go-ethereum/les/api.go

409 lines
13 KiB
Go
Raw Normal View History

2019-07-22 12:17:27 +03:00
// Copyright 2019 The go-ethereum Authors
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 14:32:48 +03:00
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"errors"
"fmt"
"time"
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 14:32:48 +03:00
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/mclock"
2021-02-19 16:44:16 +03:00
vfs "github.com/ethereum/go-ethereum/les/vflux/server"
"github.com/ethereum/go-ethereum/p2p/enode"
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 14:32:48 +03:00
)
var (
errNoCheckpoint = errors.New("no local checkpoint provided")
errNotActivated = errors.New("checkpoint registrar is not activated")
errUnknownBenchmarkType = errors.New("unknown benchmark type")
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 14:32:48 +03:00
)
// LightServerAPI provides an API to access the LES light server.
type LightServerAPI struct {
server *LesServer
2021-02-19 16:44:16 +03:00
defaultPosFactors, defaultNegFactors vfs.PriceFactors
}
// NewLightServerAPI creates a new LES light server API.
func NewLightServerAPI(server *LesServer) *LightServerAPI {
return &LightServerAPI{
server: server,
defaultPosFactors: defaultPosFactors,
defaultNegFactors: defaultNegFactors,
}
}
// parseNode parses either an enode address a raw hex node id
func parseNode(node string) (enode.ID, error) {
if id, err := enode.ParseID(node); err == nil {
return id, nil
}
if node, err := enode.Parse(enode.ValidSchemes, node); err == nil {
return node.ID(), nil
} else {
return enode.ID{}, err
}
}
// ServerInfo returns global server parameters
func (api *LightServerAPI) ServerInfo() map[string]interface{} {
res := make(map[string]interface{})
res["minimumCapacity"] = api.server.minCapacity
res["maximumCapacity"] = api.server.maxCapacity
_, res["totalCapacity"] = api.server.clientPool.Limits()
_, res["totalConnectedCapacity"] = api.server.clientPool.Active()
res["priorityConnectedCapacity"] = 0 //TODO connect when token sale module is added
return res
}
// ClientInfo returns information about clients listed in the ids list or matching the given tags
func (api *LightServerAPI) ClientInfo(nodes []string) map[enode.ID]map[string]interface{} {
var ids []enode.ID
for _, node := range nodes {
if id, err := parseNode(node); err == nil {
ids = append(ids, id)
}
}
res := make(map[enode.ID]map[string]interface{})
if len(ids) == 0 {
ids = api.server.peers.ids()
}
for _, id := range ids {
if peer := api.server.peers.peer(id); peer != nil {
res[id] = api.clientInfo(peer, peer.balance)
} else {
api.server.clientPool.BalanceOperation(id, "", func(balance vfs.AtomicBalanceOperator) {
res[id] = api.clientInfo(nil, balance)
})
}
}
return res
}
// PriorityClientInfo returns information about clients with a positive balance
// in the given ID range (stop excluded). If stop is null then the iterator stops
// only at the end of the ID space. MaxCount limits the number of results returned.
// If maxCount limit is applied but there are more potential results then the ID
// of the next potential result is included in the map with an empty structure
// assigned to it.
func (api *LightServerAPI) PriorityClientInfo(start, stop enode.ID, maxCount int) map[enode.ID]map[string]interface{} {
res := make(map[enode.ID]map[string]interface{})
ids := api.server.clientPool.GetPosBalanceIDs(start, stop, maxCount+1)
if len(ids) > maxCount {
res[ids[maxCount]] = make(map[string]interface{})
ids = ids[:maxCount]
}
for _, id := range ids {
if peer := api.server.peers.peer(id); peer != nil {
res[id] = api.clientInfo(peer, peer.balance)
} else {
api.server.clientPool.BalanceOperation(id, "", func(balance vfs.AtomicBalanceOperator) {
res[id] = api.clientInfo(nil, balance)
})
}
}
return res
}
// clientInfo creates a client info data structure
func (api *LightServerAPI) clientInfo(peer *clientPeer, balance vfs.ReadOnlyBalance) map[string]interface{} {
info := make(map[string]interface{})
pb, nb := balance.GetBalance()
info["isConnected"] = peer != nil
info["pricing/balance"] = pb
info["priority"] = pb != 0
// cb := api.server.clientPool.ndb.getCurrencyBalance(id)
// info["pricing/currency"] = cb.amount
if peer != nil {
info["connectionTime"] = float64(mclock.Now()-peer.connectedAt) / float64(time.Second)
info["capacity"] = peer.getCapacity()
info["pricing/negBalance"] = nb
}
return info
}
// setParams either sets the given parameters for a single connected client (if specified)
// or the default parameters applicable to clients connected in the future
func (api *LightServerAPI) setParams(params map[string]interface{}, client *clientPeer, posFactors, negFactors *vfs.PriceFactors) (updateFactors bool, err error) {
defParams := client == nil
for name, value := range params {
errValue := func() error {
return fmt.Errorf("invalid value for parameter '%s'", name)
}
setFactor := func(v *float64) {
if val, ok := value.(float64); ok && val >= 0 {
*v = val / float64(time.Second)
updateFactors = true
} else {
err = errValue()
}
}
switch {
case name == "pricing/timeFactor":
setFactor(&posFactors.TimeFactor)
case name == "pricing/capacityFactor":
setFactor(&posFactors.CapacityFactor)
case name == "pricing/requestCostFactor":
setFactor(&posFactors.RequestFactor)
case name == "pricing/negative/timeFactor":
setFactor(&negFactors.TimeFactor)
case name == "pricing/negative/capacityFactor":
setFactor(&negFactors.CapacityFactor)
case name == "pricing/negative/requestCostFactor":
setFactor(&negFactors.RequestFactor)
case !defParams && name == "capacity":
if capacity, ok := value.(float64); ok && uint64(capacity) >= api.server.minCapacity {
_, err = api.server.clientPool.SetCapacity(client.Node(), uint64(capacity), 0, false)
// time factor recalculation is performed automatically by the balance tracker
} else {
err = errValue()
}
default:
if defParams {
err = fmt.Errorf("invalid default parameter '%s'", name)
} else {
err = fmt.Errorf("invalid client parameter '%s'", name)
}
}
if err != nil {
return
}
}
return
}
// SetClientParams sets client parameters for all clients listed in the ids list
// or all connected clients if the list is empty
func (api *LightServerAPI) SetClientParams(nodes []string, params map[string]interface{}) error {
var err error
for _, node := range nodes {
var id enode.ID
if id, err = parseNode(node); err != nil {
return err
}
if peer := api.server.peers.peer(id); peer != nil {
posFactors, negFactors := peer.balance.GetPriceFactors()
update, e := api.setParams(params, peer, &posFactors, &negFactors)
if update {
peer.balance.SetPriceFactors(posFactors, negFactors)
}
if e != nil {
err = e
}
} else {
err = fmt.Errorf("client %064x is not connected", id)
}
}
return err
}
// SetDefaultParams sets the default parameters applicable to clients connected in the future
func (api *LightServerAPI) SetDefaultParams(params map[string]interface{}) error {
update, err := api.setParams(params, nil, &api.defaultPosFactors, &api.defaultNegFactors)
if update {
api.server.clientPool.SetDefaultFactors(api.defaultPosFactors, api.defaultNegFactors)
}
return err
}
// SetConnectedBias set the connection bias, which is applied to already connected clients
// So that already connected client won't be kicked out very soon and we can ensure all
// connected clients can have enough time to request or sync some data.
// When the input parameter `bias` < 0 (illegal), return error.
func (api *LightServerAPI) SetConnectedBias(bias time.Duration) error {
if bias < time.Duration(0) {
return fmt.Errorf("bias illegal: %v less than 0", bias)
}
api.server.clientPool.SetConnectedBias(bias)
return nil
}
// AddBalance adds the given amount to the balance of a client if possible and returns
// the balance before and after the operation
func (api *LightServerAPI) AddBalance(node string, amount int64) (balance [2]uint64, err error) {
var id enode.ID
if id, err = parseNode(node); err != nil {
return
}
api.server.clientPool.BalanceOperation(id, "", func(nb vfs.AtomicBalanceOperator) {
balance[0], balance[1], err = nb.AddBalance(amount)
})
return
}
// Benchmark runs a request performance benchmark with a given set of measurement setups
// in multiple passes specified by passCount. The measurement time for each setup in each
// pass is specified in milliseconds by length.
//
// Note: measurement time is adjusted for each pass depending on the previous ones.
// Therefore a controlled total measurement time is achievable in multiple passes.
func (api *LightServerAPI) Benchmark(setups []map[string]interface{}, passCount, length int) ([]map[string]interface{}, error) {
benchmarks := make([]requestBenchmark, len(setups))
for i, setup := range setups {
if t, ok := setup["type"].(string); ok {
getInt := func(field string, def int) int {
if value, ok := setup[field].(float64); ok {
return int(value)
}
return def
}
getBool := func(field string, def bool) bool {
if value, ok := setup[field].(bool); ok {
return value
}
return def
}
switch t {
case "header":
benchmarks[i] = &benchmarkBlockHeaders{
amount: getInt("amount", 1),
skip: getInt("skip", 1),
byHash: getBool("byHash", false),
reverse: getBool("reverse", false),
}
case "body":
benchmarks[i] = &benchmarkBodiesOrReceipts{receipts: false}
case "receipts":
benchmarks[i] = &benchmarkBodiesOrReceipts{receipts: true}
case "proof":
benchmarks[i] = &benchmarkProofsOrCode{code: false}
case "code":
benchmarks[i] = &benchmarkProofsOrCode{code: true}
case "cht":
benchmarks[i] = &benchmarkHelperTrie{
bloom: false,
reqCount: getInt("amount", 1),
}
case "bloom":
benchmarks[i] = &benchmarkHelperTrie{
bloom: true,
reqCount: getInt("amount", 1),
}
case "txSend":
benchmarks[i] = &benchmarkTxSend{}
case "txStatus":
benchmarks[i] = &benchmarkTxStatus{}
default:
return nil, errUnknownBenchmarkType
}
} else {
return nil, errUnknownBenchmarkType
}
}
rs := api.server.handler.runBenchmark(benchmarks, passCount, time.Millisecond*time.Duration(length))
result := make([]map[string]interface{}, len(setups))
for i, r := range rs {
res := make(map[string]interface{})
if r.err == nil {
res["totalCount"] = r.totalCount
res["avgTime"] = r.avgTime
res["maxInSize"] = r.maxInSize
res["maxOutSize"] = r.maxOutSize
} else {
res["error"] = r.err.Error()
}
result[i] = res
}
return result, nil
}
// DebugAPI provides an API to debug LES light server functionality.
type DebugAPI struct {
server *LesServer
}
// NewDebugAPI creates a new LES light server debug API.
func NewDebugAPI(server *LesServer) *DebugAPI {
return &DebugAPI{
server: server,
}
}
// FreezeClient forces a temporary client freeze which normally happens when the server is overloaded
func (api *DebugAPI) FreezeClient(node string) error {
var (
id enode.ID
err error
)
if id, err = parseNode(node); err != nil {
return err
}
if peer := api.server.peers.peer(id); peer != nil {
peer.freeze()
return nil
} else {
return fmt.Errorf("client %064x is not connected", id[:])
}
}
// LightAPI provides an API to access the LES light server or light client.
type LightAPI struct {
backend *lesCommons
}
// NewLightAPI creates a new LES service API.
func NewLightAPI(backend *lesCommons) *LightAPI {
return &LightAPI{backend: backend}
}
// LatestCheckpoint returns the latest local checkpoint package.
//
// The checkpoint package consists of 4 strings:
//
// result[0], hex encoded latest section index
// result[1], 32 bytes hex encoded latest section head hash
// result[2], 32 bytes hex encoded latest section canonical hash trie root hash
// result[3], 32 bytes hex encoded latest section bloom trie root hash
func (api *LightAPI) LatestCheckpoint() ([4]string, error) {
var res [4]string
cp := api.backend.latestLocalCheckpoint()
if cp.Empty() {
return res, errNoCheckpoint
}
res[0] = hexutil.EncodeUint64(cp.SectionIndex)
res[1], res[2], res[3] = cp.SectionHead.Hex(), cp.CHTRoot.Hex(), cp.BloomRoot.Hex()
return res, nil
}
// GetLocalCheckpoint returns the specific local checkpoint package.
//
// The checkpoint package consists of 3 strings:
//
// result[0], 32 bytes hex encoded latest section head hash
// result[1], 32 bytes hex encoded latest section canonical hash trie root hash
// result[2], 32 bytes hex encoded latest section bloom trie root hash
func (api *LightAPI) GetCheckpoint(index uint64) ([3]string, error) {
var res [3]string
cp := api.backend.localCheckpoint(index)
if cp.Empty() {
return res, errNoCheckpoint
}
res[0], res[1], res[2] = cp.SectionHead.Hex(), cp.CHTRoot.Hex(), cp.BloomRoot.Hex()
return res, nil
}
// GetCheckpointContractAddress returns the contract contract address in hex format.
func (api *LightAPI) GetCheckpointContractAddress() (string, error) {
if api.backend.oracle == nil {
return "", errNotActivated
}
return api.backend.oracle.Contract().ContractAddr().Hex(), nil
}