bsc/metrics/runtimehistogram.go
Martin Holst Swende 8b6cf128af
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below. 

### Split up interfaces, write vs read

The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_. 

Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part: 

```golang
type MeterSnapshot interface {
	Count() int64
	Rate1() float64
	Rate5() float64
	Rate15() float64
	RateMean() float64
}

// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
	Mark(int64)
	Snapshot() MeterSnapshot
	Stop()
}
```

### A note about concurrency

This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it. 

- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe. 
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe. 

TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe. 

For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots. 

Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.

Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it: 
```golang
		ms := metric.Snapshot()
                ...
		fields := map[string]interface{}{
			"count":    ms.Count(),
			"max":      ms.Max(),
			"mean":     ms.Mean(),
			"min":      ms.Min(),
			"stddev":   ms.StdDev(),
			"variance": ms.Variance(),
```

TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).

### Sample changes

I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once. 

The same thing has been done for runtimehistogram. 

### ResettingTimer API

Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`. 

1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`. 
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`. 

This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type. 

The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead. 

### Unexport types

A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 13:13:47 -04:00

302 lines
7.8 KiB
Go

package metrics
import (
"math"
"runtime/metrics"
"sort"
"sync/atomic"
)
func getOrRegisterRuntimeHistogram(name string, scale float64, r Registry) *runtimeHistogram {
if r == nil {
r = DefaultRegistry
}
constructor := func() Histogram { return newRuntimeHistogram(scale) }
return r.GetOrRegister(name, constructor).(*runtimeHistogram)
}
// runtimeHistogram wraps a runtime/metrics histogram.
type runtimeHistogram struct {
v atomic.Value // v is a pointer to a metrics.Float64Histogram
scaleFactor float64
}
func newRuntimeHistogram(scale float64) *runtimeHistogram {
h := &runtimeHistogram{scaleFactor: scale}
h.update(new(metrics.Float64Histogram))
return h
}
func RuntimeHistogramFromData(scale float64, hist *metrics.Float64Histogram) *runtimeHistogram {
h := &runtimeHistogram{scaleFactor: scale}
h.update(hist)
return h
}
func (h *runtimeHistogram) update(mh *metrics.Float64Histogram) {
if mh == nil {
// The update value can be nil if the current Go version doesn't support a
// requested metric. It's just easier to handle nil here than putting
// conditionals everywhere.
return
}
s := metrics.Float64Histogram{
Counts: make([]uint64, len(mh.Counts)),
Buckets: make([]float64, len(mh.Buckets)),
}
copy(s.Counts, mh.Counts)
for i, b := range mh.Buckets {
s.Buckets[i] = b * h.scaleFactor
}
h.v.Store(&s)
}
func (h *runtimeHistogram) Clear() {
panic("runtimeHistogram does not support Clear")
}
func (h *runtimeHistogram) Update(int64) {
panic("runtimeHistogram does not support Update")
}
// Snapshot returns a non-changing copy of the histogram.
func (h *runtimeHistogram) Snapshot() HistogramSnapshot {
hist := h.v.Load().(*metrics.Float64Histogram)
return newRuntimeHistogramSnapshot(hist)
}
type runtimeHistogramSnapshot struct {
internal *metrics.Float64Histogram
calculated bool
// The following fields are (lazily) calculated based on 'internal'
mean float64
count int64
min int64 // min is the lowest sample value.
max int64 // max is the highest sample value.
variance float64
}
func newRuntimeHistogramSnapshot(h *metrics.Float64Histogram) *runtimeHistogramSnapshot {
return &runtimeHistogramSnapshot{
internal: h,
}
}
// calc calculates the values for the snapshot. This method is not threadsafe.
func (h *runtimeHistogramSnapshot) calc() {
h.calculated = true
var (
count int64 // number of samples
sum float64 // approx sum of all sample values
min int64
max float64
)
if len(h.internal.Counts) == 0 {
return
}
for i, c := range h.internal.Counts {
if c == 0 {
continue
}
if count == 0 { // Set min only first loop iteration
min = int64(math.Floor(h.internal.Buckets[i]))
}
count += int64(c)
sum += h.midpoint(i) * float64(c)
// Set max on every iteration
edge := h.internal.Buckets[i+1]
if math.IsInf(edge, 1) {
edge = h.internal.Buckets[i]
}
if edge > max {
max = edge
}
}
h.min = min
h.max = int64(max)
h.mean = sum / float64(count)
h.count = count
}
// Count returns the sample count.
func (h *runtimeHistogramSnapshot) Count() int64 {
if !h.calculated {
h.calc()
}
return h.count
}
// Size returns the size of the sample at the time the snapshot was taken.
func (h *runtimeHistogramSnapshot) Size() int {
return len(h.internal.Counts)
}
// Mean returns an approximation of the mean.
func (h *runtimeHistogramSnapshot) Mean() float64 {
if !h.calculated {
h.calc()
}
return h.mean
}
func (h *runtimeHistogramSnapshot) midpoint(bucket int) float64 {
high := h.internal.Buckets[bucket+1]
low := h.internal.Buckets[bucket]
if math.IsInf(high, 1) {
// The edge of the highest bucket can be +Inf, and it's supposed to mean that this
// bucket contains all remaining samples > low. We can't get the middle of an
// infinite range, so just return the lower bound of this bucket instead.
return low
}
if math.IsInf(low, -1) {
// Similarly, we can get -Inf in the left edge of the lowest bucket,
// and it means the bucket contains all remaining values < high.
return high
}
return (low + high) / 2
}
// StdDev approximates the standard deviation of the histogram.
func (h *runtimeHistogramSnapshot) StdDev() float64 {
return math.Sqrt(h.Variance())
}
// Variance approximates the variance of the histogram.
func (h *runtimeHistogramSnapshot) Variance() float64 {
if len(h.internal.Counts) == 0 {
return 0
}
if !h.calculated {
h.calc()
}
if h.count <= 1 {
// There is no variance when there are zero or one items.
return 0
}
// Variance is not calculated in 'calc', because it requires a second iteration.
// Therefore we calculate it lazily in this method, triggered either by
// a direct call to Variance or via StdDev.
if h.variance != 0.0 {
return h.variance
}
var sum float64
for i, c := range h.internal.Counts {
midpoint := h.midpoint(i)
d := midpoint - h.mean
sum += float64(c) * (d * d)
}
h.variance = sum / float64(h.count-1)
return h.variance
}
// Percentile computes the p'th percentile value.
func (h *runtimeHistogramSnapshot) Percentile(p float64) float64 {
threshold := float64(h.Count()) * p
values := [1]float64{threshold}
h.computePercentiles(values[:])
return values[0]
}
// Percentiles computes all requested percentile values.
func (h *runtimeHistogramSnapshot) Percentiles(ps []float64) []float64 {
// Compute threshold values. We need these to be sorted
// for the percentile computation, but restore the original
// order later, so keep the indexes as well.
count := float64(h.Count())
thresholds := make([]float64, len(ps))
indexes := make([]int, len(ps))
for i, percentile := range ps {
thresholds[i] = count * math.Max(0, math.Min(1.0, percentile))
indexes[i] = i
}
sort.Sort(floatsAscendingKeepingIndex{thresholds, indexes})
// Now compute. The result is stored back into the thresholds slice.
h.computePercentiles(thresholds)
// Put the result back into the requested order.
sort.Sort(floatsByIndex{thresholds, indexes})
return thresholds
}
func (h *runtimeHistogramSnapshot) computePercentiles(thresh []float64) {
var totalCount float64
for i, count := range h.internal.Counts {
totalCount += float64(count)
for len(thresh) > 0 && thresh[0] < totalCount {
thresh[0] = h.internal.Buckets[i]
thresh = thresh[1:]
}
if len(thresh) == 0 {
return
}
}
}
// Note: runtime/metrics.Float64Histogram is a collection of float64s, but the methods
// below need to return int64 to satisfy the interface. The histogram provided by runtime
// also doesn't keep track of individual samples, so results are approximated.
// Max returns the highest sample value.
func (h *runtimeHistogramSnapshot) Max() int64 {
if !h.calculated {
h.calc()
}
return h.max
}
// Min returns the lowest sample value.
func (h *runtimeHistogramSnapshot) Min() int64 {
if !h.calculated {
h.calc()
}
return h.min
}
// Sum returns the sum of all sample values.
func (h *runtimeHistogramSnapshot) Sum() int64 {
var sum float64
for i := range h.internal.Counts {
sum += h.internal.Buckets[i] * float64(h.internal.Counts[i])
}
return int64(math.Ceil(sum))
}
type floatsAscendingKeepingIndex struct {
values []float64
indexes []int
}
func (s floatsAscendingKeepingIndex) Len() int {
return len(s.values)
}
func (s floatsAscendingKeepingIndex) Less(i, j int) bool {
return s.values[i] < s.values[j]
}
func (s floatsAscendingKeepingIndex) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i]
}
type floatsByIndex struct {
values []float64
indexes []int
}
func (s floatsByIndex) Len() int {
return len(s.values)
}
func (s floatsByIndex) Less(i, j int) bool {
return s.indexes[i] < s.indexes[j]
}
func (s floatsByIndex) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i]
}