2017-04-14 10:29:00 +02:00
|
|
|
// Copyright 2017 The go-ethereum Authors
|
2017-02-18 09:24:12 +01:00
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
2021-08-25 18:46:29 +02:00
|
|
|
//go:build nacl || js || !cgo || gofuzz
|
2021-06-30 23:04:28 +02:00
|
|
|
// +build nacl js !cgo gofuzz
|
2017-02-18 09:24:12 +01:00
|
|
|
|
|
|
|
package crypto
|
|
|
|
|
|
|
|
import (
|
|
|
|
"crypto/ecdsa"
|
2017-12-06 16:07:08 +01:00
|
|
|
"errors"
|
2017-02-18 09:24:12 +01:00
|
|
|
"fmt"
|
2024-03-18 17:36:50 +01:00
|
|
|
"math/big"
|
2017-02-18 09:24:12 +01:00
|
|
|
|
2024-10-15 01:49:08 -07:00
|
|
|
"github.com/decred/dcrd/dcrec/secp256k1/v4"
|
|
|
|
decred_ecdsa "github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa"
|
2017-02-18 09:24:12 +01:00
|
|
|
)
|
|
|
|
|
2017-12-06 16:07:08 +01:00
|
|
|
// Ecrecover returns the uncompressed public key that created the given signature.
|
2017-02-18 09:24:12 +01:00
|
|
|
func Ecrecover(hash, sig []byte) ([]byte, error) {
|
2022-03-16 08:23:14 -05:00
|
|
|
pub, err := sigToPub(hash, sig)
|
2017-02-18 09:24:12 +01:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2022-03-16 08:23:14 -05:00
|
|
|
bytes := pub.SerializeUncompressed()
|
2017-02-18 09:24:12 +01:00
|
|
|
return bytes, err
|
|
|
|
}
|
|
|
|
|
2024-10-15 01:49:08 -07:00
|
|
|
func sigToPub(hash, sig []byte) (*secp256k1.PublicKey, error) {
|
2022-03-16 08:23:14 -05:00
|
|
|
if len(sig) != SignatureLength {
|
|
|
|
return nil, errors.New("invalid signature")
|
|
|
|
}
|
2024-10-15 01:49:08 -07:00
|
|
|
// Convert to secp256k1 input format with 'recovery id' v at the beginning.
|
2019-08-22 15:14:06 +02:00
|
|
|
btcsig := make([]byte, SignatureLength)
|
2022-03-16 08:23:14 -05:00
|
|
|
btcsig[0] = sig[RecoveryIDOffset] + 27
|
2017-02-18 09:24:12 +01:00
|
|
|
copy(btcsig[1:], sig)
|
|
|
|
|
2024-10-15 01:49:08 -07:00
|
|
|
pub, _, err := decred_ecdsa.RecoverCompact(btcsig, hash)
|
2022-03-16 08:23:14 -05:00
|
|
|
return pub, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// SigToPub returns the public key that created the given signature.
|
|
|
|
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
|
|
|
|
pub, err := sigToPub(hash, sig)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2024-03-18 17:36:50 +01:00
|
|
|
// We need to explicitly set the curve here, because we're wrapping
|
|
|
|
// the original curve to add (un-)marshalling
|
|
|
|
return &ecdsa.PublicKey{
|
|
|
|
Curve: S256(),
|
|
|
|
X: pub.X(),
|
|
|
|
Y: pub.Y(),
|
|
|
|
}, nil
|
2017-02-18 09:24:12 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Sign calculates an ECDSA signature.
|
|
|
|
//
|
|
|
|
// This function is susceptible to chosen plaintext attacks that can leak
|
|
|
|
// information about the private key that is used for signing. Callers must
|
2022-03-16 08:23:14 -05:00
|
|
|
// be aware that the given hash cannot be chosen by an adversary. Common
|
2017-02-18 09:24:12 +01:00
|
|
|
// solution is to hash any input before calculating the signature.
|
|
|
|
//
|
|
|
|
// The produced signature is in the [R || S || V] format where V is 0 or 1.
|
|
|
|
func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) {
|
|
|
|
if len(hash) != 32 {
|
|
|
|
return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
|
|
|
|
}
|
2024-03-18 17:36:50 +01:00
|
|
|
if prv.Curve != S256() {
|
2023-05-24 20:45:51 +08:00
|
|
|
return nil, errors.New("private key curve is not secp256k1")
|
2017-02-18 09:24:12 +01:00
|
|
|
}
|
2024-10-15 01:49:08 -07:00
|
|
|
// ecdsa.PrivateKey -> secp256k1.PrivateKey
|
|
|
|
var priv secp256k1.PrivateKey
|
2022-03-16 08:23:14 -05:00
|
|
|
if overflow := priv.Key.SetByteSlice(prv.D.Bytes()); overflow || priv.Key.IsZero() {
|
2023-05-24 20:45:51 +08:00
|
|
|
return nil, errors.New("invalid private key")
|
2022-03-16 08:23:14 -05:00
|
|
|
}
|
|
|
|
defer priv.Zero()
|
2024-10-15 01:49:08 -07:00
|
|
|
sig := decred_ecdsa.SignCompact(&priv, hash, false) // ref uncompressed pubkey
|
2017-02-18 09:24:12 +01:00
|
|
|
// Convert to Ethereum signature format with 'recovery id' v at the end.
|
|
|
|
v := sig[0] - 27
|
|
|
|
copy(sig, sig[1:])
|
2022-03-16 08:23:14 -05:00
|
|
|
sig[RecoveryIDOffset] = v
|
2017-02-18 09:24:12 +01:00
|
|
|
return sig, nil
|
|
|
|
}
|
|
|
|
|
2017-12-06 16:07:08 +01:00
|
|
|
// VerifySignature checks that the given public key created signature over hash.
|
|
|
|
// The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
|
|
|
|
// The signature should have the 64 byte [R || S] format.
|
|
|
|
func VerifySignature(pubkey, hash, signature []byte) bool {
|
|
|
|
if len(signature) != 64 {
|
|
|
|
return false
|
|
|
|
}
|
2024-10-15 01:49:08 -07:00
|
|
|
var r, s secp256k1.ModNScalar
|
2022-03-16 08:23:14 -05:00
|
|
|
if r.SetByteSlice(signature[:32]) {
|
|
|
|
return false // overflow
|
|
|
|
}
|
|
|
|
if s.SetByteSlice(signature[32:]) {
|
|
|
|
return false
|
|
|
|
}
|
2024-10-15 01:49:08 -07:00
|
|
|
sig := decred_ecdsa.NewSignature(&r, &s)
|
|
|
|
key, err := secp256k1.ParsePubKey(pubkey)
|
2017-12-06 16:07:08 +01:00
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
2024-10-15 01:49:08 -07:00
|
|
|
// Reject malleable signatures. libsecp256k1 does this check but decred doesn't.
|
2022-03-16 08:23:14 -05:00
|
|
|
if s.IsOverHalfOrder() {
|
2017-12-20 13:30:00 +01:00
|
|
|
return false
|
|
|
|
}
|
2017-12-06 16:07:08 +01:00
|
|
|
return sig.Verify(hash, key)
|
|
|
|
}
|
|
|
|
|
|
|
|
// DecompressPubkey parses a public key in the 33-byte compressed format.
|
|
|
|
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
|
|
|
|
if len(pubkey) != 33 {
|
|
|
|
return nil, errors.New("invalid compressed public key length")
|
|
|
|
}
|
2024-10-15 01:49:08 -07:00
|
|
|
key, err := secp256k1.ParsePubKey(pubkey)
|
2017-12-06 16:07:08 +01:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2024-03-18 17:36:50 +01:00
|
|
|
// We need to explicitly set the curve here, because we're wrapping
|
|
|
|
// the original curve to add (un-)marshalling
|
|
|
|
return &ecdsa.PublicKey{
|
|
|
|
Curve: S256(),
|
|
|
|
X: key.X(),
|
|
|
|
Y: key.Y(),
|
|
|
|
}, nil
|
2017-12-06 16:07:08 +01:00
|
|
|
}
|
|
|
|
|
2022-03-16 08:23:14 -05:00
|
|
|
// CompressPubkey encodes a public key to the 33-byte compressed format. The
|
|
|
|
// provided PublicKey must be valid. Namely, the coordinates must not be larger
|
|
|
|
// than 32 bytes each, they must be less than the field prime, and it must be a
|
|
|
|
// point on the secp256k1 curve. This is the case for a PublicKey constructed by
|
|
|
|
// elliptic.Unmarshal (see UnmarshalPubkey), or by ToECDSA and ecdsa.GenerateKey
|
|
|
|
// when constructing a PrivateKey.
|
2017-12-15 10:40:09 +01:00
|
|
|
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
|
2022-03-16 08:23:14 -05:00
|
|
|
// NOTE: the coordinates may be validated with
|
2024-10-15 01:49:08 -07:00
|
|
|
// secp256k1.ParsePubKey(FromECDSAPub(pubkey))
|
|
|
|
var x, y secp256k1.FieldVal
|
2022-03-16 08:23:14 -05:00
|
|
|
x.SetByteSlice(pubkey.X.Bytes())
|
|
|
|
y.SetByteSlice(pubkey.Y.Bytes())
|
2024-10-15 01:49:08 -07:00
|
|
|
return secp256k1.NewPublicKey(&x, &y).SerializeCompressed()
|
2017-12-15 10:40:09 +01:00
|
|
|
}
|
|
|
|
|
2017-02-18 09:24:12 +01:00
|
|
|
// S256 returns an instance of the secp256k1 curve.
|
2024-03-18 17:36:50 +01:00
|
|
|
func S256() EllipticCurve {
|
2024-10-15 01:49:08 -07:00
|
|
|
return btCurve{secp256k1.S256()}
|
2024-03-18 17:36:50 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
type btCurve struct {
|
2024-10-15 01:49:08 -07:00
|
|
|
*secp256k1.KoblitzCurve
|
2024-03-18 17:36:50 +01:00
|
|
|
}
|
|
|
|
|
2024-03-27 04:01:28 +08:00
|
|
|
// Marshal converts a point given as (x, y) into a byte slice.
|
2024-03-18 17:36:50 +01:00
|
|
|
func (curve btCurve) Marshal(x, y *big.Int) []byte {
|
|
|
|
byteLen := (curve.Params().BitSize + 7) / 8
|
|
|
|
|
|
|
|
ret := make([]byte, 1+2*byteLen)
|
|
|
|
ret[0] = 4 // uncompressed point
|
|
|
|
|
|
|
|
x.FillBytes(ret[1 : 1+byteLen])
|
|
|
|
y.FillBytes(ret[1+byteLen : 1+2*byteLen])
|
|
|
|
|
|
|
|
return ret
|
|
|
|
}
|
|
|
|
|
|
|
|
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
|
|
|
|
// error, x = nil.
|
|
|
|
func (curve btCurve) Unmarshal(data []byte) (x, y *big.Int) {
|
|
|
|
byteLen := (curve.Params().BitSize + 7) / 8
|
|
|
|
if len(data) != 1+2*byteLen {
|
|
|
|
return nil, nil
|
|
|
|
}
|
|
|
|
if data[0] != 4 { // uncompressed form
|
|
|
|
return nil, nil
|
|
|
|
}
|
|
|
|
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
|
|
|
|
y = new(big.Int).SetBytes(data[1+byteLen:])
|
|
|
|
return
|
2017-02-18 09:24:12 +01:00
|
|
|
}
|