go-ethereum/rlp/encode_test.go

465 lines
17 KiB
Go
Raw Normal View History

2015-07-07 03:54:22 +03:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 03:54:22 +03:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 03:54:22 +03:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 03:54:22 +03:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 03:54:22 +03:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 03:54:22 +03:00
package rlp
import (
"bytes"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"sync"
"testing"
"github.com/ethereum/go-ethereum/common/math"
)
type testEncoder struct {
err error
}
func (e *testEncoder) EncodeRLP(w io.Writer) error {
if e == nil {
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
panic("EncodeRLP called on nil value")
}
if e.err != nil {
return e.err
}
w.Write([]byte{0, 1, 0, 1, 0, 1, 0, 1, 0, 1})
return nil
}
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
type testEncoderValueMethod struct{}
func (e testEncoderValueMethod) EncodeRLP(w io.Writer) error {
w.Write([]byte{0xFA, 0xFE, 0xF0})
return nil
}
type byteEncoder byte
func (e byteEncoder) EncodeRLP(w io.Writer) error {
w.Write(EmptyList)
return nil
}
type undecodableEncoder func()
func (f undecodableEncoder) EncodeRLP(w io.Writer) error {
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
w.Write([]byte{0xF5, 0xF5, 0xF5})
return nil
}
type encodableReader struct {
A, B uint
}
func (e *encodableReader) Read(b []byte) (int, error) {
panic("called")
}
type namedByteType byte
var (
_ = Encoder(&testEncoder{})
_ = Encoder(byteEncoder(0))
reader io.Reader = &encodableReader{1, 2}
)
type encTest struct {
val interface{}
output, error string
}
var encTests = []encTest{
// booleans
{val: true, output: "01"},
{val: false, output: "80"},
// integers
{val: uint32(0), output: "80"},
{val: uint32(127), output: "7F"},
{val: uint32(128), output: "8180"},
{val: uint32(256), output: "820100"},
{val: uint32(1024), output: "820400"},
{val: uint32(0xFFFFFF), output: "83FFFFFF"},
{val: uint32(0xFFFFFFFF), output: "84FFFFFFFF"},
{val: uint64(0xFFFFFFFF), output: "84FFFFFFFF"},
{val: uint64(0xFFFFFFFFFF), output: "85FFFFFFFFFF"},
{val: uint64(0xFFFFFFFFFFFF), output: "86FFFFFFFFFFFF"},
{val: uint64(0xFFFFFFFFFFFFFF), output: "87FFFFFFFFFFFFFF"},
{val: uint64(0xFFFFFFFFFFFFFFFF), output: "88FFFFFFFFFFFFFFFF"},
// big integers (should match uint for small values)
{val: big.NewInt(0), output: "80"},
{val: big.NewInt(1), output: "01"},
{val: big.NewInt(127), output: "7F"},
{val: big.NewInt(128), output: "8180"},
{val: big.NewInt(256), output: "820100"},
{val: big.NewInt(1024), output: "820400"},
{val: big.NewInt(0xFFFFFF), output: "83FFFFFF"},
{val: big.NewInt(0xFFFFFFFF), output: "84FFFFFFFF"},
{val: big.NewInt(0xFFFFFFFFFF), output: "85FFFFFFFFFF"},
{val: big.NewInt(0xFFFFFFFFFFFF), output: "86FFFFFFFFFFFF"},
{val: big.NewInt(0xFFFFFFFFFFFFFF), output: "87FFFFFFFFFFFFFF"},
{
val: big.NewInt(0).SetBytes(unhex("102030405060708090A0B0C0D0E0F2")),
output: "8F102030405060708090A0B0C0D0E0F2",
},
{
val: big.NewInt(0).SetBytes(unhex("0100020003000400050006000700080009000A000B000C000D000E01")),
output: "9C0100020003000400050006000700080009000A000B000C000D000E01",
},
{
val: big.NewInt(0).SetBytes(unhex("010000000000000000000000000000000000000000000000000000000000000000")),
output: "A1010000000000000000000000000000000000000000000000000000000000000000",
},
// non-pointer big.Int
{val: *big.NewInt(0), output: "80"},
{val: *big.NewInt(0xFFFFFF), output: "83FFFFFF"},
// negative ints are not supported
{val: big.NewInt(-1), error: "rlp: cannot encode negative *big.Int"},
// byte arrays
{val: [0]byte{}, output: "80"},
{val: [1]byte{0}, output: "00"},
{val: [1]byte{1}, output: "01"},
{val: [1]byte{0x7F}, output: "7F"},
{val: [1]byte{0x80}, output: "8180"},
{val: [1]byte{0xFF}, output: "81FF"},
{val: [3]byte{1, 2, 3}, output: "83010203"},
{val: [57]byte{1, 2, 3}, output: "B839010203000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},
// named byte type arrays
{val: [0]namedByteType{}, output: "80"},
{val: [1]namedByteType{0}, output: "00"},
{val: [1]namedByteType{1}, output: "01"},
{val: [1]namedByteType{0x7F}, output: "7F"},
{val: [1]namedByteType{0x80}, output: "8180"},
{val: [1]namedByteType{0xFF}, output: "81FF"},
{val: [3]namedByteType{1, 2, 3}, output: "83010203"},
{val: [57]namedByteType{1, 2, 3}, output: "B839010203000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},
// byte slices
{val: []byte{}, output: "80"},
{val: []byte{0}, output: "00"},
{val: []byte{0x7E}, output: "7E"},
{val: []byte{0x7F}, output: "7F"},
{val: []byte{0x80}, output: "8180"},
{val: []byte{1, 2, 3}, output: "83010203"},
// named byte type slices
{val: []namedByteType{}, output: "80"},
{val: []namedByteType{0}, output: "00"},
{val: []namedByteType{0x7E}, output: "7E"},
{val: []namedByteType{0x7F}, output: "7F"},
{val: []namedByteType{0x80}, output: "8180"},
{val: []namedByteType{1, 2, 3}, output: "83010203"},
// strings
{val: "", output: "80"},
{val: "\x7E", output: "7E"},
{val: "\x7F", output: "7F"},
{val: "\x80", output: "8180"},
{val: "dog", output: "83646F67"},
{
val: "Lorem ipsum dolor sit amet, consectetur adipisicing eli",
output: "B74C6F72656D20697073756D20646F6C6F722073697420616D65742C20636F6E7365637465747572206164697069736963696E6720656C69",
},
{
val: "Lorem ipsum dolor sit amet, consectetur adipisicing elit",
output: "B8384C6F72656D20697073756D20646F6C6F722073697420616D65742C20636F6E7365637465747572206164697069736963696E6720656C6974",
},
{
val: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur mauris magna, suscipit sed vehicula non, iaculis faucibus tortor. Proin suscipit ultricies malesuada. Duis tortor elit, dictum quis tristique eu, ultrices at risus. Morbi a est imperdiet mi ullamcorper aliquet suscipit nec lorem. Aenean quis leo mollis, vulputate elit varius, consequat enim. Nulla ultrices turpis justo, et posuere urna consectetur nec. Proin non convallis metus. Donec tempor ipsum in mauris congue sollicitudin. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Suspendisse convallis sem vel massa faucibus, eget lacinia lacus tempor. Nulla quis ultricies purus. Proin auctor rhoncus nibh condimentum mollis. Aliquam consequat enim at metus luctus, a eleifend purus egestas. Curabitur at nibh metus. Nam bibendum, neque at auctor tristique, lorem libero aliquet arcu, non interdum tellus lectus sit amet eros. Cras rhoncus, metus ac ornare cursus, dolor justo ultrices metus, at ullamcorper volutpat",
output: "B904004C6F72656D20697073756D20646F6C6F722073697420616D65742C20636F6E73656374657475722061646970697363696E6720656C69742E20437572616269747572206D6175726973206D61676E612C20737573636970697420736564207665686963756C61206E6F6E2C20696163756C697320666175636962757320746F72746F722E2050726F696E20737573636970697420756C74726963696573206D616C6573756164612E204475697320746F72746F7220656C69742C2064696374756D2071756973207472697374697175652065752C20756C7472696365732061742072697375732E204D6F72626920612065737420696D70657264696574206D6920756C6C616D636F7270657220616C6971756574207375736369706974206E6563206C6F72656D2E2041656E65616E2071756973206C656F206D6F6C6C69732C2076756C70757461746520656C6974207661726975732C20636F6E73657175617420656E696D2E204E756C6C6120756C74726963657320747572706973206A7573746F2C20657420706F73756572652075726E6120636F6E7365637465747572206E65632E2050726F696E206E6F6E20636F6E76616C6C6973206D657475732E20446F6E65632074656D706F7220697073756D20696E206D617572697320636F6E67756520736F6C6C696369747564696E2E20566573746962756C756D20616E746520697073756D207072696D697320696E206661756369627573206F726369206C756374757320657420756C74726963657320706F737565726520637562696C69612043757261653B2053757370656E646973736520636F6E76616C6C69732073656D2076656C206D617373612066617563696275732C2065676574206C6163696E6961206C616375732074656D706F722E204E756C6C61207175697320756C747269636965732070757275732E2050726F696E20617563746F722072686F6E637573206E69626820636F6E64696D656E74756D206D6F6C6C69732E20416C697175616D20636F6E73657175617420656E696D206174206D65747573206C75637475732C206120656C656966656E6420707572757320656765737461732E20437572616269747572206174206E696268206D657475732E204E616D20626962656E64756D2C206E6571756520617420617563746F72207472697374697175652C206C6F72656D206C696265726F20616C697175657420617263752C206E6F6E20696E74657264756D2074656C6C7573206C65637475732073697420616D65742065726F732E20437261732072686F6E6375732C206D65747573206163206F726E617265206375727375732C20646F6C6F72206A7573746F20756C747269636573206D657475732C20617420756C6C616D636F7270657220766F6C7574706174",
},
// slices
{val: []uint{}, output: "C0"},
{val: []uint{1, 2, 3}, output: "C3010203"},
{
// [ [], [[]], [ [], [[]] ] ]
val: []interface{}{[]interface{}{}, [][]interface{}{{}}, []interface{}{[]interface{}{}, [][]interface{}{{}}}},
output: "C7C0C1C0C3C0C1C0",
},
{
val: []string{"aaa", "bbb", "ccc", "ddd", "eee", "fff", "ggg", "hhh", "iii", "jjj", "kkk", "lll", "mmm", "nnn", "ooo"},
output: "F83C836161618362626283636363836464648365656583666666836767678368686883696969836A6A6A836B6B6B836C6C6C836D6D6D836E6E6E836F6F6F",
},
{
val: []interface{}{uint(1), uint(0xFFFFFF), []interface{}{[]uint{4, 5, 5}}, "abc"},
output: "CE0183FFFFFFC4C304050583616263",
},
{
val: [][]string{
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
{"asdf", "qwer", "zxcv"},
},
output: "F90200CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376CF84617364668471776572847A786376",
},
2015-09-09 04:34:15 +03:00
// RawValue
{val: RawValue(unhex("01")), output: "01"},
{val: RawValue(unhex("82FFFF")), output: "82FFFF"},
{val: []RawValue{unhex("01"), unhex("02")}, output: "C20102"},
// structs
{val: simplestruct{}, output: "C28080"},
{val: simplestruct{A: 3, B: "foo"}, output: "C50383666F6F"},
{val: &recstruct{5, nil}, output: "C205C0"},
{val: &recstruct{5, &recstruct{4, &recstruct{3, nil}}}, output: "C605C404C203C0"},
2015-12-21 22:05:20 +02:00
{val: &tailRaw{A: 1, Tail: []RawValue{unhex("02"), unhex("03")}}, output: "C3010203"},
{val: &tailRaw{A: 1, Tail: []RawValue{unhex("02")}}, output: "C20102"},
{val: &tailRaw{A: 1, Tail: []RawValue{}}, output: "C101"},
{val: &tailRaw{A: 1, Tail: nil}, output: "C101"},
2017-03-07 14:37:53 +03:00
{val: &hasIgnoredField{A: 1, B: 2, C: 3}, output: "C20103"},
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
{val: &intField{X: 3}, error: "rlp: type int is not RLP-serializable (struct field rlp.intField.X)"},
// nil
{val: (*uint)(nil), output: "80"},
{val: (*string)(nil), output: "80"},
{val: (*[]byte)(nil), output: "80"},
{val: (*[10]byte)(nil), output: "80"},
{val: (*big.Int)(nil), output: "80"},
{val: (*[]string)(nil), output: "C0"},
{val: (*[10]string)(nil), output: "C0"},
{val: (*[]interface{})(nil), output: "C0"},
{val: (*[]struct{ uint })(nil), output: "C0"},
{val: (*interface{})(nil), output: "C0"},
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
// nil struct fields
{
val: struct {
X *[]byte
}{},
output: "C180",
},
{
val: struct {
X *[2]byte
}{},
output: "C180",
},
{
val: struct {
X *uint64
}{},
output: "C180",
},
{
val: struct {
X *uint64 `rlp:"nilList"`
}{},
output: "C1C0",
},
{
val: struct {
X *[]uint64
}{},
output: "C1C0",
},
{
val: struct {
X *[]uint64 `rlp:"nilString"`
}{},
output: "C180",
},
// interfaces
{val: []io.Reader{reader}, output: "C3C20102"}, // the contained value is a struct
// Encoder
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
{val: (*testEncoder)(nil), output: "C0"},
{val: &testEncoder{}, output: "00010001000100010001"},
{val: &testEncoder{errors.New("test error")}, error: "test error"},
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
{val: struct{ E testEncoderValueMethod }{}, output: "C3FAFEF0"},
{val: struct{ E *testEncoderValueMethod }{}, output: "C1C0"},
// Verify that the Encoder interface works for unsupported types like func().
{val: undecodableEncoder(func() {}), output: "F5F5F5"},
// Verify that pointer method testEncoder.EncodeRLP is called for
// addressable non-pointer values.
{val: &struct{ TE testEncoder }{testEncoder{}}, output: "CA00010001000100010001"},
{val: &struct{ TE testEncoder }{testEncoder{errors.New("test error")}}, error: "test error"},
rlp: improve nil pointer handling (#20064) * rlp: improve nil pointer handling In both encoder and decoder, the rules for encoding nil pointers were a bit hard to understand, and didn't leave much choice. Since RLP allows two empty values (empty list, empty string), any protocol built on RLP must choose either of these values to represent the null value in a certain context. This change adds choice in the form of two new struct tags, "nilString" and "nilList". These can be used to specify how a nil pointer value is encoded. The "nil" tag still exists, but its implementation is now explicit and defines exactly how nil pointers are handled in a single place. Another important change in this commit is how nil pointers and the Encoder interface interact. The EncodeRLP method was previously called even on nil values, which was supposed to give users a choice of how their value would be handled when nil. It turns out this is a stupid idea. If you create a network protocol containing an object defined in another package, it's better to be able to say that the object should be a list or string when nil in the definition of the protocol message rather than defining the encoding of nil on the object itself. As of this commit, the encoding rules for pointers now take precedence over the Encoder interface rule. I think the "nil" tag will work fine for most cases. For special kinds of objects which are a struct in Go but strings in RLP, code using the object can specify the desired encoding of nil using the "nilString" and "nilList" tags. * rlp: propagate struct field type errors If a struct contained fields of undecodable type, the encoder and decoder would panic instead of returning an error. Fix this by propagating type errors in makeStruct{Writer,Decoder} and add a test.
2019-09-13 12:10:57 +03:00
// Verify the error for non-addressable non-pointer Encoder.
{val: testEncoder{}, error: "rlp: unadressable value of type rlp.testEncoder, EncodeRLP is pointer method"},
// Verify Encoder takes precedence over []byte.
{val: []byteEncoder{0, 1, 2, 3, 4}, output: "C5C0C0C0C0C0"},
}
func runEncTests(t *testing.T, f func(val interface{}) ([]byte, error)) {
for i, test := range encTests {
output, err := f(test.val)
if err != nil && test.error == "" {
t.Errorf("test %d: unexpected error: %v\nvalue %#v\ntype %T",
i, err, test.val, test.val)
continue
}
if test.error != "" && fmt.Sprint(err) != test.error {
t.Errorf("test %d: error mismatch\ngot %v\nwant %v\nvalue %#v\ntype %T",
i, err, test.error, test.val, test.val)
continue
}
if err == nil && !bytes.Equal(output, unhex(test.output)) {
t.Errorf("test %d: output mismatch:\ngot %X\nwant %s\nvalue %#v\ntype %T",
i, output, test.output, test.val, test.val)
}
}
}
func TestEncode(t *testing.T) {
runEncTests(t, func(val interface{}) ([]byte, error) {
b := new(bytes.Buffer)
err := Encode(b, val)
return b.Bytes(), err
})
}
func TestEncodeToBytes(t *testing.T) {
runEncTests(t, EncodeToBytes)
}
func TestEncodeToReader(t *testing.T) {
runEncTests(t, func(val interface{}) ([]byte, error) {
_, r, err := EncodeToReader(val)
if err != nil {
return nil, err
}
return ioutil.ReadAll(r)
})
}
func TestEncodeToReaderPiecewise(t *testing.T) {
runEncTests(t, func(val interface{}) ([]byte, error) {
size, r, err := EncodeToReader(val)
if err != nil {
return nil, err
}
// read output piecewise
output := make([]byte, size)
for start, end := 0, 0; start < size; start = end {
if remaining := size - start; remaining < 3 {
end += remaining
} else {
end = start + 3
}
n, err := r.Read(output[start:end])
end = start + n
if err == io.EOF {
break
} else if err != nil {
return nil, err
}
}
return output, nil
})
}
// This is a regression test verifying that encReader
// returns its encbuf to the pool only once.
func TestEncodeToReaderReturnToPool(t *testing.T) {
buf := make([]byte, 50)
wg := new(sync.WaitGroup)
for i := 0; i < 5; i++ {
wg.Add(1)
go func() {
for i := 0; i < 1000; i++ {
_, r, _ := EncodeToReader("foo")
ioutil.ReadAll(r)
r.Read(buf)
r.Read(buf)
r.Read(buf)
r.Read(buf)
}
wg.Done()
}()
}
wg.Wait()
}
var sink interface{}
func BenchmarkIntsize(b *testing.B) {
for i := 0; i < b.N; i++ {
sink = intsize(0x12345678)
}
}
func BenchmarkPutint(b *testing.B) {
buf := make([]byte, 8)
for i := 0; i < b.N; i++ {
putint(buf, 0x12345678)
sink = buf
}
}
func BenchmarkEncodeBigInts(b *testing.B) {
ints := make([]*big.Int, 200)
for i := range ints {
ints[i] = math.BigPow(2, int64(i))
}
out := bytes.NewBuffer(make([]byte, 0, 4096))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
out.Reset()
if err := Encode(out, ints); err != nil {
b.Fatal(err)
}
}
}