bsc/eth/downloader/peer.go
zjubfd 2ce00adb55
[R4R] performance improvement in many aspects (#257)
* focus on performance improvement in many aspects.

1. Do BlockBody verification concurrently;
2. Do calculation of intermediate root concurrently;
3. Preload accounts before processing blocks;
4. Make the snapshot layers configurable.
5. Reuse some object to reduce GC.

add

* rlp: improve decoder stream implementation (#22858)

This commit makes various cleanup changes to rlp.Stream.

* rlp: shrink Stream struct

This removes a lot of unused padding space in Stream by reordering the
fields. The size of Stream changes from 120 bytes to 88 bytes. Stream
instances are internally cached and reused using sync.Pool, so this does
not improve performance.

* rlp: simplify list stack

The list stack kept track of the size of the current list context as
well as the current offset into it. The size had to be stored in the
stack in order to subtract it from the remaining bytes of any enclosing
list in ListEnd. It seems that this can be implemented in a simpler
way: just subtract the size from the enclosing list context in List instead.

* rlp: use atomic.Value for type cache (#22902)

All encoding/decoding operations read the type cache to find the
writer/decoder function responsible for a type. When analyzing CPU
profiles of geth during sync, I found that the use of sync.RWMutex in
cache lookups appears in the profiles. It seems we are running into
CPU cache contention problems when package rlp is heavily used
on all CPU cores during sync.

This change makes it use atomic.Value + a writer lock instead of
sync.RWMutex. In the common case where the typeinfo entry is present in
the cache, we simply fetch the map and lookup the type.

* rlp: optimize byte array handling (#22924)

This change improves the performance of encoding/decoding [N]byte.

    name                     old time/op    new time/op    delta
    DecodeByteArrayStruct-8     336ns ± 0%     246ns ± 0%  -26.98%  (p=0.000 n=9+10)
    EncodeByteArrayStruct-8     225ns ± 1%     148ns ± 1%  -34.12%  (p=0.000 n=10+10)

    name                     old alloc/op   new alloc/op   delta
    DecodeByteArrayStruct-8      120B ± 0%       48B ± 0%  -60.00%  (p=0.000 n=10+10)
    EncodeByteArrayStruct-8     0.00B          0.00B          ~     (all equal)

* rlp: optimize big.Int decoding for size <= 32 bytes (#22927)

This change grows the static integer buffer in Stream to 32 bytes,
making it possible to decode 256bit integers without allocating a
temporary buffer.

In the recent commit 088da24, Stream struct size decreased from 120
bytes down to 88 bytes. This commit grows the struct to 112 bytes again,
but the size change will not degrade performance because Stream
instances are internally cached in sync.Pool.

    name             old time/op    new time/op    delta
    DecodeBigInts-8    12.2µs ± 0%     8.6µs ± 4%  -29.58%  (p=0.000 n=9+10)

    name             old speed      new speed      delta
    DecodeBigInts-8   230MB/s ± 0%   326MB/s ± 4%  +42.04%  (p=0.000 n=9+10)

* eth/protocols/eth, les: avoid Raw() when decoding HashOrNumber (#22841)

Getting the raw value is not necessary to decode this type, and
decoding it directly from the stream is faster.

* fix testcase

* debug no lazy

* fix can not repair

* address comments

Co-authored-by: Felix Lange <fjl@twurst.com>
2021-07-29 17:16:53 +08:00

580 lines
19 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains the active peer-set of the downloader, maintaining both failures
// as well as reputation metrics to prioritize the block retrievals.
package downloader
import (
"errors"
"math"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
)
const (
maxLackingHashes = 4096 // Maximum number of entries allowed on the list or lacking items
measurementImpact = 0.1 // The impact a single measurement has on a peer's final throughput value.
)
var (
errAlreadyFetching = errors.New("already fetching blocks from peer")
errAlreadyRegistered = errors.New("peer is already registered")
errNotRegistered = errors.New("peer is not registered")
)
// peerConnection represents an active peer from which hashes and blocks are retrieved.
type peerConnection struct {
id string // Unique identifier of the peer
headerIdle int32 // Current header activity state of the peer (idle = 0, active = 1)
blockIdle int32 // Current block activity state of the peer (idle = 0, active = 1)
receiptIdle int32 // Current receipt activity state of the peer (idle = 0, active = 1)
stateIdle int32 // Current node data activity state of the peer (idle = 0, active = 1)
headerThroughput float64 // Number of headers measured to be retrievable per second
blockThroughput float64 // Number of blocks (bodies) measured to be retrievable per second
receiptThroughput float64 // Number of receipts measured to be retrievable per second
stateThroughput float64 // Number of node data pieces measured to be retrievable per second
rtt time.Duration // Request round trip time to track responsiveness (QoS)
headerStarted time.Time // Time instance when the last header fetch was started
blockStarted time.Time // Time instance when the last block (body) fetch was started
receiptStarted time.Time // Time instance when the last receipt fetch was started
stateStarted time.Time // Time instance when the last node data fetch was started
lacking map[common.Hash]struct{} // Set of hashes not to request (didn't have previously)
peer Peer
version uint // Eth protocol version number to switch strategies
log log.Logger // Contextual logger to add extra infos to peer logs
lock sync.RWMutex
}
// LightPeer encapsulates the methods required to synchronise with a remote light peer.
type LightPeer interface {
Head() (common.Hash, *big.Int)
RequestHeadersByHash(common.Hash, int, int, bool) error
RequestHeadersByNumber(uint64, int, int, bool) error
}
// Peer encapsulates the methods required to synchronise with a remote full peer.
type Peer interface {
LightPeer
RequestBodies([]common.Hash) error
RequestReceipts([]common.Hash) error
RequestNodeData([]common.Hash) error
}
// lightPeerWrapper wraps a LightPeer struct, stubbing out the Peer-only methods.
type lightPeerWrapper struct {
peer LightPeer
}
func (w *lightPeerWrapper) Head() (common.Hash, *big.Int) { return w.peer.Head() }
func (w *lightPeerWrapper) RequestHeadersByHash(h common.Hash, amount int, skip int, reverse bool) error {
return w.peer.RequestHeadersByHash(h, amount, skip, reverse)
}
func (w *lightPeerWrapper) RequestHeadersByNumber(i uint64, amount int, skip int, reverse bool) error {
return w.peer.RequestHeadersByNumber(i, amount, skip, reverse)
}
func (w *lightPeerWrapper) RequestBodies([]common.Hash) error {
panic("RequestBodies not supported in light client mode sync")
}
func (w *lightPeerWrapper) RequestReceipts([]common.Hash) error {
panic("RequestReceipts not supported in light client mode sync")
}
func (w *lightPeerWrapper) RequestNodeData([]common.Hash) error {
panic("RequestNodeData not supported in light client mode sync")
}
// newPeerConnection creates a new downloader peer.
func newPeerConnection(id string, version uint, peer Peer, logger log.Logger) *peerConnection {
return &peerConnection{
id: id,
lacking: make(map[common.Hash]struct{}),
peer: peer,
version: version,
log: logger,
}
}
// Reset clears the internal state of a peer entity.
func (p *peerConnection) Reset() {
p.lock.Lock()
defer p.lock.Unlock()
atomic.StoreInt32(&p.headerIdle, 0)
atomic.StoreInt32(&p.blockIdle, 0)
atomic.StoreInt32(&p.receiptIdle, 0)
atomic.StoreInt32(&p.stateIdle, 0)
p.headerThroughput = 0
p.blockThroughput = 0
p.receiptThroughput = 0
p.stateThroughput = 0
p.lacking = make(map[common.Hash]struct{})
}
// FetchHeaders sends a header retrieval request to the remote peer.
func (p *peerConnection) FetchHeaders(from uint64, count int) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.headerIdle, 0, 1) {
return errAlreadyFetching
}
p.headerStarted = time.Now()
// Issue the header retrieval request (absolute upwards without gaps)
go p.peer.RequestHeadersByNumber(from, count, 0, false)
return nil
}
// FetchBodies sends a block body retrieval request to the remote peer.
func (p *peerConnection) FetchBodies(request *fetchRequest) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.blockIdle, 0, 1) {
return errAlreadyFetching
}
p.blockStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
p.peer.RequestBodies(hashes)
}()
return nil
}
// FetchReceipts sends a receipt retrieval request to the remote peer.
func (p *peerConnection) FetchReceipts(request *fetchRequest) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.receiptIdle, 0, 1) {
return errAlreadyFetching
}
p.receiptStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
p.peer.RequestReceipts(hashes)
}()
return nil
}
// FetchNodeData sends a node state data retrieval request to the remote peer.
func (p *peerConnection) FetchNodeData(hashes []common.Hash) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.stateIdle, 0, 1) {
return errAlreadyFetching
}
p.stateStarted = time.Now()
go p.peer.RequestNodeData(hashes)
return nil
}
// SetHeadersIdle sets the peer to idle, allowing it to execute new header retrieval
// requests. Its estimated header retrieval throughput is updated with that measured
// just now.
func (p *peerConnection) SetHeadersIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.headerStarted), delivered, &p.headerThroughput, &p.headerIdle)
}
// SetBodiesIdle sets the peer to idle, allowing it to execute block body retrieval
// requests. Its estimated body retrieval throughput is updated with that measured
// just now.
func (p *peerConnection) SetBodiesIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.blockStarted), delivered, &p.blockThroughput, &p.blockIdle)
}
// SetReceiptsIdle sets the peer to idle, allowing it to execute new receipt
// retrieval requests. Its estimated receipt retrieval throughput is updated
// with that measured just now.
func (p *peerConnection) SetReceiptsIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.receiptStarted), delivered, &p.receiptThroughput, &p.receiptIdle)
}
// SetNodeDataIdle sets the peer to idle, allowing it to execute new state trie
// data retrieval requests. Its estimated state retrieval throughput is updated
// with that measured just now.
func (p *peerConnection) SetNodeDataIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.stateStarted), delivered, &p.stateThroughput, &p.stateIdle)
}
// setIdle sets the peer to idle, allowing it to execute new retrieval requests.
// Its estimated retrieval throughput is updated with that measured just now.
func (p *peerConnection) setIdle(elapsed time.Duration, delivered int, throughput *float64, idle *int32) {
// Irrelevant of the scaling, make sure the peer ends up idle
defer atomic.StoreInt32(idle, 0)
p.lock.Lock()
defer p.lock.Unlock()
// If nothing was delivered (hard timeout / unavailable data), reduce throughput to minimum
if delivered == 0 {
*throughput = 0
return
}
// Otherwise update the throughput with a new measurement
if elapsed <= 0 {
elapsed = 1 // +1 (ns) to ensure non-zero divisor
}
measured := float64(delivered) / (float64(elapsed) / float64(time.Second))
*throughput = (1-measurementImpact)*(*throughput) + measurementImpact*measured
p.rtt = time.Duration((1-measurementImpact)*float64(p.rtt) + measurementImpact*float64(elapsed))
p.log.Trace("Peer throughput measurements updated",
"hps", p.headerThroughput, "bps", p.blockThroughput,
"rps", p.receiptThroughput, "sps", p.stateThroughput,
"miss", len(p.lacking), "rtt", p.rtt)
}
// HeaderCapacity retrieves the peers header download allowance based on its
// previously discovered throughput.
func (p *peerConnection) HeaderCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.headerThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxHeaderFetch)))
}
// BlockCapacity retrieves the peers block download allowance based on its
// previously discovered throughput.
func (p *peerConnection) BlockCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.blockThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxBlockFetch)))
}
// ReceiptCapacity retrieves the peers receipt download allowance based on its
// previously discovered throughput.
func (p *peerConnection) ReceiptCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.receiptThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxReceiptFetch)))
}
// NodeDataCapacity retrieves the peers state download allowance based on its
// previously discovered throughput.
func (p *peerConnection) NodeDataCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.stateThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxStateFetch)))
}
// MarkLacking appends a new entity to the set of items (blocks, receipts, states)
// that a peer is known not to have (i.e. have been requested before). If the
// set reaches its maximum allowed capacity, items are randomly dropped off.
func (p *peerConnection) MarkLacking(hash common.Hash) {
p.lock.Lock()
defer p.lock.Unlock()
for len(p.lacking) >= maxLackingHashes {
for drop := range p.lacking {
delete(p.lacking, drop)
break
}
}
p.lacking[hash] = struct{}{}
}
// Lacks retrieves whether the hash of a blockchain item is on the peers lacking
// list (i.e. whether we know that the peer does not have it).
func (p *peerConnection) Lacks(hash common.Hash) bool {
p.lock.RLock()
defer p.lock.RUnlock()
_, ok := p.lacking[hash]
return ok
}
// peerSet represents the collection of active peer participating in the chain
// download procedure.
type peerSet struct {
peers map[string]*peerConnection
newPeerFeed event.Feed
peerDropFeed event.Feed
lock sync.RWMutex
}
// newPeerSet creates a new peer set top track the active download sources.
func newPeerSet() *peerSet {
return &peerSet{
peers: make(map[string]*peerConnection),
}
}
// SubscribeNewPeers subscribes to peer arrival events.
func (ps *peerSet) SubscribeNewPeers(ch chan<- *peerConnection) event.Subscription {
return ps.newPeerFeed.Subscribe(ch)
}
// SubscribePeerDrops subscribes to peer departure events.
func (ps *peerSet) SubscribePeerDrops(ch chan<- *peerConnection) event.Subscription {
return ps.peerDropFeed.Subscribe(ch)
}
// Reset iterates over the current peer set, and resets each of the known peers
// to prepare for a next batch of block retrieval.
func (ps *peerSet) Reset() {
ps.lock.RLock()
defer ps.lock.RUnlock()
for _, peer := range ps.peers {
peer.Reset()
}
}
// Register injects a new peer into the working set, or returns an error if the
// peer is already known.
//
// The method also sets the starting throughput values of the new peer to the
// average of all existing peers, to give it a realistic chance of being used
// for data retrievals.
func (ps *peerSet) Register(p *peerConnection) error {
// Retrieve the current median RTT as a sane default
p.rtt = ps.medianRTT()
// Register the new peer with some meaningful defaults
ps.lock.Lock()
if _, ok := ps.peers[p.id]; ok {
ps.lock.Unlock()
return errAlreadyRegistered
}
if len(ps.peers) > 0 {
p.headerThroughput, p.blockThroughput, p.receiptThroughput, p.stateThroughput = 0, 0, 0, 0
for _, peer := range ps.peers {
peer.lock.RLock()
p.headerThroughput += peer.headerThroughput
p.blockThroughput += peer.blockThroughput
p.receiptThroughput += peer.receiptThroughput
p.stateThroughput += peer.stateThroughput
peer.lock.RUnlock()
}
p.headerThroughput /= float64(len(ps.peers))
p.blockThroughput /= float64(len(ps.peers))
p.receiptThroughput /= float64(len(ps.peers))
p.stateThroughput /= float64(len(ps.peers))
}
ps.peers[p.id] = p
ps.lock.Unlock()
ps.newPeerFeed.Send(p)
return nil
}
// Unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity.
func (ps *peerSet) Unregister(id string) error {
ps.lock.Lock()
p, ok := ps.peers[id]
if !ok {
ps.lock.Unlock()
return errNotRegistered
}
delete(ps.peers, id)
ps.lock.Unlock()
ps.peerDropFeed.Send(p)
return nil
}
// Peer retrieves the registered peer with the given id.
func (ps *peerSet) Peer(id string) *peerConnection {
ps.lock.RLock()
defer ps.lock.RUnlock()
return ps.peers[id]
}
// Len returns if the current number of peers in the set.
func (ps *peerSet) Len() int {
ps.lock.RLock()
defer ps.lock.RUnlock()
return len(ps.peers)
}
// AllPeers retrieves a flat list of all the peers within the set.
func (ps *peerSet) AllPeers() []*peerConnection {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peerConnection, 0, len(ps.peers))
for _, p := range ps.peers {
list = append(list, p)
}
return list
}
// HeaderIdlePeers retrieves a flat list of all the currently header-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) HeaderIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.headerIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.headerThroughput
}
return ps.idlePeers(eth.ETH65, eth.ETH66, idle, throughput)
}
// BodyIdlePeers retrieves a flat list of all the currently body-idle peers within
// the active peer set, ordered by their reputation.
func (ps *peerSet) BodyIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.blockIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.blockThroughput
}
return ps.idlePeers(eth.ETH65, eth.ETH66, idle, throughput)
}
// ReceiptIdlePeers retrieves a flat list of all the currently receipt-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) ReceiptIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.receiptIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.receiptThroughput
}
return ps.idlePeers(eth.ETH65, eth.ETH66, idle, throughput)
}
// NodeDataIdlePeers retrieves a flat list of all the currently node-data-idle
// peers within the active peer set, ordered by their reputation.
func (ps *peerSet) NodeDataIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.stateIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.stateThroughput
}
return ps.idlePeers(eth.ETH65, eth.ETH66, idle, throughput)
}
// idlePeers retrieves a flat list of all currently idle peers satisfying the
// protocol version constraints, using the provided function to check idleness.
// The resulting set of peers are sorted by their measure throughput.
func (ps *peerSet) idlePeers(minProtocol, maxProtocol uint, idleCheck func(*peerConnection) bool, throughput func(*peerConnection) float64) ([]*peerConnection, int) {
ps.lock.RLock()
defer ps.lock.RUnlock()
idle, total := make([]*peerConnection, 0, len(ps.peers)), 0
tps := make([]float64, 0, len(ps.peers))
for _, p := range ps.peers {
if p.version >= minProtocol && p.version <= maxProtocol {
if idleCheck(p) {
idle = append(idle, p)
tps = append(tps, throughput(p))
}
total++
}
}
// And sort them
sortPeers := &peerThroughputSort{idle, tps}
sort.Sort(sortPeers)
return sortPeers.p, total
}
// medianRTT returns the median RTT of the peerset, considering only the tuning
// peers if there are more peers available.
func (ps *peerSet) medianRTT() time.Duration {
// Gather all the currently measured round trip times
ps.lock.RLock()
defer ps.lock.RUnlock()
rtts := make([]float64, 0, len(ps.peers))
for _, p := range ps.peers {
p.lock.RLock()
rtts = append(rtts, float64(p.rtt))
p.lock.RUnlock()
}
sort.Float64s(rtts)
median := rttMaxEstimate
if qosTuningPeers <= len(rtts) {
median = time.Duration(rtts[qosTuningPeers/2]) // Median of our tuning peers
} else if len(rtts) > 0 {
median = time.Duration(rtts[len(rtts)/2]) // Median of our connected peers (maintain even like this some baseline qos)
}
// Restrict the RTT into some QoS defaults, irrelevant of true RTT
if median < rttMinEstimate {
median = rttMinEstimate
}
if median > rttMaxEstimate {
median = rttMaxEstimate
}
return median
}
// peerThroughputSort implements the Sort interface, and allows for
// sorting a set of peers by their throughput
// The sorted data is with the _highest_ throughput first
type peerThroughputSort struct {
p []*peerConnection
tp []float64
}
func (ps *peerThroughputSort) Len() int {
return len(ps.p)
}
func (ps *peerThroughputSort) Less(i, j int) bool {
return ps.tp[i] > ps.tp[j]
}
func (ps *peerThroughputSort) Swap(i, j int) {
ps.p[i], ps.p[j] = ps.p[j], ps.p[i]
ps.tp[i], ps.tp[j] = ps.tp[j], ps.tp[i]
}