go-ethereum/trie/proof_test.go

738 lines
22 KiB
Go
Raw Normal View History

2016-04-14 19:18:24 +03:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-09-09 04:35:41 +03:00
package trie
import (
"bytes"
crand "crypto/rand"
mrand "math/rand"
"sort"
2015-09-09 04:35:41 +03:00
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
2015-09-09 04:35:41 +03:00
)
func init() {
mrand.Seed(time.Now().Unix())
}
// makeProvers creates Merkle trie provers based on different implementations to
// test all variations.
func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
var provers []func(key []byte) *memorydb.Database
// Create a direct trie based Merkle prover
provers = append(provers, func(key []byte) *memorydb.Database {
proof := memorydb.New()
trie.Prove(key, 0, proof)
return proof
})
// Create a leaf iterator based Merkle prover
provers = append(provers, func(key []byte) *memorydb.Database {
proof := memorydb.New()
if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
for _, p := range it.Prove() {
proof.Put(crypto.Keccak256(p), p)
}
}
return proof
})
return provers
}
2015-09-09 04:35:41 +03:00
func TestProof(t *testing.T) {
trie, vals := randomTrie(500)
root := trie.Hash()
for i, prover := range makeProvers(trie) {
for _, kv := range vals {
proof := prover(kv.k)
if proof == nil {
t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
}
val, err := VerifyProof(root, kv.k, proof)
if err != nil {
t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
}
if !bytes.Equal(val, kv.v) {
t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
}
2015-09-09 04:35:41 +03:00
}
}
}
func TestOneElementProof(t *testing.T) {
trie := new(Trie)
updateString(trie, "k", "v")
for i, prover := range makeProvers(trie) {
proof := prover([]byte("k"))
if proof == nil {
t.Fatalf("prover %d: nil proof", i)
}
if proof.Len() != 1 {
t.Errorf("prover %d: proof should have one element", i)
}
val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
if err != nil {
t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
}
if !bytes.Equal(val, []byte("v")) {
t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
}
2015-09-09 04:35:41 +03:00
}
}
func TestBadProof(t *testing.T) {
trie, vals := randomTrie(800)
root := trie.Hash()
for i, prover := range makeProvers(trie) {
for _, kv := range vals {
proof := prover(kv.k)
if proof == nil {
t.Fatalf("prover %d: nil proof", i)
}
it := proof.NewIterator(nil, nil)
for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
it.Next()
}
key := it.Key()
val, _ := proof.Get(key)
proof.Delete(key)
it.Release()
mutateByte(val)
proof.Put(crypto.Keccak256(val), val)
if _, err := VerifyProof(root, kv.k, proof); err == nil {
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
}
}
}
}
// Tests that missing keys can also be proven. The test explicitly uses a single
// entry trie and checks for missing keys both before and after the single entry.
func TestMissingKeyProof(t *testing.T) {
trie := new(Trie)
updateString(trie, "k", "v")
for i, key := range []string{"a", "j", "l", "z"} {
proof := memorydb.New()
trie.Prove([]byte(key), 0, proof)
if proof.Len() != 1 {
t.Errorf("test %d: proof should have one element", i)
}
val, err := VerifyProof(trie.Hash(), []byte(key), proof)
if err != nil {
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
}
if val != nil {
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
}
}
}
type entrySlice []*kv
func (p entrySlice) Len() int { return len(p) }
func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// TestRangeProof tests normal range proof with both edge proofs
// as the existent proof. The test cases are generated randomly.
func TestRangeProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
for i := 0; i < 500; i++ {
start := mrand.Intn(len(entries))
end := mrand.Intn(len(entries)-start) + start
if start == end {
continue
}
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
var keys [][]byte
var vals [][]byte
for i := start; i < end; i++ {
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
}
}
}
// TestRangeProof tests normal range proof with the first edge proof
// as the non-existent proof. The test cases are generated randomly.
func TestRangeProofWithNonExistentProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
for i := 0; i < 500; i++ {
start := mrand.Intn(len(entries))
end := mrand.Intn(len(entries)-start) + start
if start == end {
continue
}
firstProof, lastProof := memorydb.New(), memorydb.New()
first := decreseKey(common.CopyBytes(entries[start].k))
if start != 0 && bytes.Equal(first, entries[start-1].k) {
continue
}
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
var keys [][]byte
var vals [][]byte
for i := start; i < end; i++ {
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
err, _ := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof)
if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
}
}
}
// TestRangeProofWithInvalidNonExistentProof tests such scenarios:
// - The last edge proof is an non-existent proof
// - There exists a gap between the first element and the left edge proof
func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
// Case 1
start, end := 100, 200
first, last := decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[end].k))
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(last, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
var k [][]byte
var v [][]byte
for i := start; i < end; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err, _ := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
if err == nil {
t.Fatalf("Expected to detect the error, got nil")
}
// Case 2
start, end = 100, 200
first = decreseKey(common.CopyBytes(entries[start].k))
firstProof, lastProof = memorydb.New(), memorydb.New()
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
start = 105 // Gap created
k = make([][]byte, 0)
v = make([][]byte, 0)
for i := start; i < end; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err, _ = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
if err == nil {
t.Fatalf("Expected to detect the error, got nil")
}
}
// TestOneElementRangeProof tests the proof with only one
// element. The first edge proof can be existent one or
// non-existent one.
func TestOneElementRangeProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
// One element with existent edge proof
start := 1000
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
// One element with non-existent edge proof
start = 1000
first := decreseKey(common.CopyBytes(entries[start].k))
firstProof, lastProof = memorydb.New(), memorydb.New()
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
err, _ = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
// TestAllElementsProof tests the range proof with all elements.
// The edge proofs can be nil.
func TestAllElementsProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
var k [][]byte
var v [][]byte
for i := 0; i < len(entries); i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err, _ := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
// Even with edge proofs, it should still work.
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[0].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
err, _ = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
// TestSingleSideRangeProof tests the range starts from zero.
func TestSingleSideRangeProof(t *testing.T) {
for i := 0; i < 64; i++ {
trie := new(Trie)
var entries entrySlice
for i := 0; i < 4096; i++ {
value := &kv{randBytes(32), randBytes(20), false}
trie.Update(value.k, value.v)
entries = append(entries, value)
}
sort.Sort(entries)
var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
for _, pos := range cases {
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(common.Hash{}.Bytes(), 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[pos].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
k := make([][]byte, 0)
v := make([][]byte, 0)
for i := 0; i <= pos; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
}
}
// TestBadRangeProof tests a few cases which the proof is wrong.
// The prover is expected to detect the error.
func TestBadRangeProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
for i := 0; i < 500; i++ {
start := mrand.Intn(len(entries))
end := mrand.Intn(len(entries)-start) + start
if start == end {
continue
}
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
var keys [][]byte
var vals [][]byte
for i := start; i < end; i++ {
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
testcase := mrand.Intn(6)
var index int
switch testcase {
case 0:
// Modified key
index = mrand.Intn(end - start)
keys[index] = randBytes(32) // In theory it can't be same
case 1:
// Modified val
index = mrand.Intn(end - start)
vals[index] = randBytes(20) // In theory it can't be same
case 2:
// Gapped entry slice
// There are only two elements, skip it. Dropped any element
// will lead to single edge proof which is always correct.
if end-start <= 2 {
continue
}
// If the dropped element is the first or last one and it's a
// batch of small size elements. In this special case, it can
// happen that the proof for the edge element is exactly same
// with the first/last second element(since small values are
// embedded in the parent). Avoid this case.
index = mrand.Intn(end - start)
if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
continue
}
keys = append(keys[:index], keys[index+1:]...)
vals = append(vals[:index], vals[index+1:]...)
case 3:
// Switched entry slice, same effect with gapped
index = mrand.Intn(end - start)
keys[index] = entries[len(entries)-1].k
vals[index] = entries[len(entries)-1].v
case 4:
// Set random key to nil
index = mrand.Intn(end - start)
keys[index] = nil
case 5:
// Set random value to nil
index = mrand.Intn(end - start)
vals[index] = nil
}
err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err == nil {
t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
}
}
}
// TestGappedRangeProof focuses on the small trie with embedded nodes.
// If the gapped node is embedded in the trie, it should be detected too.
func TestGappedRangeProof(t *testing.T) {
trie := new(Trie)
var entries []*kv // Sorted entries
for i := byte(0); i < 10; i++ {
value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
trie.Update(value.k, value.v)
entries = append(entries, value)
}
first, last := 2, 8
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[first].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[last-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
var keys [][]byte
var vals [][]byte
for i := first; i < last; i++ {
if i == (first+last)/2 {
continue
}
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err == nil {
t.Fatal("expect error, got nil")
}
}
func TestHasRightElement(t *testing.T) {
trie := new(Trie)
var entries entrySlice
for i := 0; i < 4096; i++ {
value := &kv{randBytes(32), randBytes(20), false}
trie.Update(value.k, value.v)
entries = append(entries, value)
}
sort.Sort(entries)
var cases = []struct {
start int
end int
hasMore bool
}{
{-1, 1, true}, // single element with non-existent left proof
{0, 1, true}, // single element with existent left proof
{0, 10, true},
{50, 100, true},
{50, len(entries), false}, // No more element expected
{len(entries) - 1, len(entries), false}, // Single last element
{0, len(entries), false}, // The whole set with existent left proof
{-1, len(entries), false}, // The whole set with non-existent left proof
}
for _, c := range cases {
var (
firstKey []byte
start = c.start
firstProof = memorydb.New()
lastProof = memorydb.New()
)
if c.start == -1 {
firstKey, start = common.Hash{}.Bytes(), 0
if err := trie.Prove(firstKey, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
} else {
firstKey = entries[c.start].k
if err := trie.Prove(entries[c.start].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
}
if err := trie.Prove(entries[c.end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
k := make([][]byte, 0)
v := make([][]byte, 0)
for i := start; i < c.end; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, k, v, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
if hasMore != c.hasMore {
t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
}
}
}
// TestEmptyRangeProof tests the range proof with "no" element.
// The first edge proof must be a non-existent proof.
func TestEmptyRangeProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
var cases = []struct {
pos int
err bool
}{
{len(entries) - 1, false},
{500, true},
}
for _, c := range cases {
firstProof := memorydb.New()
first := increseKey(common.CopyBytes(entries[c.pos].k))
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
err, _ := VerifyRangeProof(trie.Hash(), first, nil, nil, firstProof, nil)
if c.err && err == nil {
t.Fatalf("Expected error, got nil")
}
if !c.err && err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
}
// mutateByte changes one byte in b.
func mutateByte(b []byte) {
for r := mrand.Intn(len(b)); ; {
new := byte(mrand.Intn(255))
if new != b[r] {
b[r] = new
break
}
}
}
func increseKey(key []byte) []byte {
for i := len(key) - 1; i >= 0; i-- {
key[i]++
if key[i] != 0x0 {
break
2015-09-09 04:35:41 +03:00
}
}
return key
2015-09-09 04:35:41 +03:00
}
func decreseKey(key []byte) []byte {
for i := len(key) - 1; i >= 0; i-- {
key[i]--
if key[i] != 0xff {
2015-09-09 04:35:41 +03:00
break
}
}
return key
2015-09-09 04:35:41 +03:00
}
func BenchmarkProve(b *testing.B) {
trie, vals := randomTrie(100)
var keys []string
for k := range vals {
keys = append(keys, k)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
kv := vals[keys[i%len(keys)]]
proofs := memorydb.New()
if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
b.Fatalf("zero length proof for %x", kv.k)
2015-09-09 04:35:41 +03:00
}
}
}
func BenchmarkVerifyProof(b *testing.B) {
trie, vals := randomTrie(100)
root := trie.Hash()
var keys []string
var proofs []*memorydb.Database
2015-09-09 04:35:41 +03:00
for k := range vals {
keys = append(keys, k)
proof := memorydb.New()
trie.Prove([]byte(k), 0, proof)
proofs = append(proofs, proof)
2015-09-09 04:35:41 +03:00
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
im := i % len(keys)
if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
2016-04-15 12:06:57 +03:00
b.Fatalf("key %x: %v", keys[im], err)
2015-09-09 04:35:41 +03:00
}
}
}
func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
func benchmarkVerifyRangeProof(b *testing.B, size int) {
trie, vals := randomTrie(8192)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
start := 2
end := start + size
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
b.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
b.Fatalf("Failed to prove the last node %v", err)
}
var keys [][]byte
var values [][]byte
for i := start; i < end; i++ {
keys = append(keys, entries[i].k)
values = append(values, entries[i].v)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof)
if err != nil {
b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
}
}
}
2015-09-09 04:35:41 +03:00
func randomTrie(n int) (*Trie, map[string]*kv) {
trie := new(Trie)
vals := make(map[string]*kv)
for i := byte(0); i < 100; i++ {
value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
trie.Update(value.k, value.v)
trie.Update(value2.k, value2.v)
vals[string(value.k)] = value
vals[string(value2.k)] = value2
}
for i := 0; i < n; i++ {
value := &kv{randBytes(32), randBytes(20), false}
trie.Update(value.k, value.v)
vals[string(value.k)] = value
}
return trie, vals
}
func randBytes(n int) []byte {
r := make([]byte, n)
crand.Read(r)
return r
}