go-ethereum/core/state/statedb_test.go

1378 lines
47 KiB
Go
Raw Permalink Normal View History

2016-04-14 18:18:24 +02:00
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package state
import (
"bytes"
"encoding/binary"
"fmt"
"maps"
"math"
"math/rand"
"reflect"
"slices"
"strings"
"sync"
"testing"
"testing/quick"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/triedb"
"github.com/ethereum/go-ethereum/triedb/hashdb"
"github.com/ethereum/go-ethereum/triedb/pathdb"
"github.com/holiman/uint256"
)
// Tests that updating a state trie does not leak any database writes prior to
// actually committing the state.
func TestUpdateLeaks(t *testing.T) {
// Create an empty state database
var (
db = rawdb.NewMemoryDatabase()
tdb = triedb.NewDatabase(db, nil)
sdb = NewDatabase(tdb, nil)
)
state, _ := New(types.EmptyRootHash, sdb)
// Update it with some accounts
for i := byte(0); i < 255; i++ {
addr := common.BytesToAddress([]byte{i})
state.AddBalance(addr, uint256.NewInt(uint64(11*i)), tracing.BalanceChangeUnspecified)
state.SetNonce(addr, uint64(42*i))
if i%2 == 0 {
state.SetState(addr, common.BytesToHash([]byte{i, i, i}), common.BytesToHash([]byte{i, i, i, i}))
}
if i%3 == 0 {
state.SetCode(addr, []byte{i, i, i, i, i})
}
}
root := state.IntermediateRoot(false)
if err := tdb.Commit(root, false); err != nil {
t.Errorf("can not commit trie %v to persistent database", root.Hex())
}
// Ensure that no data was leaked into the database
it := db.NewIterator(nil, nil)
for it.Next() {
t.Errorf("State leaked into database: %x -> %x", it.Key(), it.Value())
}
it.Release()
}
// Tests that no intermediate state of an object is stored into the database,
// only the one right before the commit.
func TestIntermediateLeaks(t *testing.T) {
// Create two state databases, one transitioning to the final state, the other final from the beginning
transDb := rawdb.NewMemoryDatabase()
finalDb := rawdb.NewMemoryDatabase()
transNdb := triedb.NewDatabase(transDb, nil)
finalNdb := triedb.NewDatabase(finalDb, nil)
transState, _ := New(types.EmptyRootHash, NewDatabase(transNdb, nil))
finalState, _ := New(types.EmptyRootHash, NewDatabase(finalNdb, nil))
modify := func(state *StateDB, addr common.Address, i, tweak byte) {
state.SetBalance(addr, uint256.NewInt(uint64(11*i)+uint64(tweak)), tracing.BalanceChangeUnspecified)
state.SetNonce(addr, uint64(42*i+tweak))
if i%2 == 0 {
state.SetState(addr, common.Hash{i, i, i, 0}, common.Hash{})
state.SetState(addr, common.Hash{i, i, i, tweak}, common.Hash{i, i, i, i, tweak})
}
if i%3 == 0 {
state.SetCode(addr, []byte{i, i, i, i, i, tweak})
}
}
// Modify the transient state.
for i := byte(0); i < 255; i++ {
modify(transState, common.Address{i}, i, 0)
}
// Write modifications to trie.
transState.IntermediateRoot(false)
// Overwrite all the data with new values in the transient database.
for i := byte(0); i < 255; i++ {
modify(transState, common.Address{i}, i, 99)
modify(finalState, common.Address{i}, i, 99)
}
// Commit and cross check the databases.
transRoot, err := transState.Commit(0, false)
if err != nil {
t.Fatalf("failed to commit transition state: %v", err)
}
if err = transNdb.Commit(transRoot, false); err != nil {
t.Errorf("can not commit trie %v to persistent database", transRoot.Hex())
}
finalRoot, err := finalState.Commit(0, false)
if err != nil {
t.Fatalf("failed to commit final state: %v", err)
}
if err = finalNdb.Commit(finalRoot, false); err != nil {
t.Errorf("can not commit trie %v to persistent database", finalRoot.Hex())
}
it := finalDb.NewIterator(nil, nil)
for it.Next() {
key, fvalue := it.Key(), it.Value()
tvalue, err := transDb.Get(key)
if err != nil {
t.Errorf("entry missing from the transition database: %x -> %x", key, fvalue)
}
if !bytes.Equal(fvalue, tvalue) {
t.Errorf("value mismatch at key %x: %x in transition database, %x in final database", key, tvalue, fvalue)
}
}
it.Release()
it = transDb.NewIterator(nil, nil)
for it.Next() {
key, tvalue := it.Key(), it.Value()
fvalue, err := finalDb.Get(key)
if err != nil {
t.Errorf("extra entry in the transition database: %x -> %x", key, it.Value())
}
if !bytes.Equal(fvalue, tvalue) {
t.Errorf("value mismatch at key %x: %x in transition database, %x in final database", key, tvalue, fvalue)
}
}
}
// TestCopy tests that copying a StateDB object indeed makes the original and
// the copy independent of each other. This test is a regression test against
// https://github.com/ethereum/go-ethereum/pull/15549.
func TestCopy(t *testing.T) {
// Create a random state test to copy and modify "independently"
orig, _ := New(types.EmptyRootHash, NewDatabaseForTesting())
for i := byte(0); i < 255; i++ {
obj := orig.getOrNewStateObject(common.BytesToAddress([]byte{i}))
obj.AddBalance(uint256.NewInt(uint64(i)), tracing.BalanceChangeUnspecified)
orig.updateStateObject(obj)
}
orig.Finalise(false)
// Copy the state
copy := orig.Copy()
// Copy the copy state
ccopy := copy.Copy()
// modify all in memory
for i := byte(0); i < 255; i++ {
origObj := orig.getOrNewStateObject(common.BytesToAddress([]byte{i}))
copyObj := copy.getOrNewStateObject(common.BytesToAddress([]byte{i}))
ccopyObj := ccopy.getOrNewStateObject(common.BytesToAddress([]byte{i}))
origObj.AddBalance(uint256.NewInt(2*uint64(i)), tracing.BalanceChangeUnspecified)
copyObj.AddBalance(uint256.NewInt(3*uint64(i)), tracing.BalanceChangeUnspecified)
ccopyObj.AddBalance(uint256.NewInt(4*uint64(i)), tracing.BalanceChangeUnspecified)
orig.updateStateObject(origObj)
copy.updateStateObject(copyObj)
ccopy.updateStateObject(copyObj)
}
// Finalise the changes on all concurrently
finalise := func(wg *sync.WaitGroup, db *StateDB) {
defer wg.Done()
db.Finalise(true)
}
var wg sync.WaitGroup
wg.Add(3)
go finalise(&wg, orig)
go finalise(&wg, copy)
go finalise(&wg, ccopy)
wg.Wait()
// Verify that the three states have been updated independently
for i := byte(0); i < 255; i++ {
origObj := orig.getOrNewStateObject(common.BytesToAddress([]byte{i}))
copyObj := copy.getOrNewStateObject(common.BytesToAddress([]byte{i}))
ccopyObj := ccopy.getOrNewStateObject(common.BytesToAddress([]byte{i}))
if want := uint256.NewInt(3 * uint64(i)); origObj.Balance().Cmp(want) != 0 {
t.Errorf("orig obj %d: balance mismatch: have %v, want %v", i, origObj.Balance(), want)
}
if want := uint256.NewInt(4 * uint64(i)); copyObj.Balance().Cmp(want) != 0 {
t.Errorf("copy obj %d: balance mismatch: have %v, want %v", i, copyObj.Balance(), want)
}
if want := uint256.NewInt(5 * uint64(i)); ccopyObj.Balance().Cmp(want) != 0 {
t.Errorf("copy obj %d: balance mismatch: have %v, want %v", i, ccopyObj.Balance(), want)
}
}
}
// TestCopyWithDirtyJournal tests if Copy can correct create a equal copied
// stateDB with dirty journal present.
func TestCopyWithDirtyJournal(t *testing.T) {
db := NewDatabaseForTesting()
orig, _ := New(types.EmptyRootHash, db)
// Fill up the initial states
for i := byte(0); i < 255; i++ {
obj := orig.getOrNewStateObject(common.BytesToAddress([]byte{i}))
obj.AddBalance(uint256.NewInt(uint64(i)), tracing.BalanceChangeUnspecified)
obj.data.Root = common.HexToHash("0xdeadbeef")
orig.updateStateObject(obj)
}
root, _ := orig.Commit(0, true)
orig, _ = New(root, db)
// modify all in memory without finalizing
for i := byte(0); i < 255; i++ {
obj := orig.getOrNewStateObject(common.BytesToAddress([]byte{i}))
obj.SubBalance(uint256.NewInt(uint64(i)), tracing.BalanceChangeUnspecified)
orig.updateStateObject(obj)
}
cpy := orig.Copy()
orig.Finalise(true)
for i := byte(0); i < 255; i++ {
root := orig.GetStorageRoot(common.BytesToAddress([]byte{i}))
if root != (common.Hash{}) {
t.Errorf("Unexpected storage root %x", root)
}
}
cpy.Finalise(true)
for i := byte(0); i < 255; i++ {
root := cpy.GetStorageRoot(common.BytesToAddress([]byte{i}))
if root != (common.Hash{}) {
t.Errorf("Unexpected storage root %x", root)
}
}
if cpy.IntermediateRoot(true) != orig.IntermediateRoot(true) {
t.Error("State is not equal after copy")
}
}
// TestCopyObjectState creates an original state, S1, and makes a copy S2.
// It then proceeds to make changes to S1. Those changes are _not_ supposed
// to affect S2. This test checks that the copy properly deep-copies the objectstate
func TestCopyObjectState(t *testing.T) {
db := NewDatabaseForTesting()
orig, _ := New(types.EmptyRootHash, db)
// Fill up the initial states
for i := byte(0); i < 5; i++ {
obj := orig.getOrNewStateObject(common.BytesToAddress([]byte{i}))
obj.AddBalance(uint256.NewInt(uint64(i)), tracing.BalanceChangeUnspecified)
obj.data.Root = common.HexToHash("0xdeadbeef")
orig.updateStateObject(obj)
}
orig.Finalise(true)
cpy := orig.Copy()
for _, op := range cpy.mutations {
if have, want := op.applied, false; have != want {
t.Fatalf("Error in test itself, the 'done' flag should not be set before Commit, have %v want %v", have, want)
}
}
orig.Commit(0, true)
for _, op := range cpy.mutations {
if have, want := op.applied, false; have != want {
t.Fatalf("Error: original state affected copy, have %v want %v", have, want)
}
}
}
func TestSnapshotRandom(t *testing.T) {
config := &quick.Config{MaxCount: 1000}
err := quick.Check((*snapshotTest).run, config)
if cerr, ok := err.(*quick.CheckError); ok {
test := cerr.In[0].(*snapshotTest)
t.Errorf("%v:\n%s", test.err, test)
} else if err != nil {
t.Error(err)
}
}
// A snapshotTest checks that reverting StateDB snapshots properly undoes all changes
// captured by the snapshot. Instances of this test with pseudorandom content are created
// by Generate.
//
// The test works as follows:
//
// A new state is created and all actions are applied to it. Several snapshots are taken
// in between actions. The test then reverts each snapshot. For each snapshot the actions
// leading up to it are replayed on a fresh, empty state. The behaviour of all public
// accessor methods on the reverted state must match the return value of the equivalent
// methods on the replayed state.
type snapshotTest struct {
addrs []common.Address // all account addresses
actions []testAction // modifications to the state
snapshots []int // actions indexes at which snapshot is taken
err error // failure details are reported through this field
}
type testAction struct {
name string
fn func(testAction, *StateDB)
args []int64
noAddr bool
}
// newTestAction creates a random action that changes state.
func newTestAction(addr common.Address, r *rand.Rand) testAction {
actions := []testAction{
{
name: "SetBalance",
fn: func(a testAction, s *StateDB) {
s.SetBalance(addr, uint256.NewInt(uint64(a.args[0])), tracing.BalanceChangeUnspecified)
},
args: make([]int64, 1),
},
{
name: "AddBalance",
fn: func(a testAction, s *StateDB) {
s.AddBalance(addr, uint256.NewInt(uint64(a.args[0])), tracing.BalanceChangeUnspecified)
},
args: make([]int64, 1),
},
{
name: "SetNonce",
fn: func(a testAction, s *StateDB) {
s.SetNonce(addr, uint64(a.args[0]))
},
args: make([]int64, 1),
},
{
core/state: semantic journalling (part 1) (#28880) This is a follow-up to #29520, and a preparatory PR to a more thorough change in the journalling system. ### API methods instead of `append` operations This PR hides the journal-implementation details away, so that the statedb invokes methods like `JournalCreate`, instead of explicitly appending journal-events in a list. This means that it's up to the journal whether to implement it as a sequence of events or aggregate/merge events. ### Snapshot-management inside the journal This PR also makes it so that management of valid snapshots is moved inside the journal, exposed via the methods `Snapshot() int` and `RevertToSnapshot(revid int, s *StateDB)`. ### SetCode JournalSetCode journals the setting of code: it is implicit that the previous values were "no code" and emptyCodeHash. Therefore, we can simplify the setCode journal. ### Selfdestruct The self-destruct journalling is a bit strange: we allow the selfdestruct operation to be journalled several times. This makes it so that we also are forced to store whether the account was already destructed. What we can do instead, is to only journal the first destruction, and after that only journal balance-changes, but not journal the selfdestruct itself. This simplifies the journalling, so that internals about state management does not leak into the journal-API. ### Preimages Preimages were, for some reason, integrated into the journal management, despite not being a consensus-critical data structure. This PR undoes that. --------- Co-authored-by: Gary Rong <garyrong0905@gmail.com>
2024-08-28 08:18:23 +02:00
name: "SetStorage",
fn: func(a testAction, s *StateDB) {
var key, val common.Hash
binary.BigEndian.PutUint16(key[:], uint16(a.args[0]))
binary.BigEndian.PutUint16(val[:], uint16(a.args[1]))
s.SetState(addr, key, val)
},
args: make([]int64, 2),
},
{
name: "SetCode",
fn: func(a testAction, s *StateDB) {
core/state: semantic journalling (part 1) (#28880) This is a follow-up to #29520, and a preparatory PR to a more thorough change in the journalling system. ### API methods instead of `append` operations This PR hides the journal-implementation details away, so that the statedb invokes methods like `JournalCreate`, instead of explicitly appending journal-events in a list. This means that it's up to the journal whether to implement it as a sequence of events or aggregate/merge events. ### Snapshot-management inside the journal This PR also makes it so that management of valid snapshots is moved inside the journal, exposed via the methods `Snapshot() int` and `RevertToSnapshot(revid int, s *StateDB)`. ### SetCode JournalSetCode journals the setting of code: it is implicit that the previous values were "no code" and emptyCodeHash. Therefore, we can simplify the setCode journal. ### Selfdestruct The self-destruct journalling is a bit strange: we allow the selfdestruct operation to be journalled several times. This makes it so that we also are forced to store whether the account was already destructed. What we can do instead, is to only journal the first destruction, and after that only journal balance-changes, but not journal the selfdestruct itself. This simplifies the journalling, so that internals about state management does not leak into the journal-API. ### Preimages Preimages were, for some reason, integrated into the journal management, despite not being a consensus-critical data structure. This PR undoes that. --------- Co-authored-by: Gary Rong <garyrong0905@gmail.com>
2024-08-28 08:18:23 +02:00
// SetCode can only be performed in case the addr does
// not already hold code
if c := s.GetCode(addr); len(c) > 0 {
// no-op
return
}
code := make([]byte, 16)
binary.BigEndian.PutUint64(code, uint64(a.args[0]))
binary.BigEndian.PutUint64(code[8:], uint64(a.args[1]))
s.SetCode(addr, code)
},
args: make([]int64, 2),
},
{
name: "CreateAccount",
fn: func(a testAction, s *StateDB) {
if !s.Exist(addr) {
s.CreateAccount(addr)
}
},
},
{
name: "CreateContract",
fn: func(a testAction, s *StateDB) {
if !s.Exist(addr) {
s.CreateAccount(addr)
}
contractHash := s.GetCodeHash(addr)
emptyCode := contractHash == (common.Hash{}) || contractHash == types.EmptyCodeHash
storageRoot := s.GetStorageRoot(addr)
emptyStorage := storageRoot == (common.Hash{}) || storageRoot == types.EmptyRootHash
if s.GetNonce(addr) == 0 && emptyCode && emptyStorage {
s.CreateContract(addr)
// We also set some code here, to prevent the
// CreateContract action from being performed twice in a row,
// which would cause a difference in state when unrolling
// the journal. (CreateContact assumes created was false prior to
// invocation, and the journal rollback sets it to false).
s.SetCode(addr, []byte{1})
}
},
},
{
name: "SelfDestruct",
fn: func(a testAction, s *StateDB) {
s.SelfDestruct(addr)
},
},
{
name: "AddRefund",
fn: func(a testAction, s *StateDB) {
s.AddRefund(uint64(a.args[0]))
},
args: make([]int64, 1),
noAddr: true,
},
{
name: "AddLog",
fn: func(a testAction, s *StateDB) {
data := make([]byte, 2)
binary.BigEndian.PutUint16(data, uint16(a.args[0]))
s.AddLog(&types.Log{Address: addr, Data: data})
},
args: make([]int64, 1),
},
{
name: "AddPreimage",
fn: func(a testAction, s *StateDB) {
preimage := []byte{1}
hash := common.BytesToHash(preimage)
s.AddPreimage(hash, preimage)
},
args: make([]int64, 1),
},
{
name: "AddAddressToAccessList",
fn: func(a testAction, s *StateDB) {
s.AddAddressToAccessList(addr)
},
},
{
name: "AddSlotToAccessList",
fn: func(a testAction, s *StateDB) {
s.AddSlotToAccessList(addr,
common.Hash{byte(a.args[0])})
},
args: make([]int64, 1),
},
{
name: "SetTransientState",
fn: func(a testAction, s *StateDB) {
var key, val common.Hash
binary.BigEndian.PutUint16(key[:], uint16(a.args[0]))
binary.BigEndian.PutUint16(val[:], uint16(a.args[1]))
s.SetTransientState(addr, key, val)
},
args: make([]int64, 2),
},
}
action := actions[r.Intn(len(actions))]
var nameargs []string
if !action.noAddr {
nameargs = append(nameargs, addr.Hex())
}
for i := range action.args {
action.args[i] = rand.Int63n(100)
nameargs = append(nameargs, fmt.Sprint(action.args[i]))
}
action.name += strings.Join(nameargs, ", ")
return action
}
// Generate returns a new snapshot test of the given size. All randomness is
// derived from r.
func (*snapshotTest) Generate(r *rand.Rand, size int) reflect.Value {
// Generate random actions.
addrs := make([]common.Address, 50)
for i := range addrs {
addrs[i][0] = byte(i)
}
actions := make([]testAction, size)
for i := range actions {
addr := addrs[r.Intn(len(addrs))]
actions[i] = newTestAction(addr, r)
}
// Generate snapshot indexes.
nsnapshots := int(math.Sqrt(float64(size)))
if size > 0 && nsnapshots == 0 {
nsnapshots = 1
}
snapshots := make([]int, nsnapshots)
snaplen := len(actions) / nsnapshots
for i := range snapshots {
// Try to place the snapshots some number of actions apart from each other.
snapshots[i] = (i * snaplen) + r.Intn(snaplen)
}
return reflect.ValueOf(&snapshotTest{addrs, actions, snapshots, nil})
}
func (test *snapshotTest) String() string {
out := new(bytes.Buffer)
sindex := 0
for i, action := range test.actions {
if len(test.snapshots) > sindex && i == test.snapshots[sindex] {
fmt.Fprintf(out, "---- snapshot %d ----\n", sindex)
sindex++
}
fmt.Fprintf(out, "%4d: %s\n", i, action.name)
}
return out.String()
}
func (test *snapshotTest) run() bool {
// Run all actions and create snapshots.
var (
state, _ = New(types.EmptyRootHash, NewDatabaseForTesting())
snapshotRevs = make([]int, len(test.snapshots))
sindex = 0
checkstates = make([]*StateDB, len(test.snapshots))
)
for i, action := range test.actions {
if len(test.snapshots) > sindex && i == test.snapshots[sindex] {
snapshotRevs[sindex] = state.Snapshot()
checkstates[sindex] = state.Copy()
sindex++
}
action.fn(action, state)
}
// Revert all snapshots in reverse order. Each revert must yield a state
// that is equivalent to fresh state with all actions up the snapshot applied.
for sindex--; sindex >= 0; sindex-- {
state.RevertToSnapshot(snapshotRevs[sindex])
if err := test.checkEqual(state, checkstates[sindex]); err != nil {
test.err = fmt.Errorf("state mismatch after revert to snapshot %d\n%v", sindex, err)
return false
}
}
return true
}
func forEachStorage(s *StateDB, addr common.Address, cb func(key, value common.Hash) bool) error {
so := s.getStateObject(addr)
if so == nil {
return nil
}
tr, err := so.getTrie()
if err != nil {
return err
}
trieIt, err := tr.NodeIterator(nil)
if err != nil {
return err
}
var (
it = trie.NewIterator(trieIt)
visited = make(map[common.Hash]bool)
)
for it.Next() {
key := common.BytesToHash(s.trie.GetKey(it.Key))
visited[key] = true
if value, dirty := so.dirtyStorage[key]; dirty {
if !cb(key, value) {
return nil
}
continue
}
if len(it.Value) > 0 {
_, content, _, err := rlp.Split(it.Value)
if err != nil {
return err
}
if !cb(key, common.BytesToHash(content)) {
return nil
}
}
}
return nil
}
// checkEqual checks that methods of state and checkstate return the same values.
func (test *snapshotTest) checkEqual(state, checkstate *StateDB) error {
for _, addr := range test.addrs {
var err error
checkeq := func(op string, a, b interface{}) bool {
if err == nil && !reflect.DeepEqual(a, b) {
err = fmt.Errorf("got %s(%s) == %v, want %v", op, addr.Hex(), a, b)
return false
}
return true
}
// Check basic accessor methods.
checkeq("Exist", state.Exist(addr), checkstate.Exist(addr))
checkeq("HasSelfdestructed", state.HasSelfDestructed(addr), checkstate.HasSelfDestructed(addr))
checkeq("GetBalance", state.GetBalance(addr), checkstate.GetBalance(addr))
checkeq("GetNonce", state.GetNonce(addr), checkstate.GetNonce(addr))
checkeq("GetCode", state.GetCode(addr), checkstate.GetCode(addr))
checkeq("GetCodeHash", state.GetCodeHash(addr), checkstate.GetCodeHash(addr))
checkeq("GetCodeSize", state.GetCodeSize(addr), checkstate.GetCodeSize(addr))
// Check newContract-flag
if obj := state.getStateObject(addr); obj != nil {
checkeq("IsNewContract", obj.newContract, checkstate.getStateObject(addr).newContract)
}
// Check storage.
if obj := state.getStateObject(addr); obj != nil {
forEachStorage(state, addr, func(key, value common.Hash) bool {
return checkeq("GetState("+key.Hex()+")", checkstate.GetState(addr, key), value)
})
forEachStorage(checkstate, addr, func(key, value common.Hash) bool {
return checkeq("GetState("+key.Hex()+")", checkstate.GetState(addr, key), value)
})
other := checkstate.getStateObject(addr)
// Check dirty storage which is not in trie
if !maps.Equal(obj.dirtyStorage, other.dirtyStorage) {
print := func(dirty map[common.Hash]common.Hash) string {
var keys []common.Hash
out := new(strings.Builder)
for key := range dirty {
keys = append(keys, key)
}
slices.SortFunc(keys, common.Hash.Cmp)
for i, key := range keys {
fmt.Fprintf(out, " %d. %v %v\n", i, key, dirty[key])
}
return out.String()
}
return fmt.Errorf("dirty storage err, have\n%v\nwant\n%v",
print(obj.dirtyStorage),
print(other.dirtyStorage))
}
}
// Check transient storage.
{
have := state.transientStorage
want := checkstate.transientStorage
eq := maps.EqualFunc(have, want,
func(a Storage, b Storage) bool {
return maps.Equal(a, b)
})
if !eq {
return fmt.Errorf("transient storage differs ,have\n%v\nwant\n%v",
have.PrettyPrint(),
want.PrettyPrint())
}
}
if err != nil {
return err
}
}
if !checkstate.accessList.Equal(state.accessList) { // Check access lists
return fmt.Errorf("AccessLists are wrong, have \n%v\nwant\n%v",
checkstate.accessList.PrettyPrint(),
state.accessList.PrettyPrint())
}
if state.GetRefund() != checkstate.GetRefund() {
return fmt.Errorf("got GetRefund() == %d, want GetRefund() == %d",
state.GetRefund(), checkstate.GetRefund())
}
if !reflect.DeepEqual(state.GetLogs(common.Hash{}, 0, common.Hash{}), checkstate.GetLogs(common.Hash{}, 0, common.Hash{})) {
return fmt.Errorf("got GetLogs(common.Hash{}) == %v, want GetLogs(common.Hash{}) == %v",
state.GetLogs(common.Hash{}, 0, common.Hash{}), checkstate.GetLogs(common.Hash{}, 0, common.Hash{}))
}
if !maps.Equal(state.journal.dirties, checkstate.journal.dirties) {
getKeys := func(dirty map[common.Address]int) string {
var keys []common.Address
out := new(strings.Builder)
for key := range dirty {
keys = append(keys, key)
}
slices.SortFunc(keys, common.Address.Cmp)
for i, key := range keys {
fmt.Fprintf(out, " %d. %v\n", i, key)
}
return out.String()
}
have := getKeys(state.journal.dirties)
want := getKeys(checkstate.journal.dirties)
return fmt.Errorf("dirty-journal set mismatch.\nhave:\n%v\nwant:\n%v\n", have, want)
}
return nil
}
func TestTouchDelete(t *testing.T) {
s := newStateEnv()
s.state.getOrNewStateObject(common.Address{})
root, _ := s.state.Commit(0, false)
s.state, _ = New(root, s.state.db)
snapshot := s.state.Snapshot()
s.state.AddBalance(common.Address{}, new(uint256.Int), tracing.BalanceChangeUnspecified)
if len(s.state.journal.dirties) != 1 {
t.Fatal("expected one dirty state object")
}
s.state.RevertToSnapshot(snapshot)
if len(s.state.journal.dirties) != 0 {
t.Fatal("expected no dirty state object")
}
}
// TestCopyOfCopy tests that modified objects are carried over to the copy, and the copy of the copy.
// See https://github.com/ethereum/go-ethereum/pull/15225#issuecomment-380191512
func TestCopyOfCopy(t *testing.T) {
state, _ := New(types.EmptyRootHash, NewDatabaseForTesting())
addr := common.HexToAddress("aaaa")
state.SetBalance(addr, uint256.NewInt(42), tracing.BalanceChangeUnspecified)
if got := state.Copy().GetBalance(addr).Uint64(); got != 42 {
t.Fatalf("1st copy fail, expected 42, got %v", got)
}
if got := state.Copy().Copy().GetBalance(addr).Uint64(); got != 42 {
t.Fatalf("2nd copy fail, expected 42, got %v", got)
}
}
// Tests a regression where committing a copy lost some internal meta information,
// leading to corrupted subsequent copies.
//
// See https://github.com/ethereum/go-ethereum/issues/20106.
func TestCopyCommitCopy(t *testing.T) {
tdb := NewDatabaseForTesting()
state, _ := New(types.EmptyRootHash, tdb)
// Create an account and check if the retrieved balance is correct
addr := common.HexToAddress("0xaffeaffeaffeaffeaffeaffeaffeaffeaffeaffe")
skey := common.HexToHash("aaa")
sval := common.HexToHash("bbb")
state.SetBalance(addr, uint256.NewInt(42), tracing.BalanceChangeUnspecified) // Change the account trie
state.SetCode(addr, []byte("hello")) // Change an external metadata
state.SetState(addr, skey, sval) // Change the storage trie
if balance := state.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("initial balance mismatch: have %v, want %v", balance, 42)
}
if code := state.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("initial code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := state.GetState(addr, skey); val != sval {
t.Fatalf("initial non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := state.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("initial committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the non-committed state database and check pre/post commit balance
copyOne := state.Copy()
if balance := copyOne.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("first copy pre-commit balance mismatch: have %v, want %v", balance, 42)
}
if code := copyOne.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("first copy pre-commit code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyOne.GetState(addr, skey); val != sval {
t.Fatalf("first copy pre-commit non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyOne.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("first copy pre-commit committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the copy and check the balance once more
copyTwo := copyOne.Copy()
if balance := copyTwo.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("second copy balance mismatch: have %v, want %v", balance, 42)
}
if code := copyTwo.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("second copy code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyTwo.GetState(addr, skey); val != sval {
t.Fatalf("second copy non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyTwo.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("second copy committed storage slot mismatch: have %x, want %x", val, sval)
}
// Commit state, ensure states can be loaded from disk
root, _ := state.Commit(0, false)
state, _ = New(root, tdb)
if balance := state.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("state post-commit balance mismatch: have %v, want %v", balance, 42)
}
if code := state.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("state post-commit code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := state.GetState(addr, skey); val != sval {
t.Fatalf("state post-commit non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := state.GetCommittedState(addr, skey); val != sval {
t.Fatalf("state post-commit committed storage slot mismatch: have %x, want %x", val, sval)
}
}
// Tests a regression where committing a copy lost some internal meta information,
// leading to corrupted subsequent copies.
//
// See https://github.com/ethereum/go-ethereum/issues/20106.
func TestCopyCopyCommitCopy(t *testing.T) {
state, _ := New(types.EmptyRootHash, NewDatabaseForTesting())
// Create an account and check if the retrieved balance is correct
addr := common.HexToAddress("0xaffeaffeaffeaffeaffeaffeaffeaffeaffeaffe")
skey := common.HexToHash("aaa")
sval := common.HexToHash("bbb")
state.SetBalance(addr, uint256.NewInt(42), tracing.BalanceChangeUnspecified) // Change the account trie
state.SetCode(addr, []byte("hello")) // Change an external metadata
state.SetState(addr, skey, sval) // Change the storage trie
if balance := state.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("initial balance mismatch: have %v, want %v", balance, 42)
}
if code := state.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("initial code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := state.GetState(addr, skey); val != sval {
t.Fatalf("initial non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := state.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("initial committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the non-committed state database and check pre/post commit balance
copyOne := state.Copy()
if balance := copyOne.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("first copy balance mismatch: have %v, want %v", balance, 42)
}
if code := copyOne.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("first copy code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyOne.GetState(addr, skey); val != sval {
t.Fatalf("first copy non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyOne.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("first copy committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the copy and check the balance once more
copyTwo := copyOne.Copy()
if balance := copyTwo.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("second copy pre-commit balance mismatch: have %v, want %v", balance, 42)
}
if code := copyTwo.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("second copy pre-commit code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyTwo.GetState(addr, skey); val != sval {
t.Fatalf("second copy pre-commit non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyTwo.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("second copy pre-commit committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
// Copy the copy-copy and check the balance once more
copyThree := copyTwo.Copy()
if balance := copyThree.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("third copy balance mismatch: have %v, want %v", balance, 42)
}
if code := copyThree.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("third copy code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := copyThree.GetState(addr, skey); val != sval {
t.Fatalf("third copy non-committed storage slot mismatch: have %x, want %x", val, sval)
}
if val := copyThree.GetCommittedState(addr, skey); val != (common.Hash{}) {
t.Fatalf("third copy committed storage slot mismatch: have %x, want %x", val, sval)
}
}
// TestCommitCopy tests the copy from a committed state is not fully functional.
func TestCommitCopy(t *testing.T) {
db := NewDatabaseForTesting()
state, _ := New(types.EmptyRootHash, db)
// Create an account and check if the retrieved balance is correct
addr := common.HexToAddress("0xaffeaffeaffeaffeaffeaffeaffeaffeaffeaffe")
skey1, skey2 := common.HexToHash("a1"), common.HexToHash("a2")
sval1, sval2 := common.HexToHash("b1"), common.HexToHash("b2")
state.SetBalance(addr, uint256.NewInt(42), tracing.BalanceChangeUnspecified) // Change the account trie
state.SetCode(addr, []byte("hello")) // Change an external metadata
state.SetState(addr, skey1, sval1) // Change the storage trie
if balance := state.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("initial balance mismatch: have %v, want %v", balance, 42)
}
if code := state.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("initial code mismatch: have %x, want %x", code, []byte("hello"))
}
if val := state.GetState(addr, skey1); val != sval1 {
t.Fatalf("initial non-committed storage slot mismatch: have %x, want %x", val, sval1)
}
if val := state.GetCommittedState(addr, skey1); val != (common.Hash{}) {
t.Fatalf("initial committed storage slot mismatch: have %x, want %x", val, common.Hash{})
}
root, _ := state.Commit(0, true)
state, _ = New(root, db)
state.SetState(addr, skey2, sval2)
state.Commit(1, true)
// Copy the committed state database, the copied one is not fully functional.
copied := state.Copy()
if balance := copied.GetBalance(addr); balance.Cmp(uint256.NewInt(42)) != 0 {
t.Fatalf("unexpected balance: have %v", balance)
}
if code := copied.GetCode(addr); !bytes.Equal(code, []byte("hello")) {
t.Fatalf("unexpected code: have %x", code)
}
// Miss slots because of non-functional trie after commit
if val := copied.GetState(addr, skey1); val != sval1 {
t.Fatalf("unexpected storage slot: have %x", val)
}
if val := copied.GetCommittedState(addr, skey1); val != sval1 {
t.Fatalf("unexpected storage slot: have %x", val)
}
// Slots cached in the stateDB, available after commit
if val := copied.GetState(addr, skey2); val != sval2 {
t.Fatalf("unexpected storage slot: have %x", sval1)
}
if val := copied.GetCommittedState(addr, skey2); val != sval2 {
t.Fatalf("unexpected storage slot: have %x", val)
}
}
// TestDeleteCreateRevert tests a weird state transition corner case that we hit
// while changing the internals of StateDB. The workflow is that a contract is
// self-destructed, then in a follow-up transaction (but same block) it's created
// again and the transaction reverted.
//
// The original StateDB implementation flushed dirty objects to the tries after
// each transaction, so this works ok. The rework accumulated writes in memory
// first, but the journal wiped the entire state object on create-revert.
func TestDeleteCreateRevert(t *testing.T) {
// Create an initial state with a single contract
state, _ := New(types.EmptyRootHash, NewDatabaseForTesting())
addr := common.BytesToAddress([]byte("so"))
state.SetBalance(addr, uint256.NewInt(1), tracing.BalanceChangeUnspecified)
root, _ := state.Commit(0, false)
state, _ = New(root, state.db)
// Simulate self-destructing in one transaction, then create-reverting in another
state.SelfDestruct(addr)
state.Finalise(true)
id := state.Snapshot()
state.SetBalance(addr, uint256.NewInt(2), tracing.BalanceChangeUnspecified)
state.RevertToSnapshot(id)
// Commit the entire state and make sure we don't crash and have the correct state
root, _ = state.Commit(0, true)
state, _ = New(root, state.db)
if state.getStateObject(addr) != nil {
t.Fatalf("self-destructed contract came alive")
}
}
// TestMissingTrieNodes tests that if the StateDB fails to load parts of the trie,
// the Commit operation fails with an error
// If we are missing trie nodes, we should not continue writing to the trie
func TestMissingTrieNodes(t *testing.T) {
testMissingTrieNodes(t, rawdb.HashScheme)
testMissingTrieNodes(t, rawdb.PathScheme)
}
func testMissingTrieNodes(t *testing.T, scheme string) {
// Create an initial state with a few accounts
var (
tdb *triedb.Database
memDb = rawdb.NewMemoryDatabase()
)
if scheme == rawdb.PathScheme {
tdb = triedb.NewDatabase(memDb, &triedb.Config{PathDB: &pathdb.Config{
CleanCacheSize: 0,
DirtyCacheSize: 0,
}}) // disable caching
} else {
tdb = triedb.NewDatabase(memDb, &triedb.Config{HashDB: &hashdb.Config{
CleanCacheSize: 0,
}}) // disable caching
}
db := NewDatabase(tdb, nil)
var root common.Hash
state, _ := New(types.EmptyRootHash, db)
addr := common.BytesToAddress([]byte("so"))
{
state.SetBalance(addr, uint256.NewInt(1), tracing.BalanceChangeUnspecified)
state.SetCode(addr, []byte{1, 2, 3})
a2 := common.BytesToAddress([]byte("another"))
state.SetBalance(a2, uint256.NewInt(100), tracing.BalanceChangeUnspecified)
state.SetCode(a2, []byte{1, 2, 4})
root, _ = state.Commit(0, false)
t.Logf("root: %x", root)
// force-flush
tdb.Commit(root, false)
}
// Create a new state on the old root
state, _ = New(root, db)
// Now we clear out the memdb
it := memDb.NewIterator(nil, nil)
for it.Next() {
k := it.Key()
// Leave the root intact
if !bytes.Equal(k, root[:]) {
t.Logf("key: %x", k)
memDb.Delete(k)
}
}
balance := state.GetBalance(addr)
// The removed elem should lead to it returning zero balance
if exp, got := uint64(0), balance.Uint64(); got != exp {
t.Errorf("expected %d, got %d", exp, got)
}
// Modify the state
state.SetBalance(addr, uint256.NewInt(2), tracing.BalanceChangeUnspecified)
root, err := state.Commit(0, false)
if err == nil {
t.Fatalf("expected error, got root :%x", root)
}
}
func TestStateDBAccessList(t *testing.T) {
// Some helpers
addr := func(a string) common.Address {
return common.HexToAddress(a)
}
slot := func(a string) common.Hash {
return common.HexToHash(a)
}
db := NewDatabaseForTesting()
state, _ := New(types.EmptyRootHash, db)
state.accessList = newAccessList()
verifyAddrs := func(astrings ...string) {
t.Helper()
// convert to common.Address form
var addresses []common.Address
var addressMap = make(map[common.Address]struct{})
for _, astring := range astrings {
address := addr(astring)
addresses = append(addresses, address)
addressMap[address] = struct{}{}
}
// Check that the given addresses are in the access list
for _, address := range addresses {
if !state.AddressInAccessList(address) {
t.Fatalf("expected %x to be in access list", address)
}
}
// Check that only the expected addresses are present in the access list
for address := range state.accessList.addresses {
if _, exist := addressMap[address]; !exist {
t.Fatalf("extra address %x in access list", address)
}
}
}
verifySlots := func(addrString string, slotStrings ...string) {
if !state.AddressInAccessList(addr(addrString)) {
t.Fatalf("scope missing address/slots %v", addrString)
}
var address = addr(addrString)
// convert to common.Hash form
var slots []common.Hash
var slotMap = make(map[common.Hash]struct{})
for _, slotString := range slotStrings {
s := slot(slotString)
slots = append(slots, s)
slotMap[s] = struct{}{}
}
// Check that the expected items are in the access list
for i, s := range slots {
if _, slotPresent := state.SlotInAccessList(address, s); !slotPresent {
t.Fatalf("input %d: scope missing slot %v (address %v)", i, s, addrString)
}
}
// Check that no extra elements are in the access list
index := state.accessList.addresses[address]
if index >= 0 {
stateSlots := state.accessList.slots[index]
for s := range stateSlots {
if _, slotPresent := slotMap[s]; !slotPresent {
t.Fatalf("scope has extra slot %v (address %v)", s, addrString)
}
}
}
}
state.AddAddressToAccessList(addr("aa")) // 1
state.AddSlotToAccessList(addr("bb"), slot("01")) // 2,3
state.AddSlotToAccessList(addr("bb"), slot("02")) // 4
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02")
// Make a copy
stateCopy1 := state.Copy()
if exp, got := 4, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
// same again, should cause no journal entries
state.AddSlotToAccessList(addr("bb"), slot("01"))
state.AddSlotToAccessList(addr("bb"), slot("02"))
state.AddAddressToAccessList(addr("aa"))
if exp, got := 4, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
// some new ones
state.AddSlotToAccessList(addr("bb"), slot("03")) // 5
state.AddSlotToAccessList(addr("aa"), slot("01")) // 6
state.AddSlotToAccessList(addr("cc"), slot("01")) // 7,8
state.AddAddressToAccessList(addr("cc"))
if exp, got := 8, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
verifyAddrs("aa", "bb", "cc")
verifySlots("aa", "01")
verifySlots("bb", "01", "02", "03")
verifySlots("cc", "01")
// now start rolling back changes
state.journal.revert(state, 7)
if _, ok := state.SlotInAccessList(addr("cc"), slot("01")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb", "cc")
verifySlots("aa", "01")
verifySlots("bb", "01", "02", "03")
state.journal.revert(state, 6)
if state.AddressInAccessList(addr("cc")) {
t.Fatalf("addr present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("aa", "01")
verifySlots("bb", "01", "02", "03")
state.journal.revert(state, 5)
if _, ok := state.SlotInAccessList(addr("aa"), slot("01")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02", "03")
state.journal.revert(state, 4)
if _, ok := state.SlotInAccessList(addr("bb"), slot("03")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02")
state.journal.revert(state, 3)
if _, ok := state.SlotInAccessList(addr("bb"), slot("02")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
verifySlots("bb", "01")
state.journal.revert(state, 2)
if _, ok := state.SlotInAccessList(addr("bb"), slot("01")); ok {
t.Fatalf("slot present, expected missing")
}
verifyAddrs("aa", "bb")
state.journal.revert(state, 1)
if state.AddressInAccessList(addr("bb")) {
t.Fatalf("addr present, expected missing")
}
verifyAddrs("aa")
state.journal.revert(state, 0)
if state.AddressInAccessList(addr("aa")) {
t.Fatalf("addr present, expected missing")
}
if got, exp := len(state.accessList.addresses), 0; got != exp {
t.Fatalf("expected empty, got %d", got)
}
if got, exp := len(state.accessList.slots), 0; got != exp {
t.Fatalf("expected empty, got %d", got)
}
// Check the copy
// Make a copy
state = stateCopy1
verifyAddrs("aa", "bb")
verifySlots("bb", "01", "02")
if got, exp := len(state.accessList.addresses), 2; got != exp {
t.Fatalf("expected empty, got %d", got)
}
if got, exp := len(state.accessList.slots), 1; got != exp {
t.Fatalf("expected empty, got %d", got)
}
}
// Tests that account and storage tries are flushed in the correct order and that
// no data loss occurs.
func TestFlushOrderDataLoss(t *testing.T) {
// Create a state trie with many accounts and slots
var (
memdb = rawdb.NewMemoryDatabase()
tdb = triedb.NewDatabase(memdb, triedb.HashDefaults)
statedb = NewDatabase(tdb, nil)
state, _ = New(types.EmptyRootHash, statedb)
)
for a := byte(0); a < 10; a++ {
state.CreateAccount(common.Address{a})
for s := byte(0); s < 10; s++ {
state.SetState(common.Address{a}, common.Hash{a, s}, common.Hash{a, s})
}
}
root, err := state.Commit(0, false)
if err != nil {
t.Fatalf("failed to commit state trie: %v", err)
}
tdb.Reference(root, common.Hash{})
if err := tdb.Cap(1024); err != nil {
t.Fatalf("failed to cap trie dirty cache: %v", err)
}
if err := tdb.Commit(root, false); err != nil {
t.Fatalf("failed to commit state trie: %v", err)
}
// Reopen the state trie from flushed disk and verify it
state, err = New(root, NewDatabase(triedb.NewDatabase(memdb, triedb.HashDefaults), nil))
if err != nil {
t.Fatalf("failed to reopen state trie: %v", err)
}
for a := byte(0); a < 10; a++ {
for s := byte(0); s < 10; s++ {
if have := state.GetState(common.Address{a}, common.Hash{a, s}); have != (common.Hash{a, s}) {
t.Errorf("account %d: slot %d: state mismatch: have %x, want %x", a, s, have, common.Hash{a, s})
}
}
}
}
func TestStateDBTransientStorage(t *testing.T) {
db := NewDatabaseForTesting()
state, _ := New(types.EmptyRootHash, db)
key := common.Hash{0x01}
value := common.Hash{0x02}
addr := common.Address{}
state.SetTransientState(addr, key, value)
if exp, got := 1, state.journal.length(); exp != got {
t.Fatalf("journal length mismatch: have %d, want %d", got, exp)
}
// the retrieved value should equal what was set
if got := state.GetTransientState(addr, key); got != value {
t.Fatalf("transient storage mismatch: have %x, want %x", got, value)
}
// revert the transient state being set and then check that the
// value is now the empty hash
state.journal.revert(state, 0)
if got, exp := state.GetTransientState(addr, key), (common.Hash{}); exp != got {
t.Fatalf("transient storage mismatch: have %x, want %x", got, exp)
}
// set transient state and then copy the statedb and ensure that
// the transient state is copied
state.SetTransientState(addr, key, value)
cpy := state.Copy()
if got := cpy.GetTransientState(addr, key); got != value {
t.Fatalf("transient storage mismatch: have %x, want %x", got, value)
}
}
func TestDeleteStorage(t *testing.T) {
var (
disk = rawdb.NewMemoryDatabase()
tdb = triedb.NewDatabase(disk, nil)
snaps, _ = snapshot.New(snapshot.Config{CacheSize: 10}, disk, tdb, types.EmptyRootHash)
db = NewDatabase(tdb, snaps)
state, _ = New(types.EmptyRootHash, db)
addr = common.HexToAddress("0x1")
)
// Initialize account and populate storage
state.SetBalance(addr, uint256.NewInt(1), tracing.BalanceChangeUnspecified)
state.CreateAccount(addr)
for i := 0; i < 1000; i++ {
slot := common.Hash(uint256.NewInt(uint64(i)).Bytes32())
value := common.Hash(uint256.NewInt(uint64(10 * i)).Bytes32())
state.SetState(addr, slot, value)
}
root, _ := state.Commit(0, true)
// Init phase done, create two states, one with snap and one without
fastState, _ := New(root, NewDatabase(tdb, snaps))
slowState, _ := New(root, NewDatabase(tdb, nil))
obj := fastState.getOrNewStateObject(addr)
storageRoot := obj.data.Root
_, fastNodes, err := fastState.deleteStorage(addr, crypto.Keccak256Hash(addr[:]), storageRoot)
if err != nil {
t.Fatal(err)
}
_, slowNodes, err := slowState.deleteStorage(addr, crypto.Keccak256Hash(addr[:]), storageRoot)
if err != nil {
t.Fatal(err)
}
check := func(set *trienode.NodeSet) string {
var a []string
set.ForEachWithOrder(func(path string, n *trienode.Node) {
if n.Hash != (common.Hash{}) {
t.Fatal("delete should have empty hashes")
}
if len(n.Blob) != 0 {
t.Fatal("delete should have empty blobs")
}
a = append(a, fmt.Sprintf("%x", path))
})
return strings.Join(a, ",")
}
slowRes := check(slowNodes)
fastRes := check(fastNodes)
if slowRes != fastRes {
t.Fatalf("difference found:\nfast: %v\nslow: %v\n", fastRes, slowRes)
}
}
func TestStorageDirtiness(t *testing.T) {
var (
disk = rawdb.NewMemoryDatabase()
tdb = triedb.NewDatabase(disk, nil)
db = NewDatabase(tdb, nil)
state, _ = New(types.EmptyRootHash, db)
addr = common.HexToAddress("0x1")
checkDirty = func(key common.Hash, value common.Hash, dirty bool) {
obj := state.getStateObject(addr)
v, exist := obj.dirtyStorage[key]
if exist != dirty {
t.Fatalf("Unexpected dirty marker, want: %t, got: %t", dirty, exist)
}
if v != value {
t.Fatalf("Unexpected storage slot, want: %t, got: %t", value, v)
}
}
)
state.CreateAccount(addr)
// the storage change is noop, no dirty marker
state.SetState(addr, common.Hash{0x1}, common.Hash{})
checkDirty(common.Hash{0x1}, common.Hash{}, false)
// the storage change is valid, dirty marker is expected
snap := state.Snapshot()
state.SetState(addr, common.Hash{0x1}, common.Hash{0x1})
checkDirty(common.Hash{0x1}, common.Hash{0x1}, true)
// the storage change is reverted, dirtiness should be revoked
state.RevertToSnapshot(snap)
checkDirty(common.Hash{0x1}, common.Hash{}, false)
// the storage is reset back to its original value, dirtiness should be revoked
state.SetState(addr, common.Hash{0x1}, common.Hash{0x1})
snap = state.Snapshot()
state.SetState(addr, common.Hash{0x1}, common.Hash{})
checkDirty(common.Hash{0x1}, common.Hash{}, false)
// the storage change is reverted, dirty value should be set back
state.RevertToSnapshot(snap)
checkDirty(common.Hash{0x1}, common.Hash{0x1}, true)
}