2018-06-20 15:06:27 +03:00
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package network
import (
"bytes"
"fmt"
"math/rand"
"strings"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/swarm/log"
"github.com/ethereum/go-ethereum/swarm/pot"
)
/ *
Taking the proximity order relative to a fix point x classifies the points in
the space ( n byte long byte sequences ) into bins . Items in each are at
most half as distant from x as items in the previous bin . Given a sample of
uniformly distributed items ( a hash function over arbitrary sequence ) the
proximity scale maps onto series of subsets with cardinalities on a negative
exponential scale .
It also has the property that any two item belonging to the same bin are at
most half as distant from each other as they are from x .
If we think of random sample of items in the bins as connections in a network of
interconnected nodes then relative proximity can serve as the basis for local
decisions for graph traversal where the task is to find a route between two
points . Since in every hop , the finite distance halves , there is
a guaranteed constant maximum limit on the number of hops needed to reach one
node from the other .
* /
2018-12-22 08:53:30 +03:00
var Pof = pot . DefaultPof ( 256 )
2018-06-20 15:06:27 +03:00
// KadParams holds the config params for Kademlia
type KadParams struct {
// adjustable parameters
2019-01-10 14:33:51 +03:00
MaxProxDisplay int // number of rows the table shows
NeighbourhoodSize int // nearest neighbour core minimum cardinality
MinBinSize int // minimum number of peers in a row
MaxBinSize int // maximum number of peers in a row before pruning
RetryInterval int64 // initial interval before a peer is first redialed
RetryExponent int // exponent to multiply retry intervals with
MaxRetries int // maximum number of redial attempts
2018-06-20 15:06:27 +03:00
// function to sanction or prevent suggesting a peer
2018-12-22 08:53:30 +03:00
Reachable func ( * BzzAddr ) bool ` json:"-" `
2018-06-20 15:06:27 +03:00
}
// NewKadParams returns a params struct with default values
func NewKadParams ( ) * KadParams {
return & KadParams {
2019-01-10 14:33:51 +03:00
MaxProxDisplay : 16 ,
NeighbourhoodSize : 2 ,
MinBinSize : 2 ,
MaxBinSize : 4 ,
RetryInterval : 4200000000 , // 4.2 sec
MaxRetries : 42 ,
RetryExponent : 2 ,
2018-06-20 15:06:27 +03:00
}
}
// Kademlia is a table of live peers and a db of known peers (node records)
type Kademlia struct {
lock sync . RWMutex
2018-12-22 08:53:30 +03:00
* KadParams // Kademlia configuration parameters
base [ ] byte // immutable baseaddress of the table
addrs * pot . Pot // pots container for known peer addresses
conns * pot . Pot // pots container for live peer connections
depth uint8 // stores the last current depth of saturation
nDepth int // stores the last neighbourhood depth
nDepthC chan int // returned by DepthC function to signal neighbourhood depth change
addrCountC chan int // returned by AddrCountC function to signal peer count change
2018-06-20 15:06:27 +03:00
}
// NewKademlia creates a Kademlia table for base address addr
// with parameters as in params
// if params is nil, it uses default values
func NewKademlia ( addr [ ] byte , params * KadParams ) * Kademlia {
if params == nil {
params = NewKadParams ( )
}
return & Kademlia {
base : addr ,
KadParams : params ,
addrs : pot . NewPot ( nil , 0 ) ,
conns : pot . NewPot ( nil , 0 ) ,
}
}
2018-09-12 12:24:56 +03:00
// entry represents a Kademlia table entry (an extension of BzzAddr)
2018-06-20 15:06:27 +03:00
type entry struct {
2018-09-12 12:24:56 +03:00
* BzzAddr
conn * Peer
2018-06-20 15:06:27 +03:00
seenAt time . Time
retries int
}
2018-09-12 12:24:56 +03:00
// newEntry creates a kademlia peer from a *Peer
func newEntry ( p * BzzAddr ) * entry {
2018-06-20 15:06:27 +03:00
return & entry {
2018-09-12 12:24:56 +03:00
BzzAddr : p ,
seenAt : time . Now ( ) ,
2018-06-20 15:06:27 +03:00
}
}
// Label is a short tag for the entry for debug
func Label ( e * entry ) string {
return fmt . Sprintf ( "%s (%d)" , e . Hex ( ) [ : 4 ] , e . retries )
}
// Hex is the hexadecimal serialisation of the entry address
func ( e * entry ) Hex ( ) string {
2018-09-12 12:24:56 +03:00
return fmt . Sprintf ( "%x" , e . Address ( ) )
2018-06-20 15:06:27 +03:00
}
2018-09-12 12:24:56 +03:00
// Register enters each address as kademlia peer record into the
2018-06-20 15:06:27 +03:00
// database of known peer addresses
2018-09-12 12:24:56 +03:00
func ( k * Kademlia ) Register ( peers ... * BzzAddr ) error {
2018-06-20 15:06:27 +03:00
k . lock . Lock ( )
defer k . lock . Unlock ( )
var known , size int
for _ , p := range peers {
// error if self received, peer should know better
// and should be punished for this
if bytes . Equal ( p . Address ( ) , k . base ) {
return fmt . Errorf ( "add peers: %x is self" , k . base )
}
var found bool
2018-12-22 08:53:30 +03:00
k . addrs , _ , found , _ = pot . Swap ( k . addrs , p , Pof , func ( v pot . Val ) pot . Val {
2018-06-20 15:06:27 +03:00
// if not found
if v == nil {
// insert new offline peer into conns
return newEntry ( p )
}
// found among known peers, do nothing
return v
} )
if found {
known ++
}
size ++
}
// send new address count value only if there are new addresses
if k . addrCountC != nil && size - known > 0 {
k . addrCountC <- k . addrs . Size ( )
}
k . sendNeighbourhoodDepthChange ( )
return nil
}
// SuggestPeer returns a known peer for the lowest proximity bin for the
// lowest bincount below depth
// naturally if there is an empty row it returns a peer for that
2018-09-12 12:24:56 +03:00
func ( k * Kademlia ) SuggestPeer ( ) ( a * BzzAddr , o int , want bool ) {
2018-06-20 15:06:27 +03:00
k . lock . Lock ( )
defer k . lock . Unlock ( )
minsize := k . MinBinSize
2019-01-10 14:33:51 +03:00
depth := depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2018-06-20 15:06:27 +03:00
// if there is a callable neighbour within the current proxBin, connect
// this makes sure nearest neighbour set is fully connected
var ppo int
2018-12-22 08:53:30 +03:00
k . addrs . EachNeighbour ( k . base , Pof , func ( val pot . Val , po int ) bool {
2018-06-20 15:06:27 +03:00
if po < depth {
return false
}
2018-09-12 12:24:56 +03:00
e := val . ( * entry )
c := k . callable ( e )
if c {
a = e . BzzAddr
}
2018-06-20 15:06:27 +03:00
ppo = po
2018-09-12 12:24:56 +03:00
return ! c
2018-06-20 15:06:27 +03:00
} )
if a != nil {
log . Trace ( fmt . Sprintf ( "%08x candidate nearest neighbour found: %v (%v)" , k . BaseAddr ( ) [ : 4 ] , a , ppo ) )
return a , 0 , false
}
var bpo [ ] int
prev := - 1
2018-12-22 08:53:30 +03:00
k . conns . EachBin ( k . base , Pof , 0 , func ( po , size int , f func ( func ( val pot . Val , i int ) bool ) bool ) bool {
2018-06-20 15:06:27 +03:00
prev ++
for ; prev < po ; prev ++ {
bpo = append ( bpo , prev )
minsize = 0
}
if size < minsize {
bpo = append ( bpo , po )
minsize = size
}
return size > 0 && po < depth
} )
// all buckets are full, ie., minsize == k.MinBinSize
if len ( bpo ) == 0 {
return nil , 0 , false
}
// as long as we got candidate peers to connect to
// dont ask for new peers (want = false)
// try to select a candidate peer
// find the first callable peer
nxt := bpo [ 0 ]
2018-12-22 08:53:30 +03:00
k . addrs . EachBin ( k . base , Pof , nxt , func ( po , _ int , f func ( func ( pot . Val , int ) bool ) bool ) bool {
2018-06-20 15:06:27 +03:00
// for each bin (up until depth) we find callable candidate peers
if po >= depth {
return false
}
return f ( func ( val pot . Val , _ int ) bool {
2018-09-12 12:24:56 +03:00
e := val . ( * entry )
c := k . callable ( e )
if c {
a = e . BzzAddr
}
return ! c
2018-06-20 15:06:27 +03:00
} )
} )
// found a candidate
if a != nil {
return a , 0 , false
}
// no candidate peer found, request for the short bin
var changed bool
if uint8 ( nxt ) < k . depth {
k . depth = uint8 ( nxt )
changed = true
}
return a , nxt , changed
}
// On inserts the peer as a kademlia peer into the live peers
2018-09-12 12:24:56 +03:00
func ( k * Kademlia ) On ( p * Peer ) ( uint8 , bool ) {
2018-06-20 15:06:27 +03:00
k . lock . Lock ( )
defer k . lock . Unlock ( )
var ins bool
2018-12-22 08:53:30 +03:00
k . conns , _ , _ , _ = pot . Swap ( k . conns , p , Pof , func ( v pot . Val ) pot . Val {
2018-06-20 15:06:27 +03:00
// if not found live
if v == nil {
ins = true
// insert new online peer into conns
2018-09-12 12:24:56 +03:00
return p
2018-06-20 15:06:27 +03:00
}
// found among live peers, do nothing
return v
} )
2018-11-07 22:33:36 +03:00
if ins && ! p . BzzPeer . LightNode {
2018-09-12 12:24:56 +03:00
a := newEntry ( p . BzzAddr )
a . conn = p
2018-06-20 15:06:27 +03:00
// insert new online peer into addrs
2018-12-22 08:53:30 +03:00
k . addrs , _ , _ , _ = pot . Swap ( k . addrs , p , Pof , func ( v pot . Val ) pot . Val {
2018-09-12 12:24:56 +03:00
return a
2018-06-20 15:06:27 +03:00
} )
// send new address count value only if the peer is inserted
if k . addrCountC != nil {
k . addrCountC <- k . addrs . Size ( )
}
}
log . Trace ( k . string ( ) )
// calculate if depth of saturation changed
2018-12-22 08:53:30 +03:00
depth := uint8 ( k . saturation ( ) )
2018-06-20 15:06:27 +03:00
var changed bool
if depth != k . depth {
changed = true
k . depth = depth
}
k . sendNeighbourhoodDepthChange ( )
return k . depth , changed
}
// NeighbourhoodDepthC returns the channel that sends a new kademlia
// neighbourhood depth on each change.
// Not receiving from the returned channel will block On function
// when the neighbourhood depth is changed.
2018-11-26 15:52:04 +03:00
// TODO: Why is this exported, and if it should be; why can't we have more subscribers than one?
2018-06-20 15:06:27 +03:00
func ( k * Kademlia ) NeighbourhoodDepthC ( ) <- chan int {
2018-09-12 12:24:56 +03:00
k . lock . Lock ( )
defer k . lock . Unlock ( )
2018-06-20 15:06:27 +03:00
if k . nDepthC == nil {
k . nDepthC = make ( chan int )
}
return k . nDepthC
}
// sendNeighbourhoodDepthChange sends new neighbourhood depth to k.nDepth channel
// if it is initialized.
func ( k * Kademlia ) sendNeighbourhoodDepthChange ( ) {
// nDepthC is initialized when NeighbourhoodDepthC is called and returned by it.
// It provides signaling of neighbourhood depth change.
// This part of the code is sending new neighbourhood depth to nDepthC if that condition is met.
if k . nDepthC != nil {
2019-01-10 14:33:51 +03:00
nDepth := depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2018-06-20 15:06:27 +03:00
if nDepth != k . nDepth {
k . nDepth = nDepth
k . nDepthC <- nDepth
}
}
}
// AddrCountC returns the channel that sends a new
// address count value on each change.
// Not receiving from the returned channel will block Register function
// when address count value changes.
func ( k * Kademlia ) AddrCountC ( ) <- chan int {
if k . addrCountC == nil {
k . addrCountC = make ( chan int )
}
return k . addrCountC
}
// Off removes a peer from among live peers
2018-09-12 12:24:56 +03:00
func ( k * Kademlia ) Off ( p * Peer ) {
2018-06-20 15:06:27 +03:00
k . lock . Lock ( )
defer k . lock . Unlock ( )
var del bool
2018-11-07 22:33:36 +03:00
if ! p . BzzPeer . LightNode {
2018-12-22 08:53:30 +03:00
k . addrs , _ , _ , _ = pot . Swap ( k . addrs , p , Pof , func ( v pot . Val ) pot . Val {
2018-11-07 22:33:36 +03:00
// v cannot be nil, must check otherwise we overwrite entry
if v == nil {
panic ( fmt . Sprintf ( "connected peer not found %v" , p ) )
}
del = true
return newEntry ( p . BzzAddr )
} )
} else {
2018-06-20 15:06:27 +03:00
del = true
2018-11-07 22:33:36 +03:00
}
2018-06-20 15:06:27 +03:00
if del {
2018-12-22 08:53:30 +03:00
k . conns , _ , _ , _ = pot . Swap ( k . conns , p , Pof , func ( _ pot . Val ) pot . Val {
2018-06-20 15:06:27 +03:00
// v cannot be nil, but no need to check
return nil
} )
// send new address count value only if the peer is deleted
if k . addrCountC != nil {
k . addrCountC <- k . addrs . Size ( )
}
k . sendNeighbourhoodDepthChange ( )
}
}
// EachConn is an iterator with args (base, po, f) applies f to each live peer
// that has proximity order po or less as measured from the base
// if base is nil, kademlia base address is used
2019-01-10 05:36:19 +03:00
func ( k * Kademlia ) EachConn ( base [ ] byte , o int , f func ( * Peer , int ) bool ) {
2018-06-20 15:06:27 +03:00
k . lock . RLock ( )
defer k . lock . RUnlock ( )
k . eachConn ( base , o , f )
}
2019-01-10 05:36:19 +03:00
func ( k * Kademlia ) eachConn ( base [ ] byte , o int , f func ( * Peer , int ) bool ) {
2018-06-20 15:06:27 +03:00
if len ( base ) == 0 {
base = k . base
}
2018-12-22 08:53:30 +03:00
k . conns . EachNeighbour ( base , Pof , func ( val pot . Val , po int ) bool {
2018-06-20 15:06:27 +03:00
if po > o {
return true
}
2019-01-10 05:36:19 +03:00
return f ( val . ( * Peer ) , po )
2018-06-20 15:06:27 +03:00
} )
}
// EachAddr called with (base, po, f) is an iterator applying f to each known peer
2018-12-22 08:53:30 +03:00
// that has proximity order o or less as measured from the base
2018-06-20 15:06:27 +03:00
// if base is nil, kademlia base address is used
2019-01-10 05:36:19 +03:00
func ( k * Kademlia ) EachAddr ( base [ ] byte , o int , f func ( * BzzAddr , int ) bool ) {
2018-06-20 15:06:27 +03:00
k . lock . RLock ( )
defer k . lock . RUnlock ( )
k . eachAddr ( base , o , f )
}
2019-01-10 05:36:19 +03:00
func ( k * Kademlia ) eachAddr ( base [ ] byte , o int , f func ( * BzzAddr , int ) bool ) {
2018-06-20 15:06:27 +03:00
if len ( base ) == 0 {
base = k . base
}
2018-12-22 08:53:30 +03:00
k . addrs . EachNeighbour ( base , Pof , func ( val pot . Val , po int ) bool {
2018-06-20 15:06:27 +03:00
if po > o {
return true
}
2019-01-10 05:36:19 +03:00
return f ( val . ( * entry ) . BzzAddr , po )
2018-06-20 15:06:27 +03:00
} )
}
2018-11-26 15:52:04 +03:00
func ( k * Kademlia ) NeighbourhoodDepth ( ) ( depth int ) {
k . lock . RLock ( )
defer k . lock . RUnlock ( )
2019-01-10 14:33:51 +03:00
return depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2018-11-26 15:52:04 +03:00
}
2018-11-26 19:13:59 +03:00
// depthForPot returns the proximity order that defines the distance of
2019-01-10 14:33:51 +03:00
// the nearest neighbour set with cardinality >= NeighbourhoodSize
// if there is altogether less than NeighbourhoodSize peers it returns 0
2018-11-26 19:13:59 +03:00
// caller must hold the lock
2019-01-10 14:33:51 +03:00
func depthForPot ( p * pot . Pot , neighbourhoodSize int , pivotAddr [ ] byte ) ( depth int ) {
if p . Size ( ) <= neighbourhoodSize {
2018-06-20 15:06:27 +03:00
return 0
}
2018-11-26 19:13:59 +03:00
// total number of peers in iteration
2018-06-20 15:06:27 +03:00
var size int
2018-11-26 19:13:59 +03:00
2018-12-22 08:53:30 +03:00
// determining the depth is a two-step process
2019-01-10 14:33:51 +03:00
// first we find the proximity bin of the shallowest of the NeighbourhoodSize peers
2018-12-22 08:53:30 +03:00
// the numeric value of depth cannot be higher than this
var maxDepth int
2018-11-26 19:13:59 +03:00
2018-06-20 15:06:27 +03:00
f := func ( v pot . Val , i int ) bool {
2018-11-26 19:13:59 +03:00
// po == 256 means that addr is the pivot address(self)
if i == 256 {
return true
}
2018-06-20 15:06:27 +03:00
size ++
2018-11-26 19:13:59 +03:00
// this means we have all nn-peers.
// depth is by default set to the bin of the farthest nn-peer
2019-01-10 14:33:51 +03:00
if size == neighbourhoodSize {
2018-12-22 08:53:30 +03:00
maxDepth = i
2018-11-26 19:13:59 +03:00
return false
}
2018-12-22 08:53:30 +03:00
2018-11-26 19:13:59 +03:00
return true
}
2018-12-22 08:53:30 +03:00
p . EachNeighbour ( pivotAddr , Pof , f )
// the second step is to test for empty bins in order from shallowest to deepest
// if an empty bin is found, this will be the actual depth
// we stop iterating if we hit the maxDepth determined in the first step
p . EachBin ( pivotAddr , Pof , 0 , func ( po int , _ int , f func ( func ( pot . Val , int ) bool ) bool ) bool {
if po == depth {
if maxDepth == depth {
return false
}
depth ++
return true
}
return false
} )
2018-11-26 19:13:59 +03:00
2018-06-20 15:06:27 +03:00
return depth
}
2018-09-12 12:24:56 +03:00
// callable decides if an address entry represents a callable peer
func ( k * Kademlia ) callable ( e * entry ) bool {
2018-06-20 15:06:27 +03:00
// not callable if peer is live or exceeded maxRetries
2018-09-12 12:24:56 +03:00
if e . conn != nil || e . retries > k . MaxRetries {
return false
2018-06-20 15:06:27 +03:00
}
// calculate the allowed number of retries based on time lapsed since last seen
timeAgo := int64 ( time . Since ( e . seenAt ) )
div := int64 ( k . RetryExponent )
div += ( 150000 - rand . Int63n ( 300000 ) ) * div / 1000000
var retries int
for delta := timeAgo ; delta > k . RetryInterval ; delta /= div {
retries ++
}
// this is never called concurrently, so safe to increment
// peer can be retried again
if retries < e . retries {
log . Trace ( fmt . Sprintf ( "%08x: %v long time since last try (at %v) needed before retry %v, wait only warrants %v" , k . BaseAddr ( ) [ : 4 ] , e , timeAgo , e . retries , retries ) )
2018-09-12 12:24:56 +03:00
return false
2018-06-20 15:06:27 +03:00
}
// function to sanction or prevent suggesting a peer
2018-09-12 12:24:56 +03:00
if k . Reachable != nil && ! k . Reachable ( e . BzzAddr ) {
2018-06-20 15:06:27 +03:00
log . Trace ( fmt . Sprintf ( "%08x: peer %v is temporarily not callable" , k . BaseAddr ( ) [ : 4 ] , e ) )
2018-09-12 12:24:56 +03:00
return false
2018-06-20 15:06:27 +03:00
}
e . retries ++
log . Trace ( fmt . Sprintf ( "%08x: peer %v is callable" , k . BaseAddr ( ) [ : 4 ] , e ) )
2018-09-12 12:24:56 +03:00
return true
2018-06-20 15:06:27 +03:00
}
// BaseAddr return the kademlia base address
func ( k * Kademlia ) BaseAddr ( ) [ ] byte {
return k . base
}
// String returns kademlia table + kaddb table displayed with ascii
func ( k * Kademlia ) String ( ) string {
k . lock . RLock ( )
defer k . lock . RUnlock ( )
return k . string ( )
}
2018-09-12 12:24:56 +03:00
// string returns kademlia table + kaddb table displayed with ascii
// caller must hold the lock
2018-06-20 15:06:27 +03:00
func ( k * Kademlia ) string ( ) string {
wsrow := " "
var rows [ ] string
rows = append ( rows , "=========================================================================" )
rows = append ( rows , fmt . Sprintf ( "%v KΛÐΞMLIΛ hive: queen's address: %x" , time . Now ( ) . UTC ( ) . Format ( time . UnixDate ) , k . BaseAddr ( ) [ : 3 ] ) )
2019-01-10 14:33:51 +03:00
rows = append ( rows , fmt . Sprintf ( "population: %d (%d), NeighbourhoodSize: %d, MinBinSize: %d, MaxBinSize: %d" , k . conns . Size ( ) , k . addrs . Size ( ) , k . NeighbourhoodSize , k . MinBinSize , k . MaxBinSize ) )
2018-06-20 15:06:27 +03:00
liverows := make ( [ ] string , k . MaxProxDisplay )
peersrows := make ( [ ] string , k . MaxProxDisplay )
2019-01-10 14:33:51 +03:00
depth := depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2018-06-20 15:06:27 +03:00
rest := k . conns . Size ( )
2018-12-22 08:53:30 +03:00
k . conns . EachBin ( k . base , Pof , 0 , func ( po , size int , f func ( func ( val pot . Val , i int ) bool ) bool ) bool {
2018-06-20 15:06:27 +03:00
var rowlen int
if po >= k . MaxProxDisplay {
po = k . MaxProxDisplay - 1
}
row := [ ] string { fmt . Sprintf ( "%2d" , size ) }
rest -= size
f ( func ( val pot . Val , vpo int ) bool {
2018-09-12 12:24:56 +03:00
e := val . ( * Peer )
2018-06-20 15:06:27 +03:00
row = append ( row , fmt . Sprintf ( "%x" , e . Address ( ) [ : 2 ] ) )
rowlen ++
return rowlen < 4
} )
r := strings . Join ( row , " " )
r = r + wsrow
liverows [ po ] = r [ : 31 ]
return true
} )
2018-12-22 08:53:30 +03:00
k . addrs . EachBin ( k . base , Pof , 0 , func ( po , size int , f func ( func ( val pot . Val , i int ) bool ) bool ) bool {
2018-06-20 15:06:27 +03:00
var rowlen int
if po >= k . MaxProxDisplay {
po = k . MaxProxDisplay - 1
}
if size < 0 {
panic ( "wtf" )
}
row := [ ] string { fmt . Sprintf ( "%2d" , size ) }
// we are displaying live peers too
f ( func ( val pot . Val , vpo int ) bool {
e := val . ( * entry )
row = append ( row , Label ( e ) )
rowlen ++
return rowlen < 4
} )
peersrows [ po ] = strings . Join ( row , " " )
return true
} )
for i := 0 ; i < k . MaxProxDisplay ; i ++ {
if i == depth {
rows = append ( rows , fmt . Sprintf ( "============ DEPTH: %d ==========================================" , i ) )
}
left := liverows [ i ]
right := peersrows [ i ]
if len ( left ) == 0 {
left = " 0 "
}
if len ( right ) == 0 {
right = " 0"
}
rows = append ( rows , fmt . Sprintf ( "%03d %v | %v" , i , left , right ) )
}
rows = append ( rows , "=========================================================================" )
return "\n" + strings . Join ( rows , "\n" )
}
2018-12-22 08:53:30 +03:00
// PeerPot keeps info about expected nearest neighbours
2018-06-20 15:06:27 +03:00
// used for testing only
2018-12-22 08:53:30 +03:00
// TODO move to separate testing tools file
2018-06-20 15:06:27 +03:00
type PeerPot struct {
2018-12-22 08:53:30 +03:00
NNSet [ ] [ ] byte
2018-06-20 15:06:27 +03:00
}
2018-09-12 12:24:56 +03:00
// NewPeerPotMap creates a map of pot record of *BzzAddr with keys
2018-06-20 15:06:27 +03:00
// as hexadecimal representations of the address.
2019-01-10 14:33:51 +03:00
// the NeighbourhoodSize of the passed kademlia is used
2018-09-12 12:24:56 +03:00
// used for testing only
2018-12-22 08:53:30 +03:00
// TODO move to separate testing tools file
2019-01-10 14:33:51 +03:00
func NewPeerPotMap ( neighbourhoodSize int , addrs [ ] [ ] byte ) map [ string ] * PeerPot {
2018-11-26 19:13:59 +03:00
2018-06-20 15:06:27 +03:00
// create a table of all nodes for health check
np := pot . NewPot ( nil , 0 )
for _ , addr := range addrs {
2018-12-22 08:53:30 +03:00
np , _ , _ = pot . Add ( np , addr , Pof )
2018-06-20 15:06:27 +03:00
}
ppmap := make ( map [ string ] * PeerPot )
2018-12-22 08:53:30 +03:00
// generate an allknowing source of truth for connections
// for every kademlia passed
2018-06-20 15:06:27 +03:00
for i , a := range addrs {
2018-11-26 19:13:59 +03:00
// actual kademlia depth
2019-01-10 14:33:51 +03:00
depth := depthForPot ( np , neighbourhoodSize , a )
2018-11-26 19:13:59 +03:00
// all nn-peers
2018-06-20 15:06:27 +03:00
var nns [ ] [ ] byte
2018-11-26 19:13:59 +03:00
2018-12-22 08:53:30 +03:00
// iterate through the neighbours, going from the deepest to the shallowest
np . EachNeighbour ( a , Pof , func ( val pot . Val , po int ) bool {
2018-11-26 19:13:59 +03:00
addr := val . ( [ ] byte )
// po == 256 means that addr is the pivot address(self)
2018-12-22 08:53:30 +03:00
// we do not include self in the map
2018-06-20 15:06:27 +03:00
if po == 256 {
return true
}
2018-12-22 08:53:30 +03:00
// append any neighbors found
// a neighbor is any peer in or deeper than the depth
2018-11-26 19:13:59 +03:00
if po >= depth {
nns = append ( nns , addr )
return true
2018-06-20 15:06:27 +03:00
}
2018-12-22 08:53:30 +03:00
return false
2018-06-20 15:06:27 +03:00
} )
2018-11-26 19:13:59 +03:00
2018-12-22 08:53:30 +03:00
log . Trace ( fmt . Sprintf ( "%x PeerPotMap NNS: %s" , addrs [ i ] [ : 4 ] , LogAddrs ( nns ) ) )
ppmap [ common . Bytes2Hex ( a ) ] = & PeerPot {
NNSet : nns ,
}
2018-06-20 15:06:27 +03:00
}
return ppmap
}
2018-12-22 08:53:30 +03:00
// saturation iterates through all peers and
// returns the smallest po value in which the node has less than n peers
// if the iterator reaches depth, then value for depth is returned
// TODO move to separate testing tools file
// TODO this function will stop at the first bin with less than MinBinSize peers, even if there are empty bins between that bin and the depth. This may not be correct behavior
func ( k * Kademlia ) saturation ( ) int {
2018-06-20 15:06:27 +03:00
prev := - 1
2018-12-22 08:53:30 +03:00
k . addrs . EachBin ( k . base , Pof , 0 , func ( po , size int , f func ( func ( val pot . Val , i int ) bool ) bool ) bool {
2018-06-20 15:06:27 +03:00
prev ++
2018-12-22 08:53:30 +03:00
return prev == po && size >= k . MinBinSize
2018-06-20 15:06:27 +03:00
} )
2018-12-22 08:53:30 +03:00
// TODO evaluate whether this check cannot just as well be done within the eachbin
2019-01-10 14:33:51 +03:00
depth := depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2018-06-20 15:06:27 +03:00
if depth < prev {
return depth
}
return prev
}
2018-12-22 08:53:30 +03:00
// knowNeighbours tests if all neighbours in the peerpot
// are found among the peers known to the kademlia
2018-09-12 12:24:56 +03:00
// It is used in Healthy function for testing only
2018-12-22 08:53:30 +03:00
// TODO move to separate testing tools file
func ( k * Kademlia ) knowNeighbours ( addrs [ ] [ ] byte ) ( got bool , n int , missing [ ] [ ] byte ) {
2018-06-20 15:06:27 +03:00
pm := make ( map [ string ] bool )
2019-01-10 14:33:51 +03:00
depth := depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2018-12-22 08:53:30 +03:00
// create a map with all peers at depth and deeper known in the kademlia
2019-01-10 05:36:19 +03:00
k . eachAddr ( nil , 255 , func ( p * BzzAddr , po int ) bool {
// in order deepest to shallowest compared to the kademlia base address
// all bins (except self) are included (0 <= bin <= 255)
2018-12-22 08:53:30 +03:00
if po < depth {
2018-06-20 15:06:27 +03:00
return false
}
2018-12-22 08:53:30 +03:00
pk := common . Bytes2Hex ( p . Address ( ) )
2018-06-20 15:06:27 +03:00
pm [ pk ] = true
return true
} )
2018-12-22 08:53:30 +03:00
// iterate through nearest neighbors in the peerpot map
// if we can't find the neighbor in the map we created above
// then we don't know all our neighbors
// (which sadly is all too common in modern society)
var gots int
var culprits [ ] [ ] byte
for _ , p := range addrs {
pk := common . Bytes2Hex ( p )
if pm [ pk ] {
gots ++
} else {
log . Trace ( fmt . Sprintf ( "%08x: known nearest neighbour %s not found" , k . base , pk ) )
culprits = append ( culprits , p )
2018-06-20 15:06:27 +03:00
}
}
2018-12-22 08:53:30 +03:00
return gots == len ( addrs ) , gots , culprits
2018-06-20 15:06:27 +03:00
}
2018-12-22 08:53:30 +03:00
// connectedNeighbours tests if all neighbours in the peerpot
// are currently connected in the kademlia
2018-09-12 12:24:56 +03:00
// It is used in Healthy function for testing only
2018-12-22 08:53:30 +03:00
func ( k * Kademlia ) connectedNeighbours ( peers [ ] [ ] byte ) ( got bool , n int , missing [ ] [ ] byte ) {
2018-06-20 15:06:27 +03:00
pm := make ( map [ string ] bool )
2019-01-10 14:33:51 +03:00
// create a map with all peers at depth and deeper that are connected in the kademlia
// in order deepest to shallowest compared to the kademlia base address
// all bins (except self) are included (0 <= bin <= 255)
depth := depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2019-01-10 05:36:19 +03:00
k . eachConn ( nil , 255 , func ( p * Peer , po int ) bool {
2018-12-22 08:53:30 +03:00
if po < depth {
2018-06-20 15:06:27 +03:00
return false
}
2018-12-22 08:53:30 +03:00
pk := common . Bytes2Hex ( p . Address ( ) )
2018-06-20 15:06:27 +03:00
pm [ pk ] = true
return true
} )
2018-12-22 08:53:30 +03:00
// iterate through nearest neighbors in the peerpot map
// if we can't find the neighbor in the map we created above
// then we don't know all our neighbors
2018-06-20 15:06:27 +03:00
var gots int
var culprits [ ] [ ] byte
for _ , p := range peers {
2018-12-22 08:53:30 +03:00
pk := common . Bytes2Hex ( p )
2018-06-20 15:06:27 +03:00
if pm [ pk ] {
gots ++
} else {
2018-12-22 08:53:30 +03:00
log . Trace ( fmt . Sprintf ( "%08x: ExpNN: %s not found" , k . base , pk ) )
2018-06-20 15:06:27 +03:00
culprits = append ( culprits , p )
}
}
return gots == len ( peers ) , gots , culprits
}
// Health state of the Kademlia
2018-09-12 12:24:56 +03:00
// used for testing only
2018-06-20 15:06:27 +03:00
type Health struct {
2018-12-22 08:53:30 +03:00
KnowNN bool // whether node knows all its neighbours
CountKnowNN int // amount of neighbors known
MissingKnowNN [ ] [ ] byte // which neighbours we should have known but we don't
ConnectNN bool // whether node is connected to all its neighbours
CountConnectNN int // amount of neighbours connected to
MissingConnectNN [ ] [ ] byte // which neighbours we should have been connected to but we're not
Saturated bool // whether we are connected to all the peers we would have liked to
Hive string
2018-06-20 15:06:27 +03:00
}
// Healthy reports the health state of the kademlia connectivity
2018-12-22 08:53:30 +03:00
//
// The PeerPot argument provides an all-knowing view of the network
// The resulting Health object is a result of comparisons between
// what is the actual composition of the kademlia in question (the receiver), and
// what SHOULD it have been when we take all we know about the network into consideration.
//
2018-09-12 12:24:56 +03:00
// used for testing only
2018-06-20 15:06:27 +03:00
func ( k * Kademlia ) Healthy ( pp * PeerPot ) * Health {
k . lock . RLock ( )
defer k . lock . RUnlock ( )
2018-12-22 08:53:30 +03:00
gotnn , countgotnn , culpritsgotnn := k . connectedNeighbours ( pp . NNSet )
knownn , countknownn , culpritsknownn := k . knowNeighbours ( pp . NNSet )
2019-01-10 14:33:51 +03:00
depth := depthForPot ( k . conns , k . NeighbourhoodSize , k . base )
2018-12-22 08:53:30 +03:00
saturated := k . saturation ( ) < depth
log . Trace ( fmt . Sprintf ( "%08x: healthy: knowNNs: %v, gotNNs: %v, saturated: %v\n" , k . base , knownn , gotnn , saturated ) )
return & Health {
KnowNN : knownn ,
CountKnowNN : countknownn ,
MissingKnowNN : culpritsknownn ,
ConnectNN : gotnn ,
CountConnectNN : countgotnn ,
MissingConnectNN : culpritsgotnn ,
Saturated : saturated ,
Hive : k . string ( ) ,
2018-06-20 15:06:27 +03:00
}
}