKindList {
wantKind = "rlp.List"
} else {
wantKind = "rlp.String"
}
var b bytes.Buffer
fmt.Fprintf(&b, "var %s %s\n", resultV, types.TypeString(types.NewPointer(op.elemTyp), ctx.qualify))
fmt.Fprintf(&b, "if %s, %s, err := dec.Kind(); err != nil {\n", kindV, sizeV)
fmt.Fprintf(&b, " return err\n")
fmt.Fprintf(&b, "} else if %s != 0 || %s != %s {\n", sizeV, kindV, wantKind)
fmt.Fprint(&b, code)
fmt.Fprintf(&b, " %s = &%s\n", resultV, result)
fmt.Fprintf(&b, "}\n")
return resultV, b.String()
}
// structOp handles struct types.
type structOp struct {
named *types.Named
typ *types.Struct
fields []*structField
optionalFields []*structField
}
type structField struct {
name string
typ types.Type
elem op
}
func (bctx *buildContext) makeStructOp(named *types.Named, typ *types.Struct) (op, error) {
// Convert fields to []rlpstruct.Field.
var allStructFields []rlpstruct.Field
for i := 0; i < typ.NumFields(); i++ {
f := typ.Field(i)
allStructFields = append(allStructFields, rlpstruct.Field{
Name: f.Name(),
Exported: f.Exported(),
Index: i,
Tag: typ.Tag(i),
Type: *bctx.typeToStructType(f.Type()),
})
}
// Filter/validate fields.
fields, tags, err := rlpstruct.ProcessFields(allStructFields)
if err != nil {
return nil, err
}
// Create field ops.
var op = structOp{named: named, typ: typ}
for i, field := range fields {
// Advanced struct tags are not supported yet.
tag := tags[i]
if err := checkUnsupportedTags(field.Name, tag); err != nil {
return nil, err
}
typ := typ.Field(field.Index).Type()
elem, err := bctx.makeOp(nil, typ, tags[i])
if err != nil {
return nil, fmt.Errorf("field %s: %v", field.Name, err)
}
f := &structField{name: field.Name, typ: typ, elem: elem}
if tag.Optional {
op.optionalFields = append(op.optionalFields, f)
} else {
op.fields = append(op.fields, f)
}
}
return op, nil
}
func checkUnsupportedTags(field string, tag rlpstruct.Tags) error {
if tag.Tail {
return fmt.Errorf(`field %s has unsupported struct tag "tail"`, field)
}
return nil
}
func (op structOp) genWrite(ctx *genContext, v string) string {
var b bytes.Buffer
var listMarker = ctx.temp()
fmt.Fprintf(&b, "%s := w.List()\n", listMarker)
for _, field := range op.fields {
selector := v + "." + field.name
fmt.Fprint(&b, field.elem.genWrite(ctx, selector))
}
op.writeOptionalFields(&b, ctx, v)
fmt.Fprintf(&b, "w.ListEnd(%s)\n", listMarker)
return b.String()
}
func (op structOp) writeOptionalFields(b *bytes.Buffer, ctx *genContext, v string) {
if len(op.optionalFields) == 0 {
return
}
// First check zero-ness of all optional fields.
var zeroV = make([]string, len(op.optionalFields))
for i, field := range op.optionalFields {
selector := v + "." + field.name
zeroV[i] = ctx.temp()
fmt.Fprintf(b, "%s := %s\n", zeroV[i], nonZeroCheck(selector, field.typ, ctx.qualify))
}
// Now write the fields.
for i, field := range op.optionalFields {
selector := v + "." + field.name
cond := ""
for j := i; j < len(op.optionalFields); j++ {
if j > i {
cond += " || "
}
cond += zeroV[j]
}
fmt.Fprintf(b, "if %s {\n", cond)
fmt.Fprint(b, field.elem.genWrite(ctx, selector))
fmt.Fprintf(b, "}\n")
}
}
func (op structOp) genDecode(ctx *genContext) (string, string) {
// Get the string representation of the type.
// Here, named types are handled separately because the output
// would contain a copy of the struct definition otherwise.
var typeName string
if op.named != nil {
typeName = types.TypeString(op.named, ctx.qualify)
} else {
typeName = types.TypeString(op.typ, ctx.qualify)
}
// Create struct object.
var resultV = ctx.temp()
var b bytes.Buffer
fmt.Fprintf(&b, "var %s %s\n", resultV, typeName)
// Decode fields.
fmt.Fprintf(&b, "{\n")
fmt.Fprintf(&b, "if _, err := dec.List(); err != nil { return err }\n")
for _, field := range op.fields {
result, code := field.elem.genDecode(ctx)
fmt.Fprintf(&b, "// %s:\n", field.name)
fmt.Fprint(&b, code)
fmt.Fprintf(&b, "%s.%s = %s\n", resultV, field.name, result)
}
op.decodeOptionalFields(&b, ctx, resultV)
fmt.Fprintf(&b, "if err := dec.ListEnd(); err != nil { return err }\n")
fmt.Fprintf(&b, "}\n")
return resultV, b.String()
}
func (op structOp) decodeOptionalFields(b *bytes.Buffer, ctx *genContext, resultV string) {
var suffix bytes.Buffer
for _, field := range op.optionalFields {
result, code := field.elem.genDecode(ctx)
fmt.Fprintf(b, "// %s:\n", field.name)
fmt.Fprintf(b, "if dec.MoreDataInList() {\n")
fmt.Fprint(b, code)
fmt.Fprintf(b, "%s.%s = %s\n", resultV, field.name, result)
fmt.Fprintf(&suffix, "}\n")
}
suffix.WriteTo(b)
}
// sliceOp handles slice types.
type sliceOp struct {
typ *types.Slice
elemOp op
}
func (bctx *buildContext) makeSliceOp(typ *types.Slice) (op, error) {
elemOp, err := bctx.makeOp(nil, typ.Elem(), rlpstruct.Tags{})
if err != nil {
return nil, err
}
return sliceOp{typ: typ, elemOp: elemOp}, nil
}
func (op sliceOp) genWrite(ctx *genContext, v string) string {
var (
listMarker = ctx.temp() // holds return value of w.List()
iterElemV = ctx.temp() // iteration variable
elemCode = op.elemOp.genWrite(ctx, iterElemV)
)
var b bytes.Buffer
fmt.Fprintf(&b, "%s := w.List()\n", listMarker)
fmt.Fprintf(&b, "for _, %s := range %s {\n", iterElemV, v)
fmt.Fprint(&b, elemCode)
fmt.Fprintf(&b, "}\n")
fmt.Fprintf(&b, "w.ListEnd(%s)\n", listMarker)
return b.String()
}
func (op sliceOp) genDecode(ctx *genContext) (string, string) {
var sliceV = ctx.temp() // holds the output slice
elemResult, elemCode := op.elemOp.genDecode(ctx)
var b bytes.Buffer
fmt.Fprintf(&b, "var %s %s\n", sliceV, types.TypeString(op.typ, ctx.qualify))
fmt.Fprintf(&b, "if _, err := dec.List(); err != nil { return err }\n")
fmt.Fprintf(&b, "for dec.MoreDataInList() {\n")
fmt.Fprintf(&b, " %s", elemCode)
fmt.Fprintf(&b, " %s = append(%s, %s)\n", sliceV, sliceV, elemResult)
fmt.Fprintf(&b, "}\n")
fmt.Fprintf(&b, "if err := dec.ListEnd(); err != nil { return err }\n")
return sliceV, b.String()
}
func (bctx *buildContext) makeOp(name *types.Named, typ types.Type, tags rlpstruct.Tags) (op, error) {
switch typ := typ.(type) {
case *types.Named:
if isBigInt(typ) {
return bigIntOp{}, nil
}
if typ == bctx.rawValueType {
return bctx.makeRawValueOp(), nil
}
if bctx.isDecoder(typ) {
return nil, fmt.Errorf("type %v implements rlp.Decoder with non-pointer receiver", typ)
}
// TODO: same check for encoder?
return bctx.makeOp(typ, typ.Underlying(), tags)
case *types.Pointer:
if isBigInt(typ.Elem()) {
return bigIntOp{pointer: true}, nil
}
// Encoder/Decoder interfaces.
if bctx.isEncoder(typ) {
if bctx.isDecoder(typ) {
return encoderDecoderOp{typ}, nil
}
return nil, fmt.Errorf("type %v implements rlp.Encoder but not rlp.Decoder", typ)
}
if bctx.isDecoder(typ) {
return nil, fmt.Errorf("type %v implements rlp.Decoder but not rlp.Encoder", typ)
}
// Default pointer handling.
return bctx.makePtrOp(typ.Elem(), tags)
case *types.Basic:
return bctx.makeBasicOp(typ)
case *types.Struct:
return bctx.makeStructOp(name, typ)
case *types.Slice:
etyp := typ.Elem()
if isByte(etyp) && !bctx.isEncoder(etyp) {
return bctx.makeByteSliceOp(typ), nil
}
return bctx.makeSliceOp(typ)
case *types.Array:
etyp := typ.Elem()
if isByte(etyp) && !bctx.isEncoder(etyp) {
return bctx.makeByteArrayOp(name, typ), nil
}
return nil, fmt.Errorf("unhandled array type: %v", typ)
default:
return nil, fmt.Errorf("unhandled type: %v", typ)
}
}
// generateDecoder generates the DecodeRLP method on 'typ'.
func generateDecoder(ctx *genContext, typ string, op op) []byte {
ctx.resetTemp()
ctx.addImport(pathOfPackageRLP)
result, code := op.genDecode(ctx)
var b bytes.Buffer
fmt.Fprintf(&b, "func (obj *%s) DecodeRLP(dec *rlp.Stream) error {\n", typ)
fmt.Fprint(&b, code)
fmt.Fprintf(&b, " *obj = %s\n", result)
fmt.Fprintf(&b, " return nil\n")
fmt.Fprintf(&b, "}\n")
return b.Bytes()
}
// generateEncoder generates the EncodeRLP method on 'typ'.
func generateEncoder(ctx *genContext, typ string, op op) []byte {
ctx.resetTemp()
ctx.addImport("io")
ctx.addImport(pathOfPackageRLP)
var b bytes.Buffer
fmt.Fprintf(&b, "func (obj *%s) EncodeRLP(_w io.Writer) error {\n", typ)
fmt.Fprintf(&b, " w := rlp.NewEncoderBuffer(_w)\n")
fmt.Fprint(&b, op.genWrite(ctx, "obj"))
fmt.Fprintf(&b, " return w.Flush()\n")
fmt.Fprintf(&b, "}\n")
return b.Bytes()
}
func (bctx *buildContext) generate(typ *types.Named, encoder, decoder bool) ([]byte, error) {
bctx.topType = typ
pkg := typ.Obj().Pkg()
op, err := bctx.makeOp(nil, typ, rlpstruct.Tags{})
if err != nil {
return nil, err
}
var (
ctx = newGenContext(pkg)
encSource []byte
decSource []byte
)
if encoder {
encSource = generateEncoder(ctx, typ.Obj().Name(), op)
}
if decoder {
decSource = generateDecoder(ctx, typ.Obj().Name(), op)
}
var b bytes.Buffer
fmt.Fprintf(&b, "package %s\n\n", pkg.Name())
for _, imp := range ctx.importsList() {
fmt.Fprintf(&b, "import %q\n", imp)
}
if encoder {
fmt.Fprintln(&b)
b.Write(encSource)
}
if decoder {
fmt.Fprintln(&b)
b.Write(decSource)
}
source := b.Bytes()
// fmt.Println(string(source))
return format.Source(source)
}