bsc/core/state_prefetcher.go
lightclient bbfb1e4008
all: add support for EIP-2718, EIP-2930 transactions (#21502)
This adds support for EIP-2718 typed transactions as well as EIP-2930
access list transactions (tx type 1). These EIPs are scheduled for the
Berlin fork.

There very few changes to existing APIs in core/types, and several new APIs
to deal with access list transactions. In particular, there are two new
constructor functions for transactions: types.NewTx and types.SignNewTx.
Since the canonical encoding of typed transactions is not RLP-compatible,
Transaction now has new methods for encoding and decoding: MarshalBinary
and UnmarshalBinary.

The existing EIP-155 signer does not support the new transaction types.
All code dealing with transaction signatures should be updated to use the
newer EIP-2930 signer. To make this easier for future updates, we have
added new constructor functions for types.Signer: types.LatestSigner and
types.LatestSignerForChainID. 

This change also adds support for the YoloV3 testnet.

Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: Felix Lange <fjl@twurst.com>
Co-authored-by: Ryan Schneider <ryanleeschneider@gmail.com>
2021-02-25 15:26:57 +01:00

95 lines
3.8 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"sync/atomic"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/params"
)
// statePrefetcher is a basic Prefetcher, which blindly executes a block on top
// of an arbitrary state with the goal of prefetching potentially useful state
// data from disk before the main block processor start executing.
type statePrefetcher struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus.Engine // Consensus engine used for block rewards
}
// newStatePrefetcher initialises a new statePrefetcher.
func newStatePrefetcher(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *statePrefetcher {
return &statePrefetcher{
config: config,
bc: bc,
engine: engine,
}
}
// Prefetch processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb, but any changes are discarded. The
// only goal is to pre-cache transaction signatures and state trie nodes.
func (p *statePrefetcher) Prefetch(block *types.Block, statedb *state.StateDB, cfg vm.Config, interrupt *uint32) {
var (
header = block.Header()
gaspool = new(GasPool).AddGas(block.GasLimit())
blockContext = NewEVMBlockContext(header, p.bc, nil)
evm = vm.NewEVM(blockContext, vm.TxContext{}, statedb, p.config, cfg)
signer = types.MakeSigner(p.config, header.Number)
)
// Iterate over and process the individual transactions
byzantium := p.config.IsByzantium(block.Number())
for i, tx := range block.Transactions() {
// If block precaching was interrupted, abort
if interrupt != nil && atomic.LoadUint32(interrupt) == 1 {
return
}
// Convert the transaction into an executable message and pre-cache its sender
msg, err := tx.AsMessage(signer)
if err != nil {
return // Also invalid block, bail out
}
statedb.Prepare(tx.Hash(), block.Hash(), i)
if err := precacheTransaction(msg, p.config, gaspool, statedb, header, evm); err != nil {
return // Ugh, something went horribly wrong, bail out
}
// If we're pre-byzantium, pre-load trie nodes for the intermediate root
if !byzantium {
statedb.IntermediateRoot(true)
}
}
// If were post-byzantium, pre-load trie nodes for the final root hash
if byzantium {
statedb.IntermediateRoot(true)
}
}
// precacheTransaction attempts to apply a transaction to the given state database
// and uses the input parameters for its environment. The goal is not to execute
// the transaction successfully, rather to warm up touched data slots.
func precacheTransaction(msg types.Message, config *params.ChainConfig, gaspool *GasPool, statedb *state.StateDB, header *types.Header, evm *vm.EVM) error {
// Update the evm with the new transaction context.
evm.Reset(NewEVMTxContext(msg), statedb)
// Add addresses to access list if applicable
_, err := ApplyMessage(evm, msg, gaspool)
return err
}