go-ethereum/trie/tracer.go

131 lines
4.3 KiB
Go
Raw Permalink Normal View History

// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"github.com/ethereum/go-ethereum/common"
)
// tracer tracks the changes of trie nodes. During the trie operations,
// some nodes can be deleted from the trie, while these deleted nodes
// won't be captured by trie.Hasher or trie.Committer. Thus, these deleted
// nodes won't be removed from the disk at all. Tracer is an auxiliary tool
// used to track all insert and delete operations of trie and capture all
// deleted nodes eventually.
//
// The changed nodes can be mainly divided into two categories: the leaf
// node and intermediate node. The former is inserted/deleted by callers
// while the latter is inserted/deleted in order to follow the rule of trie.
// This tool can track all of them no matter the node is embedded in its
// parent or not, but valueNode is never tracked.
//
// Besides, it's also used for recording the original value of the nodes
// when they are resolved from the disk. The pre-value of the nodes will
// be used to construct trie history in the future.
//
// Note tracer is not thread-safe, callers should be responsible for handling
// the concurrency issues by themselves.
type tracer struct {
inserts map[string]struct{}
deletes map[string]struct{}
accessList map[string][]byte
}
// newTracer initializes the tracer for capturing trie changes.
func newTracer() *tracer {
return &tracer{
inserts: make(map[string]struct{}),
deletes: make(map[string]struct{}),
accessList: make(map[string][]byte),
}
}
// onRead tracks the newly loaded trie node and caches the rlp-encoded
// blob internally. Don't change the value outside of function since
// it's not deep-copied.
func (t *tracer) onRead(path []byte, val []byte) {
t.accessList[string(path)] = val
}
// onInsert tracks the newly inserted trie node. If it's already
// in the deletion set (resurrected node), then just wipe it from
// the deletion set as it's "untouched".
func (t *tracer) onInsert(path []byte) {
if _, present := t.deletes[string(path)]; present {
delete(t.deletes, string(path))
return
}
t.inserts[string(path)] = struct{}{}
}
// onDelete tracks the newly deleted trie node. If it's already
// in the addition set, then just wipe it from the addition set
// as it's untouched.
func (t *tracer) onDelete(path []byte) {
if _, present := t.inserts[string(path)]; present {
delete(t.inserts, string(path))
return
}
t.deletes[string(path)] = struct{}{}
}
// reset clears the content tracked by tracer.
func (t *tracer) reset() {
t.inserts = make(map[string]struct{})
t.deletes = make(map[string]struct{})
t.accessList = make(map[string][]byte)
}
// copy returns a deep copied tracer instance.
func (t *tracer) copy() *tracer {
var (
inserts = make(map[string]struct{})
deletes = make(map[string]struct{})
accessList = make(map[string][]byte)
)
for path := range t.inserts {
inserts[path] = struct{}{}
}
for path := range t.deletes {
deletes[path] = struct{}{}
}
for path, blob := range t.accessList {
accessList[path] = common.CopyBytes(blob)
}
return &tracer{
inserts: inserts,
deletes: deletes,
accessList: accessList,
}
}
// deletedNodes returns a list of node paths which are deleted from the trie.
func (t *tracer) deletedNodes() []string {
var paths []string
for path := range t.deletes {
// It's possible a few deleted nodes were embedded
// in their parent before, the deletions can be no
// effect by deleting nothing, filter them out.
_, ok := t.accessList[path]
if !ok {
continue
}
paths = append(paths, path)
}
return paths
}