2019-08-03 15:36:10 +03:00
|
|
|
// Copyright 2019 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
package prque
|
|
|
|
|
|
|
|
import (
|
|
|
|
"container/heap"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common/mclock"
|
2023-02-09 14:03:54 +03:00
|
|
|
"golang.org/x/exp/constraints"
|
2019-08-03 15:36:10 +03:00
|
|
|
)
|
|
|
|
|
|
|
|
// LazyQueue is a priority queue data structure where priorities can change over
|
|
|
|
// time and are only evaluated on demand.
|
|
|
|
// Two callbacks are required:
|
2022-09-10 14:25:40 +03:00
|
|
|
// - priority evaluates the actual priority of an item
|
|
|
|
// - maxPriority gives an upper estimate for the priority in any moment between
|
|
|
|
// now and the given absolute time
|
|
|
|
//
|
2019-08-03 15:36:10 +03:00
|
|
|
// If the upper estimate is exceeded then Update should be called for that item.
|
|
|
|
// A global Refresh function should also be called periodically.
|
2023-02-09 14:03:54 +03:00
|
|
|
type LazyQueue[P constraints.Ordered, V any] struct {
|
2019-08-03 15:36:10 +03:00
|
|
|
clock mclock.Clock
|
|
|
|
// Items are stored in one of two internal queues ordered by estimated max
|
|
|
|
// priority until the next and the next-after-next refresh. Update and Refresh
|
|
|
|
// always places items in queue[1].
|
2023-02-09 14:03:54 +03:00
|
|
|
queue [2]*sstack[P, V]
|
|
|
|
popQueue *sstack[P, V]
|
2020-09-14 23:44:20 +03:00
|
|
|
period time.Duration
|
|
|
|
maxUntil mclock.AbsTime
|
|
|
|
indexOffset int
|
2023-02-09 14:03:54 +03:00
|
|
|
setIndex SetIndexCallback[V]
|
|
|
|
priority PriorityCallback[P, V]
|
|
|
|
maxPriority MaxPriorityCallback[P, V]
|
2020-09-14 23:44:20 +03:00
|
|
|
lastRefresh1, lastRefresh2 mclock.AbsTime
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
type (
|
2023-02-09 14:03:54 +03:00
|
|
|
PriorityCallback[P constraints.Ordered, V any] func(data V) P // actual priority callback
|
|
|
|
MaxPriorityCallback[P constraints.Ordered, V any] func(data V, until mclock.AbsTime) P // estimated maximum priority callback
|
2019-08-03 15:36:10 +03:00
|
|
|
)
|
|
|
|
|
|
|
|
// NewLazyQueue creates a new lazy queue
|
2023-02-09 14:03:54 +03:00
|
|
|
func NewLazyQueue[P constraints.Ordered, V any](setIndex SetIndexCallback[V], priority PriorityCallback[P, V], maxPriority MaxPriorityCallback[P, V], clock mclock.Clock, refreshPeriod time.Duration) *LazyQueue[P, V] {
|
|
|
|
q := &LazyQueue[P, V]{
|
|
|
|
popQueue: newSstack[P, V](nil),
|
2020-09-14 23:44:20 +03:00
|
|
|
setIndex: setIndex,
|
|
|
|
priority: priority,
|
|
|
|
maxPriority: maxPriority,
|
|
|
|
clock: clock,
|
|
|
|
period: refreshPeriod,
|
|
|
|
lastRefresh1: clock.Now(),
|
|
|
|
lastRefresh2: clock.Now(),
|
|
|
|
}
|
2019-08-03 15:36:10 +03:00
|
|
|
q.Reset()
|
2020-09-14 23:44:20 +03:00
|
|
|
q.refresh(clock.Now())
|
2019-08-03 15:36:10 +03:00
|
|
|
return q
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reset clears the contents of the queue
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Reset() {
|
|
|
|
q.queue[0] = newSstack[P, V](q.setIndex0)
|
|
|
|
q.queue[1] = newSstack[P, V](q.setIndex1)
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
|
2020-09-14 23:44:20 +03:00
|
|
|
// Refresh performs queue re-evaluation if necessary
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Refresh() {
|
2020-09-14 23:44:20 +03:00
|
|
|
now := q.clock.Now()
|
|
|
|
for time.Duration(now-q.lastRefresh2) >= q.period*2 {
|
|
|
|
q.refresh(now)
|
|
|
|
q.lastRefresh2 = q.lastRefresh1
|
|
|
|
q.lastRefresh1 = now
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// refresh re-evaluates items in the older queue and swaps the two queues
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) refresh(now mclock.AbsTime) {
|
2022-07-29 19:23:30 +03:00
|
|
|
q.maxUntil = now.Add(q.period)
|
2019-08-03 15:36:10 +03:00
|
|
|
for q.queue[0].Len() != 0 {
|
2023-02-09 14:03:54 +03:00
|
|
|
q.Push(heap.Pop(q.queue[0]).(*item[P, V]).value)
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
q.queue[0], q.queue[1] = q.queue[1], q.queue[0]
|
|
|
|
q.indexOffset = 1 - q.indexOffset
|
2022-07-29 19:23:30 +03:00
|
|
|
q.maxUntil = q.maxUntil.Add(q.period)
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
// Push adds an item to the queue
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Push(data V) {
|
|
|
|
heap.Push(q.queue[1], &item[P, V]{data, q.maxPriority(data, q.maxUntil)})
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
// Update updates the upper priority estimate for the item with the given queue index
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Update(index int) {
|
2019-08-03 15:36:10 +03:00
|
|
|
q.Push(q.Remove(index))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pop removes and returns the item with the greatest actual priority
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Pop() (V, P) {
|
2019-08-03 15:36:10 +03:00
|
|
|
var (
|
2023-02-09 14:03:54 +03:00
|
|
|
resData V
|
|
|
|
resPri P
|
2019-08-03 15:36:10 +03:00
|
|
|
)
|
2023-02-09 14:03:54 +03:00
|
|
|
q.MultiPop(func(data V, priority P) bool {
|
2019-08-03 15:36:10 +03:00
|
|
|
resData = data
|
|
|
|
resPri = priority
|
|
|
|
return false
|
|
|
|
})
|
|
|
|
return resData, resPri
|
|
|
|
}
|
|
|
|
|
|
|
|
// peekIndex returns the index of the internal queue where the item with the
|
|
|
|
// highest estimated priority is or -1 if both are empty
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) peekIndex() int {
|
2019-08-03 15:36:10 +03:00
|
|
|
if q.queue[0].Len() != 0 {
|
|
|
|
if q.queue[1].Len() != 0 && q.queue[1].blocks[0][0].priority > q.queue[0].blocks[0][0].priority {
|
|
|
|
return 1
|
|
|
|
}
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
if q.queue[1].Len() != 0 {
|
|
|
|
return 1
|
|
|
|
}
|
|
|
|
return -1
|
|
|
|
}
|
|
|
|
|
|
|
|
// MultiPop pops multiple items from the queue and is more efficient than calling
|
|
|
|
// Pop multiple times. Popped items are passed to the callback. MultiPop returns
|
|
|
|
// when the callback returns false or there are no more items to pop.
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) MultiPop(callback func(data V, priority P) bool) {
|
2019-08-03 15:36:10 +03:00
|
|
|
nextIndex := q.peekIndex()
|
|
|
|
for nextIndex != -1 {
|
2023-02-09 14:03:54 +03:00
|
|
|
data := heap.Pop(q.queue[nextIndex]).(*item[P, V]).value
|
|
|
|
heap.Push(q.popQueue, &item[P, V]{data, q.priority(data)})
|
2019-08-03 15:36:10 +03:00
|
|
|
nextIndex = q.peekIndex()
|
|
|
|
for q.popQueue.Len() != 0 && (nextIndex == -1 || q.queue[nextIndex].blocks[0][0].priority < q.popQueue.blocks[0][0].priority) {
|
2023-02-09 14:03:54 +03:00
|
|
|
i := heap.Pop(q.popQueue).(*item[P, V])
|
2019-08-03 15:36:10 +03:00
|
|
|
if !callback(i.value, i.priority) {
|
|
|
|
for q.popQueue.Len() != 0 {
|
2023-02-09 14:03:54 +03:00
|
|
|
q.Push(heap.Pop(q.popQueue).(*item[P, V]).value)
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
2020-09-14 23:44:20 +03:00
|
|
|
nextIndex = q.peekIndex() // re-check because callback is allowed to push items back
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// PopItem pops the item from the queue only, dropping the associated priority value.
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) PopItem() V {
|
2019-08-03 15:36:10 +03:00
|
|
|
i, _ := q.Pop()
|
|
|
|
return i
|
|
|
|
}
|
|
|
|
|
2022-06-30 07:24:04 +03:00
|
|
|
// Remove removes the item with the given index.
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Remove(index int) V {
|
|
|
|
return heap.Remove(q.queue[index&1^q.indexOffset], index>>1).(*item[P, V]).value
|
2019-08-03 15:36:10 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
// Empty checks whether the priority queue is empty.
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Empty() bool {
|
2019-08-03 15:36:10 +03:00
|
|
|
return q.queue[0].Len() == 0 && q.queue[1].Len() == 0
|
|
|
|
}
|
|
|
|
|
|
|
|
// Size returns the number of items in the priority queue.
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) Size() int {
|
2019-08-03 15:36:10 +03:00
|
|
|
return q.queue[0].Len() + q.queue[1].Len()
|
|
|
|
}
|
|
|
|
|
|
|
|
// setIndex0 translates internal queue item index to the virtual index space of LazyQueue
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) setIndex0(data V, index int) {
|
2019-08-03 15:36:10 +03:00
|
|
|
if index == -1 {
|
|
|
|
q.setIndex(data, -1)
|
|
|
|
} else {
|
|
|
|
q.setIndex(data, index+index)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// setIndex1 translates internal queue item index to the virtual index space of LazyQueue
|
2023-02-09 14:03:54 +03:00
|
|
|
func (q *LazyQueue[P, V]) setIndex1(data V, index int) {
|
2019-08-03 15:36:10 +03:00
|
|
|
q.setIndex(data, index+index+1)
|
|
|
|
}
|