go-ethereum/core/state/snapshot/difflayer_test.go

401 lines
12 KiB
Go
Raw Normal View History

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"math/rand"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
func copyDestructs(destructs map[common.Hash]struct{}) map[common.Hash]struct{} {
copy := make(map[common.Hash]struct{})
for hash := range destructs {
copy[hash] = struct{}{}
}
return copy
}
func copyAccounts(accounts map[common.Hash][]byte) map[common.Hash][]byte {
copy := make(map[common.Hash][]byte)
for hash, blob := range accounts {
copy[hash] = blob
}
return copy
}
func copyStorage(storage map[common.Hash]map[common.Hash][]byte) map[common.Hash]map[common.Hash][]byte {
copy := make(map[common.Hash]map[common.Hash][]byte)
for accHash, slots := range storage {
copy[accHash] = make(map[common.Hash][]byte)
for slotHash, blob := range slots {
copy[accHash][slotHash] = blob
}
}
return copy
}
// TestMergeBasics tests some simple merges
func TestMergeBasics(t *testing.T) {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(4) == 0 {
destructs[h] = struct{}{}
}
if rand.Intn(2) == 0 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child := newDiffLayer(parent, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check account lists
if have, want := len(merged.accountList), 0; have != want {
t.Errorf("accountList wrong: have %v, want %v", have, want)
}
if have, want := len(merged.AccountList()), len(accounts); have != want {
t.Errorf("AccountList() wrong: have %v, want %v", have, want)
}
if have, want := len(merged.accountList), len(accounts); have != want {
t.Errorf("accountList [2] wrong: have %v, want %v", have, want)
}
}
{ // Check account drops
if have, want := len(merged.destructSet), len(destructs); have != want {
t.Errorf("accountDrop wrong: have %v, want %v", have, want)
}
}
{ // Check storage lists
i := 0
for aHash, sMap := range storage {
if have, want := len(merged.storageList), i; have != want {
t.Errorf("[1] storageList wrong: have %v, want %v", have, want)
}
list, _ := merged.StorageList(aHash)
if have, want := len(list), len(sMap); have != want {
t.Errorf("[2] StorageList() wrong: have %v, want %v", have, want)
}
if have, want := len(merged.storageList[aHash]), len(sMap); have != want {
t.Errorf("storageList wrong: have %v, want %v", have, want)
}
i++
}
}
}
// TestMergeDelete tests some deletion
func TestMergeDelete(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
h1 := common.HexToHash("0x01")
h2 := common.HexToHash("0x02")
flipDrops := func() map[common.Hash]struct{} {
return map[common.Hash]struct{}{
h2: {},
}
}
flipAccs := func() map[common.Hash][]byte {
return map[common.Hash][]byte{
h1: randomAccount(),
}
}
flopDrops := func() map[common.Hash]struct{} {
return map[common.Hash]struct{}{
h1: {},
}
}
flopAccs := func() map[common.Hash][]byte {
return map[common.Hash][]byte{
h2: randomAccount(),
}
}
// Add some flipAccs-flopping layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, flipDrops(), flipAccs(), storage)
child := parent.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
if data, _ := child.Account(h1); data == nil {
t.Errorf("last diff layer: expected %x account to be non-nil", h1)
}
if data, _ := child.Account(h2); data != nil {
t.Errorf("last diff layer: expected %x account to be nil", h2)
}
if _, ok := child.destructSet[h1]; ok {
t.Errorf("last diff layer: expected %x drop to be missing", h1)
}
if _, ok := child.destructSet[h2]; !ok {
t.Errorf("last diff layer: expected %x drop to be present", h1)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
if data, _ := merged.Account(h1); data == nil {
t.Errorf("merged layer: expected %x account to be non-nil", h1)
}
if data, _ := merged.Account(h2); data != nil {
t.Errorf("merged layer: expected %x account to be nil", h2)
}
if _, ok := merged.destructSet[h1]; !ok { // Note, drops stay alive until persisted to disk!
t.Errorf("merged diff layer: expected %x drop to be present", h1)
}
if _, ok := merged.destructSet[h2]; !ok { // Note, drops stay alive until persisted to disk!
t.Errorf("merged diff layer: expected %x drop to be present", h1)
}
// If we add more granular metering of memory, we can enable this again,
// but it's not implemented for now
//if have, want := merged.memory, child.memory; have != want {
// t.Errorf("mem wrong: have %d, want %d", have, want)
//}
}
// This tests that if we create a new account, and set a slot, and then merge
// it, the lists will be correct.
func TestInsertAndMerge(t *testing.T) {
// Fill up a parent
var (
acc = common.HexToHash("0x01")
slot = common.HexToHash("0x02")
parent *diffLayer
child *diffLayer
)
{
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
parent = newDiffLayer(emptyLayer(), common.Hash{}, destructs, accounts, storage)
}
{
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
accounts[acc] = randomAccount()
storage[acc] = make(map[common.Hash][]byte)
storage[acc][slot] = []byte{0x01}
child = newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check that slot value is present
have, _ := merged.Storage(acc, slot)
if want := []byte{0x01}; !bytes.Equal(have, want) {
t.Errorf("merged slot value wrong: have %x, want %x", have, want)
}
}
}
func emptyLayer() *diskLayer {
return &diskLayer{
diskdb: memorydb.New(),
cache: fastcache.New(500 * 1024),
}
}
// BenchmarkSearch checks how long it takes to find a non-existing key
// BenchmarkSearch-6 200000 10481 ns/op (1K per layer)
// BenchmarkSearch-6 200000 10760 ns/op (10K per layer)
// BenchmarkSearch-6 100000 17866 ns/op
//
// BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock()
func BenchmarkSearch(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
for i := 0; i < 10000; i++ {
accounts[randomHash()] = randomAccount()
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
var layer snapshot
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
key := crypto.Keccak256Hash([]byte{0x13, 0x38})
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.AccountRLP(key)
}
}
// BenchmarkSearchSlot checks how long it takes to find a non-existing key
// - Number of layers: 128
// - Each layers contains the account, with a couple of storage slots
// BenchmarkSearchSlot-6 100000 14554 ns/op
// BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex)
// BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic)
// With bloom filter:
// BenchmarkSearchSlot-6 3467835 351 ns/op
func BenchmarkSearchSlot(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
accountKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
storageKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
accountRLP := randomAccount()
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
accounts[accountKey] = accountRLP
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 5; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
var layer snapshot
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Storage(accountKey, storageKey)
}
}
// With accountList and sorting
// BenchmarkFlatten-6 50 29890856 ns/op
//
// Without sorting and tracking accountList
// BenchmarkFlatten-6 300 5511511 ns/op
func BenchmarkFlatten(b *testing.B) {
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
for i := 0; i < 100; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 20; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StopTimer()
var layer snapshot
layer = emptyLayer()
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.StartTimer()
for i := 1; i < 128; i++ {
dl, ok := layer.(*diffLayer)
if !ok {
break
}
layer = dl.flatten()
}
b.StopTimer()
}
}
// This test writes ~324M of diff layers to disk, spread over
// - 128 individual layers,
// - each with 200 accounts
// - containing 200 slots
//
// BenchmarkJournal-6 1 1471373923 ns/ops
// BenchmarkJournal-6 1 1208083335 ns/op // bufio writer
func BenchmarkJournal(b *testing.B) {
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
for i := 0; i < 200; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 200; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
layer := snapshot(new(diskLayer))
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Journal(new(bytes.Buffer))
}
}