go-ethereum/eth/protocols/snap/gentrie_test.go

554 lines
15 KiB
Go
Raw Normal View History

// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snap
import (
"bytes"
"math/rand"
"slices"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/internal/testrand"
"github.com/ethereum/go-ethereum/trie"
)
type replayer struct {
paths []string // sort in fifo order
hashes []common.Hash // empty for deletion
unknowns int // counter for unknown write
}
func newBatchReplay() *replayer {
return &replayer{}
}
func (r *replayer) decode(key []byte, value []byte) {
account := rawdb.IsAccountTrieNode(key)
storage := rawdb.IsStorageTrieNode(key)
if !account && !storage {
r.unknowns += 1
return
}
var path []byte
if account {
_, path = rawdb.ResolveAccountTrieNodeKey(key)
} else {
_, owner, inner := rawdb.ResolveStorageTrieNode(key)
path = append(owner.Bytes(), inner...)
}
r.paths = append(r.paths, string(path))
if len(value) == 0 {
r.hashes = append(r.hashes, common.Hash{})
} else {
r.hashes = append(r.hashes, crypto.Keccak256Hash(value))
}
}
// updates returns a set of effective mutations. Multiple mutations targeting
// the same node path will be merged in FIFO order.
func (r *replayer) modifies() map[string]common.Hash {
set := make(map[string]common.Hash)
for i, path := range r.paths {
set[path] = r.hashes[i]
}
return set
}
// updates returns the number of updates.
func (r *replayer) updates() int {
var count int
for _, hash := range r.modifies() {
if hash == (common.Hash{}) {
continue
}
count++
}
return count
}
// Put inserts the given value into the key-value data store.
func (r *replayer) Put(key []byte, value []byte) error {
r.decode(key, value)
return nil
}
// Delete removes the key from the key-value data store.
func (r *replayer) Delete(key []byte) error {
r.decode(key, nil)
return nil
}
func byteToHex(str []byte) []byte {
l := len(str) * 2
var nibbles = make([]byte, l)
for i, b := range str {
nibbles[i*2] = b / 16
nibbles[i*2+1] = b % 16
}
return nibbles
}
// innerNodes returns the internal nodes narrowed by two boundaries along with
// the leftmost and rightmost sub-trie roots.
func innerNodes(first, last []byte, includeLeft, includeRight bool, nodes map[string]common.Hash, t *testing.T) (map[string]common.Hash, []byte, []byte) {
var (
leftRoot []byte
rightRoot []byte
firstHex = byteToHex(first)
lastHex = byteToHex(last)
inner = make(map[string]common.Hash)
)
for path, hash := range nodes {
if hash == (common.Hash{}) {
t.Fatalf("Unexpected deletion, %v", []byte(path))
}
// Filter out the siblings on the left side or the left boundary nodes.
if !includeLeft && (bytes.Compare(firstHex, []byte(path)) > 0 || bytes.HasPrefix(firstHex, []byte(path))) {
continue
}
// Filter out the siblings on the right side or the right boundary nodes.
if !includeRight && (bytes.Compare(lastHex, []byte(path)) < 0 || bytes.HasPrefix(lastHex, []byte(path))) {
continue
}
inner[path] = hash
// Track the path of the leftmost sub trie root
if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 {
leftRoot = []byte(path)
}
// Track the path of the rightmost sub trie root
if rightRoot == nil ||
(bytes.Compare(rightRoot, []byte(path)) < 0) ||
(bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) {
rightRoot = []byte(path)
}
}
return inner, leftRoot, rightRoot
}
func buildPartial(owner common.Hash, db ethdb.KeyValueReader, batch ethdb.Batch, entries []*kv, first, last int) *replayer {
tr := newPathTrie(owner, first != 0, db, batch)
for i := first; i <= last; i++ {
tr.update(entries[i].k, entries[i].v)
}
tr.commit(last == len(entries)-1)
replay := newBatchReplay()
batch.Replay(replay)
return replay
}
// TestPartialGentree verifies if the trie constructed with partial states can
// generate consistent trie nodes that match those of the full trie.
func TestPartialGentree(t *testing.T) {
for round := 0; round < 100; round++ {
var (
n = rand.Intn(1024) + 10
entries []*kv
)
for i := 0; i < n; i++ {
var val []byte
if rand.Intn(3) == 0 {
val = testrand.Bytes(3)
} else {
val = testrand.Bytes(32)
}
entries = append(entries, &kv{
k: testrand.Bytes(32),
v: val,
})
}
slices.SortFunc(entries, (*kv).cmp)
nodes := make(map[string]common.Hash)
tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
nodes[string(path)] = hash
})
for i := 0; i < len(entries); i++ {
tr.Update(entries[i].k, entries[i].v)
}
tr.Hash()
check := func(first, last int) {
var (
db = rawdb.NewMemoryDatabase()
batch = db.NewBatch()
)
// Build the partial tree with specific boundaries
r := buildPartial(common.Hash{}, db, batch, entries, first, last)
if r.unknowns > 0 {
t.Fatalf("Unknown database write: %d", r.unknowns)
}
// Ensure all the internal nodes are produced
var (
set = r.modifies()
inner, _, _ = innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t)
)
for path, hash := range inner {
if _, ok := set[path]; !ok {
t.Fatalf("Missing nodes %v", []byte(path))
}
if hash != set[path] {
t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path])
}
}
if r.updates() != len(inner) {
t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates())
}
}
for j := 0; j < 100; j++ {
var (
first int
last int
)
for {
first = rand.Intn(len(entries))
last = rand.Intn(len(entries))
if first <= last {
break
}
}
check(first, last)
}
var cases = []struct {
first int
last int
}{
{0, len(entries) - 1}, // full
{1, len(entries) - 1}, // no left
{2, len(entries) - 1}, // no left
{2, len(entries) - 2}, // no left and right
{2, len(entries) - 2}, // no left and right
{len(entries) / 2, len(entries) / 2}, // single
{0, 0}, // single first
{len(entries) - 1, len(entries) - 1}, // single last
}
for _, c := range cases {
check(c.first, c.last)
}
}
}
// TestGentreeDanglingClearing tests if the dangling nodes falling within the
// path space of constructed tree can be correctly removed.
func TestGentreeDanglingClearing(t *testing.T) {
for round := 0; round < 100; round++ {
var (
n = rand.Intn(1024) + 10
entries []*kv
)
for i := 0; i < n; i++ {
var val []byte
if rand.Intn(3) == 0 {
val = testrand.Bytes(3)
} else {
val = testrand.Bytes(32)
}
entries = append(entries, &kv{
k: testrand.Bytes(32),
v: val,
})
}
slices.SortFunc(entries, (*kv).cmp)
nodes := make(map[string]common.Hash)
tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
nodes[string(path)] = hash
})
for i := 0; i < len(entries); i++ {
tr.Update(entries[i].k, entries[i].v)
}
tr.Hash()
check := func(first, last int) {
var (
db = rawdb.NewMemoryDatabase()
batch = db.NewBatch()
)
// Write the junk nodes as the dangling
var injects []string
for path := range nodes {
for i := 0; i < len(path); i++ {
_, ok := nodes[path[:i]]
if ok {
continue
}
injects = append(injects, path[:i])
}
}
if len(injects) == 0 {
return
}
for _, path := range injects {
rawdb.WriteAccountTrieNode(db, []byte(path), testrand.Bytes(32))
}
// Build the partial tree with specific range
replay := buildPartial(common.Hash{}, db, batch, entries, first, last)
if replay.unknowns > 0 {
t.Fatalf("Unknown database write: %d", replay.unknowns)
}
set := replay.modifies()
// Make sure the injected junks falling within the path space of
// committed trie nodes are correctly deleted.
_, leftRoot, rightRoot := innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t)
for _, path := range injects {
if bytes.Compare([]byte(path), leftRoot) < 0 && !bytes.HasPrefix(leftRoot, []byte(path)) {
continue
}
if bytes.Compare([]byte(path), rightRoot) > 0 {
continue
}
if hash, ok := set[path]; !ok || hash != (common.Hash{}) {
t.Fatalf("Missing delete, %v", []byte(path))
}
}
}
for j := 0; j < 100; j++ {
var (
first int
last int
)
for {
first = rand.Intn(len(entries))
last = rand.Intn(len(entries))
if first <= last {
break
}
}
check(first, last)
}
var cases = []struct {
first int
last int
}{
{0, len(entries) - 1}, // full
{1, len(entries) - 1}, // no left
{2, len(entries) - 1}, // no left
{2, len(entries) - 2}, // no left and right
{2, len(entries) - 2}, // no left and right
{len(entries) / 2, len(entries) / 2}, // single
{0, 0}, // single first
{len(entries) - 1, len(entries) - 1}, // single last
}
for _, c := range cases {
check(c.first, c.last)
}
}
}
// TestFlushPartialTree tests the gentrie can produce complete inner trie nodes
// even with lots of batch flushes.
func TestFlushPartialTree(t *testing.T) {
var entries []*kv
for i := 0; i < 1024; i++ {
var val []byte
if rand.Intn(3) == 0 {
val = testrand.Bytes(3)
} else {
val = testrand.Bytes(32)
}
entries = append(entries, &kv{
k: testrand.Bytes(32),
v: val,
})
}
slices.SortFunc(entries, (*kv).cmp)
nodes := make(map[string]common.Hash)
tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
nodes[string(path)] = hash
})
for i := 0; i < len(entries); i++ {
tr.Update(entries[i].k, entries[i].v)
}
tr.Hash()
var cases = []struct {
first int
last int
}{
{0, len(entries) - 1}, // full
{1, len(entries) - 1}, // no left
{10, len(entries) - 1}, // no left
{10, len(entries) - 2}, // no left and right
{10, len(entries) - 10}, // no left and right
{11, 11}, // single
{0, 0}, // single first
{len(entries) - 1, len(entries) - 1}, // single last
}
for _, c := range cases {
var (
db = rawdb.NewMemoryDatabase()
batch = db.NewBatch()
combined = db.NewBatch()
)
inner, _, _ := innerNodes(entries[c.first].k, entries[c.last].k, c.first == 0, c.last == len(entries)-1, nodes, t)
tr := newPathTrie(common.Hash{}, c.first != 0, db, batch)
for i := c.first; i <= c.last; i++ {
tr.update(entries[i].k, entries[i].v)
if rand.Intn(2) == 0 {
tr.commit(false)
batch.Replay(combined)
batch.Write()
batch.Reset()
}
}
tr.commit(c.last == len(entries)-1)
batch.Replay(combined)
batch.Write()
batch.Reset()
r := newBatchReplay()
combined.Replay(r)
// Ensure all the internal nodes are produced
set := r.modifies()
for path, hash := range inner {
if _, ok := set[path]; !ok {
t.Fatalf("Missing nodes %v", []byte(path))
}
if hash != set[path] {
t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path])
}
}
if r.updates() != len(inner) {
t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates())
}
}
}
// TestBoundSplit ensures two consecutive trie chunks are not overlapped with
// each other.
func TestBoundSplit(t *testing.T) {
var entries []*kv
for i := 0; i < 1024; i++ {
var val []byte
if rand.Intn(3) == 0 {
val = testrand.Bytes(3)
} else {
val = testrand.Bytes(32)
}
entries = append(entries, &kv{
k: testrand.Bytes(32),
v: val,
})
}
slices.SortFunc(entries, (*kv).cmp)
for j := 0; j < 100; j++ {
var (
next int
last int
db = rawdb.NewMemoryDatabase()
lastRightRoot []byte
)
for {
if next == len(entries) {
break
}
last = rand.Intn(len(entries)-next) + next
r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last)
set := r.modifies()
// Skip if the chunk is zero-size
if r.updates() == 0 {
next = last + 1
continue
}
// Ensure the updates in two consecutive chunks are not overlapped.
// The only overlapping part should be deletion.
if lastRightRoot != nil && len(set) > 0 {
// Derive the path of left-most node in this chunk
var leftRoot []byte
for path, hash := range r.modifies() {
if hash == (common.Hash{}) {
t.Fatalf("Unexpected deletion %v", []byte(path))
}
if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 {
leftRoot = []byte(path)
}
}
if bytes.HasPrefix(lastRightRoot, leftRoot) || bytes.HasPrefix(leftRoot, lastRightRoot) {
t.Fatalf("Two chunks are not correctly separated, lastRight: %v, left: %v", lastRightRoot, leftRoot)
}
}
// Track the updates as the last chunk
var rightRoot []byte
for path := range set {
if rightRoot == nil ||
(bytes.Compare(rightRoot, []byte(path)) < 0) ||
(bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) {
rightRoot = []byte(path)
}
}
lastRightRoot = rightRoot
next = last + 1
}
}
}
// TestTinyPartialTree tests if the partial tree is too tiny(has less than two
// states), then nothing should be committed.
func TestTinyPartialTree(t *testing.T) {
var entries []*kv
for i := 0; i < 1024; i++ {
var val []byte
if rand.Intn(3) == 0 {
val = testrand.Bytes(3)
} else {
val = testrand.Bytes(32)
}
entries = append(entries, &kv{
k: testrand.Bytes(32),
v: val,
})
}
slices.SortFunc(entries, (*kv).cmp)
for i := 0; i < len(entries); i++ {
next := i
last := i + 1
if last >= len(entries) {
last = len(entries) - 1
}
db := rawdb.NewMemoryDatabase()
r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last)
if next != 0 && last != len(entries)-1 {
if r.updates() != 0 {
t.Fatalf("Unexpected data writes, got: %d", r.updates())
}
}
}
}