go-ethereum/core/vm/eof_control_flow.go

236 lines
7.8 KiB
Go
Raw Permalink Normal View History

// Copyright 2024 The go-ethereum Authors
// This file is part of go-ethereum.
//
// go-ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// go-ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"fmt"
"github.com/ethereum/go-ethereum/params"
)
func validateControlFlow(code []byte, section int, metadata []*functionMetadata, jt *JumpTable) (int, error) {
var (
maxStackHeight = int(metadata[section].inputs)
visitCount = 0
next = make([]int, 0, 1)
)
var (
stackBoundsMax = make([]uint16, len(code))
stackBoundsMin = make([]uint16, len(code))
)
setBounds := func(pos, min, maxi int) {
// The stackboundMax slice is a bit peculiar. We use `0` to denote
// not set. Therefore, we use `1` to represent the value `0`, and so on.
// So if the caller wants to store `1` as max bound, we internally store it as
// `2`.
if stackBoundsMax[pos] == 0 { // Not yet set
visitCount++
}
if maxi < 65535 {
stackBoundsMax[pos] = uint16(maxi + 1)
}
stackBoundsMin[pos] = uint16(min)
maxStackHeight = max(maxStackHeight, maxi)
}
getStackMaxMin := func(pos int) (ok bool, min, max int) {
maxi := stackBoundsMax[pos]
if maxi == 0 { // Not yet set
return false, 0, 0
}
return true, int(stackBoundsMin[pos]), int(maxi - 1)
}
// set the initial stack bounds
setBounds(0, int(metadata[section].inputs), int(metadata[section].inputs))
qualifiedExit := false
for pos := 0; pos < len(code); pos++ {
op := OpCode(code[pos])
ok, currentStackMin, currentStackMax := getStackMaxMin(pos)
if !ok {
return 0, errUnreachableCode
}
switch op {
case CALLF:
arg, _ := parseUint16(code[pos+1:])
newSection := metadata[arg]
if err := newSection.checkInputs(currentStackMin); err != nil {
return 0, fmt.Errorf("%w: at pos %d", err, pos)
}
if err := newSection.checkStackMax(currentStackMax); err != nil {
return 0, fmt.Errorf("%w: at pos %d", err, pos)
}
delta := newSection.stackDelta()
currentStackMax += delta
currentStackMin += delta
case RETF:
/* From the spec:
> for RETF the following must hold: stack_height_max == stack_height_min == types[current_code_index].outputs,
In other words: RETF must unambiguously return all items remaining on the stack.
*/
if currentStackMax != currentStackMin {
return 0, fmt.Errorf("%w: max %d, min %d, at pos %d", errInvalidOutputs, currentStackMax, currentStackMin, pos)
}
numOutputs := int(metadata[section].outputs)
if numOutputs >= maxOutputItems {
return 0, fmt.Errorf("%w: at pos %d", errInvalidNonReturningFlag, pos)
}
if numOutputs != currentStackMin {
return 0, fmt.Errorf("%w: have %d, want %d, at pos %d", errInvalidOutputs, numOutputs, currentStackMin, pos)
}
qualifiedExit = true
case JUMPF:
arg, _ := parseUint16(code[pos+1:])
newSection := metadata[arg]
if err := newSection.checkStackMax(currentStackMax); err != nil {
return 0, fmt.Errorf("%w: at pos %d", err, pos)
}
if newSection.outputs == 0x80 {
if err := newSection.checkInputs(currentStackMin); err != nil {
return 0, fmt.Errorf("%w: at pos %d", err, pos)
}
} else {
if currentStackMax != currentStackMin {
return 0, fmt.Errorf("%w: max %d, min %d, at pos %d", errInvalidOutputs, currentStackMax, currentStackMin, pos)
}
wantStack := int(metadata[section].outputs) - newSection.stackDelta()
if currentStackMax != wantStack {
return 0, fmt.Errorf("%w: at pos %d", errInvalidOutputs, pos)
}
}
qualifiedExit = qualifiedExit || newSection.outputs < maxOutputItems
case DUPN:
arg := int(code[pos+1]) + 1
if want, have := arg, currentStackMin; want > have {
return 0, fmt.Errorf("%w: at pos %d", ErrStackUnderflow{stackLen: have, required: want}, pos)
}
case SWAPN:
arg := int(code[pos+1]) + 1
if want, have := arg+1, currentStackMin; want > have {
return 0, fmt.Errorf("%w: at pos %d", ErrStackUnderflow{stackLen: have, required: want}, pos)
}
case EXCHANGE:
arg := int(code[pos+1])
n := arg>>4 + 1
m := arg&0x0f + 1
if want, have := n+m+1, currentStackMin; want > have {
return 0, fmt.Errorf("%w: at pos %d", ErrStackUnderflow{stackLen: have, required: want}, pos)
}
default:
if want, have := jt[op].minStack, currentStackMin; want > have {
return 0, fmt.Errorf("%w: at pos %d", ErrStackUnderflow{stackLen: have, required: want}, pos)
}
}
if !terminals[op] && op != CALLF {
change := int(params.StackLimit) - jt[op].maxStack
currentStackMax += change
currentStackMin += change
}
next = next[:0]
switch op {
case RJUMP:
nextPos := pos + 2 + parseInt16(code[pos+1:])
next = append(next, nextPos)
// We set the stack bounds of the destination
// and skip the argument, only for RJUMP, all other opcodes are handled later
if nextPos+1 < pos {
ok, nextMin, nextMax := getStackMaxMin(nextPos + 1)
if !ok {
return 0, errInvalidBackwardJump
}
if nextMax != currentStackMax || nextMin != currentStackMin {
return 0, errInvalidMaxStackHeight
}
} else {
ok, nextMin, nextMax := getStackMaxMin(nextPos + 1)
if !ok {
setBounds(nextPos+1, currentStackMin, currentStackMax)
} else {
setBounds(nextPos+1, min(nextMin, currentStackMin), max(nextMax, currentStackMax))
}
}
case RJUMPI:
arg := parseInt16(code[pos+1:])
next = append(next, pos+2)
next = append(next, pos+2+arg)
case RJUMPV:
count := int(code[pos+1]) + 1
next = append(next, pos+1+2*count)
for i := 0; i < count; i++ {
arg := parseInt16(code[pos+2+2*i:])
next = append(next, pos+1+2*count+arg)
}
default:
if imm := int(immediates[op]); imm != 0 {
next = append(next, pos+imm)
} else {
// Simple op, no operand.
next = append(next, pos)
}
}
if op != RJUMP && !terminals[op] {
for _, instr := range next {
nextPC := instr + 1
if nextPC >= len(code) {
return 0, fmt.Errorf("%w: end with %s, pos %d", errInvalidCodeTermination, op, pos)
}
if nextPC > pos {
// target reached via forward jump or seq flow
ok, nextMin, nextMax := getStackMaxMin(nextPC)
if !ok {
setBounds(nextPC, currentStackMin, currentStackMax)
} else {
setBounds(nextPC, min(nextMin, currentStackMin), max(nextMax, currentStackMax))
}
} else {
// target reached via backwards jump
ok, nextMin, nextMax := getStackMaxMin(nextPC)
if !ok {
return 0, errInvalidBackwardJump
}
if currentStackMax != nextMax {
return 0, fmt.Errorf("%w want %d as current max got %d at pos %d,", errInvalidBackwardJump, currentStackMax, nextMax, pos)
}
if currentStackMin != nextMin {
return 0, fmt.Errorf("%w want %d as current min got %d at pos %d,", errInvalidBackwardJump, currentStackMin, nextMin, pos)
}
}
}
}
if op == RJUMP {
pos += 2 // skip the immediate
} else {
pos = next[0]
}
}
if qualifiedExit != (metadata[section].outputs < maxOutputItems) {
return 0, fmt.Errorf("%w no RETF or qualified JUMPF", errInvalidNonReturningFlag)
}
if maxStackHeight >= int(params.StackLimit) {
return 0, ErrStackOverflow{maxStackHeight, int(params.StackLimit)}
}
if maxStackHeight != int(metadata[section].maxStackHeight) {
return 0, fmt.Errorf("%w in code section %d: have %d, want %d", errInvalidMaxStackHeight, section, maxStackHeight, metadata[section].maxStackHeight)
}
return visitCount, nil
}