bsc/core/state/sync_test.go
rjl493456442 22defa5af7
all: introduce trie owner notion (#24750)
* cmd, core/state, light, trie, eth: add trie owner notion

* all: refactor

* tests: fix goimports

* core/state/snapshot: fix ineffasigns

Co-authored-by: Martin Holst Swende <martin@swende.se>
2022-06-06 17:14:55 +02:00

488 lines
16 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package state
import (
"bytes"
"math/big"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// testAccount is the data associated with an account used by the state tests.
type testAccount struct {
address common.Address
balance *big.Int
nonce uint64
code []byte
}
// makeTestState create a sample test state to test node-wise reconstruction.
func makeTestState() (Database, common.Hash, []*testAccount) {
// Create an empty state
db := NewDatabase(rawdb.NewMemoryDatabase())
state, _ := New(common.Hash{}, db, nil)
// Fill it with some arbitrary data
var accounts []*testAccount
for i := byte(0); i < 96; i++ {
obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
acc := &testAccount{address: common.BytesToAddress([]byte{i})}
obj.AddBalance(big.NewInt(int64(11 * i)))
acc.balance = big.NewInt(int64(11 * i))
obj.SetNonce(uint64(42 * i))
acc.nonce = uint64(42 * i)
if i%3 == 0 {
obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i})
acc.code = []byte{i, i, i, i, i}
}
if i%5 == 0 {
for j := byte(0); j < 5; j++ {
hash := crypto.Keccak256Hash([]byte{i, i, i, i, i, j, j})
obj.SetState(db, hash, hash)
}
}
state.updateStateObject(obj)
accounts = append(accounts, acc)
}
root, _ := state.Commit(false)
// Return the generated state
return db, root, accounts
}
// checkStateAccounts cross references a reconstructed state with an expected
// account array.
func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) {
// Check root availability and state contents
state, err := New(root, NewDatabase(db), nil)
if err != nil {
t.Fatalf("failed to create state trie at %x: %v", root, err)
}
if err := checkStateConsistency(db, root); err != nil {
t.Fatalf("inconsistent state trie at %x: %v", root, err)
}
for i, acc := range accounts {
if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 {
t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance)
}
if nonce := state.GetNonce(acc.address); nonce != acc.nonce {
t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce)
}
if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) {
t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code)
}
}
}
// checkTrieConsistency checks that all nodes in a (sub-)trie are indeed present.
func checkTrieConsistency(db ethdb.Database, root common.Hash) error {
if v, _ := db.Get(root[:]); v == nil {
return nil // Consider a non existent state consistent.
}
trie, err := trie.New(common.Hash{}, root, trie.NewDatabase(db))
if err != nil {
return err
}
it := trie.NodeIterator(nil)
for it.Next(true) {
}
return it.Error()
}
// checkStateConsistency checks that all data of a state root is present.
func checkStateConsistency(db ethdb.Database, root common.Hash) error {
// Create and iterate a state trie rooted in a sub-node
if _, err := db.Get(root.Bytes()); err != nil {
return nil // Consider a non existent state consistent.
}
state, err := New(root, NewDatabase(db), nil)
if err != nil {
return err
}
it := NewNodeIterator(state)
for it.Next() {
}
return it.Error
}
// Tests that an empty state is not scheduled for syncing.
func TestEmptyStateSync(t *testing.T) {
empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
sync := NewStateSync(empty, rawdb.NewMemoryDatabase(), nil)
if nodes, paths, codes := sync.Missing(1); len(nodes) != 0 || len(paths) != 0 || len(codes) != 0 {
t.Errorf(" content requested for empty state: %v, %v, %v", nodes, paths, codes)
}
}
// Tests that given a root hash, a state can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go.
func TestIterativeStateSyncIndividual(t *testing.T) {
testIterativeStateSync(t, 1, false, false)
}
func TestIterativeStateSyncBatched(t *testing.T) {
testIterativeStateSync(t, 100, false, false)
}
func TestIterativeStateSyncIndividualFromDisk(t *testing.T) {
testIterativeStateSync(t, 1, true, false)
}
func TestIterativeStateSyncBatchedFromDisk(t *testing.T) {
testIterativeStateSync(t, 100, true, false)
}
func TestIterativeStateSyncIndividualByPath(t *testing.T) {
testIterativeStateSync(t, 1, false, true)
}
func TestIterativeStateSyncBatchedByPath(t *testing.T) {
testIterativeStateSync(t, 100, false, true)
}
func testIterativeStateSync(t *testing.T, count int, commit bool, bypath bool) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
if commit {
srcDb.TrieDB().Commit(srcRoot, false, nil)
}
srcTrie, _ := trie.New(common.Hash{}, srcRoot, srcDb.TrieDB())
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil)
nodes, paths, codes := sched.Missing(count)
var (
hashQueue []common.Hash
pathQueue []trie.SyncPath
)
if !bypath {
hashQueue = append(append(hashQueue[:0], nodes...), codes...)
} else {
hashQueue = append(hashQueue[:0], codes...)
pathQueue = append(pathQueue[:0], paths...)
}
for len(hashQueue)+len(pathQueue) > 0 {
results := make([]trie.SyncResult, len(hashQueue)+len(pathQueue))
for i, hash := range hashQueue {
data, err := srcDb.TrieDB().Node(hash)
if err != nil {
data, err = srcDb.ContractCode(common.Hash{}, hash)
}
if err != nil {
t.Fatalf("failed to retrieve node data for hash %x", hash)
}
results[i] = trie.SyncResult{Hash: hash, Data: data}
}
for i, path := range pathQueue {
if len(path) == 1 {
data, _, err := srcTrie.TryGetNode(path[0])
if err != nil {
t.Fatalf("failed to retrieve node data for path %x: %v", path, err)
}
results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.Keccak256Hash(data), Data: data}
} else {
var acc types.StateAccount
if err := rlp.DecodeBytes(srcTrie.Get(path[0]), &acc); err != nil {
t.Fatalf("failed to decode account on path %x: %v", path, err)
}
stTrie, err := trie.New(common.BytesToHash(path[0]), acc.Root, srcDb.TrieDB())
if err != nil {
t.Fatalf("failed to retriev storage trie for path %x: %v", path, err)
}
data, _, err := stTrie.TryGetNode(path[1])
if err != nil {
t.Fatalf("failed to retrieve node data for path %x: %v", path, err)
}
results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.Keccak256Hash(data), Data: data}
}
}
for _, result := range results {
if err := sched.Process(result); err != nil {
t.Errorf("failed to process result %v", err)
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
nodes, paths, codes = sched.Missing(count)
if !bypath {
hashQueue = append(append(hashQueue[:0], nodes...), codes...)
} else {
hashQueue = append(hashQueue[:0], codes...)
pathQueue = append(pathQueue[:0], paths...)
}
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned, and the others sent only later.
func TestIterativeDelayedStateSync(t *testing.T) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil)
nodes, _, codes := sched.Missing(0)
queue := append(append([]common.Hash{}, nodes...), codes...)
for len(queue) > 0 {
// Sync only half of the scheduled nodes
results := make([]trie.SyncResult, len(queue)/2+1)
for i, hash := range queue[:len(results)] {
data, err := srcDb.TrieDB().Node(hash)
if err != nil {
data, err = srcDb.ContractCode(common.Hash{}, hash)
}
if err != nil {
t.Fatalf("failed to retrieve node data for %x", hash)
}
results[i] = trie.SyncResult{Hash: hash, Data: data}
}
for _, result := range results {
if err := sched.Process(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
nodes, _, codes = sched.Missing(0)
queue = append(append(queue[len(results):], nodes...), codes...)
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go, however in a
// random order.
func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) }
func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100) }
func testIterativeRandomStateSync(t *testing.T, count int) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil)
queue := make(map[common.Hash]struct{})
nodes, _, codes := sched.Missing(count)
for _, hash := range append(nodes, codes...) {
queue[hash] = struct{}{}
}
for len(queue) > 0 {
// Fetch all the queued nodes in a random order
results := make([]trie.SyncResult, 0, len(queue))
for hash := range queue {
data, err := srcDb.TrieDB().Node(hash)
if err != nil {
data, err = srcDb.ContractCode(common.Hash{}, hash)
}
if err != nil {
t.Fatalf("failed to retrieve node data for %x", hash)
}
results = append(results, trie.SyncResult{Hash: hash, Data: data})
}
// Feed the retrieved results back and queue new tasks
for _, result := range results {
if err := sched.Process(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
queue = make(map[common.Hash]struct{})
nodes, _, codes = sched.Missing(count)
for _, hash := range append(nodes, codes...) {
queue[hash] = struct{}{}
}
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedStateSync(t *testing.T) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil)
queue := make(map[common.Hash]struct{})
nodes, _, codes := sched.Missing(0)
for _, hash := range append(nodes, codes...) {
queue[hash] = struct{}{}
}
for len(queue) > 0 {
// Sync only half of the scheduled nodes, even those in random order
results := make([]trie.SyncResult, 0, len(queue)/2+1)
for hash := range queue {
delete(queue, hash)
data, err := srcDb.TrieDB().Node(hash)
if err != nil {
data, err = srcDb.ContractCode(common.Hash{}, hash)
}
if err != nil {
t.Fatalf("failed to retrieve node data for %x", hash)
}
results = append(results, trie.SyncResult{Hash: hash, Data: data})
if len(results) >= cap(results) {
break
}
}
// Feed the retrieved results back and queue new tasks
for _, result := range results {
if err := sched.Process(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
for _, result := range results {
delete(queue, result.Hash)
}
nodes, _, codes = sched.Missing(0)
for _, hash := range append(nodes, codes...) {
queue[hash] = struct{}{}
}
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that at any point in time during a sync, only complete sub-tries are in
// the database.
func TestIncompleteStateSync(t *testing.T) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// isCodeLookup to save some hashing
var isCode = make(map[common.Hash]struct{})
for _, acc := range srcAccounts {
if len(acc.code) > 0 {
isCode[crypto.Keccak256Hash(acc.code)] = struct{}{}
}
}
isCode[common.BytesToHash(emptyCodeHash)] = struct{}{}
checkTrieConsistency(srcDb.TrieDB().DiskDB().(ethdb.Database), srcRoot)
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil)
var added []common.Hash
nodes, _, codes := sched.Missing(1)
queue := append(append([]common.Hash{}, nodes...), codes...)
for len(queue) > 0 {
// Fetch a batch of state nodes
results := make([]trie.SyncResult, len(queue))
for i, hash := range queue {
data, err := srcDb.TrieDB().Node(hash)
if err != nil {
data, err = srcDb.ContractCode(common.Hash{}, hash)
}
if err != nil {
t.Fatalf("failed to retrieve node data for %x", hash)
}
results[i] = trie.SyncResult{Hash: hash, Data: data}
}
// Process each of the state nodes
for _, result := range results {
if err := sched.Process(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
for _, result := range results {
added = append(added, result.Hash)
// Check that all known sub-tries added so far are complete or missing entirely.
if _, ok := isCode[result.Hash]; ok {
continue
}
// Can't use checkStateConsistency here because subtrie keys may have odd
// length and crash in LeafKey.
if err := checkTrieConsistency(dstDb, result.Hash); err != nil {
t.Fatalf("state inconsistent: %v", err)
}
}
// Fetch the next batch to retrieve
nodes, _, codes = sched.Missing(1)
queue = append(append(queue[:0], nodes...), codes...)
}
// Sanity check that removing any node from the database is detected
for _, node := range added[1:] {
var (
key = node.Bytes()
_, code = isCode[node]
val []byte
)
if code {
val = rawdb.ReadCode(dstDb, node)
rawdb.DeleteCode(dstDb, node)
} else {
val = rawdb.ReadTrieNode(dstDb, node)
rawdb.DeleteTrieNode(dstDb, node)
}
if err := checkStateConsistency(dstDb, added[0]); err == nil {
t.Fatalf("trie inconsistency not caught, missing: %x", key)
}
if code {
rawdb.WriteCode(dstDb, node, val)
} else {
rawdb.WriteTrieNode(dstDb, node, val)
}
}
}