go-ethereum/core/forkid/forkid.go

298 lines
11 KiB
Go
Raw Normal View History

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124).
package forkid
import (
"encoding/binary"
"errors"
"hash/crc32"
"math"
"math/big"
"reflect"
"strings"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"golang.org/x/exp/slices"
)
var (
// ErrRemoteStale is returned by the validator if a remote fork checksum is a
// subset of our already applied forks, but the announced next fork block is
// not on our already passed chain.
ErrRemoteStale = errors.New("remote needs update")
// ErrLocalIncompatibleOrStale is returned by the validator if a remote fork
// checksum does not match any local checksum variation, signalling that the
// two chains have diverged in the past at some point (possibly at genesis).
ErrLocalIncompatibleOrStale = errors.New("local incompatible or needs update")
)
// timestampThreshold is the Ethereum mainnet genesis timestamp. It is used to
// differentiate if a forkid.next field is a block number or a timestamp. Whilst
// very hacky, something's needed to split the validation during the transition
// period (block forks -> time forks).
const timestampThreshold = 1438269973
// Blockchain defines all necessary method to build a forkID.
type Blockchain interface {
// Config retrieves the chain's fork configuration.
Config() *params.ChainConfig
// Genesis retrieves the chain's genesis block.
Genesis() *types.Block
// CurrentHeader retrieves the current head header of the canonical chain.
CurrentHeader() *types.Header
}
// ID is a fork identifier as defined by EIP-2124.
type ID struct {
Hash [4]byte // CRC32 checksum of the genesis block and passed fork block numbers
Next uint64 // Block number of the next upcoming fork, or 0 if no forks are known
}
// Filter is a fork id filter to validate a remotely advertised ID.
type Filter func(id ID) error
// NewID calculates the Ethereum fork ID from the chain config, genesis hash, head and time.
func NewID(config *params.ChainConfig, genesis common.Hash, head, time uint64) ID {
// Calculate the starting checksum from the genesis hash
hash := crc32.ChecksumIEEE(genesis[:])
// Calculate the current fork checksum and the next fork block
forksByBlock, forksByTime := gatherForks(config)
for _, fork := range forksByBlock {
if fork <= head {
// Fork already passed, checksum the previous hash and the fork number
hash = checksumUpdate(hash, fork)
continue
}
return ID{Hash: checksumToBytes(hash), Next: fork}
}
for _, fork := range forksByTime {
if fork <= time {
// Fork already passed, checksum the previous hash and fork timestamp
hash = checksumUpdate(hash, fork)
continue
}
return ID{Hash: checksumToBytes(hash), Next: fork}
}
return ID{Hash: checksumToBytes(hash), Next: 0}
}
// NewIDWithChain calculates the Ethereum fork ID from an existing chain instance.
func NewIDWithChain(chain Blockchain) ID {
head := chain.CurrentHeader()
return NewID(
chain.Config(),
chain.Genesis().Hash(),
head.Number.Uint64(),
head.Time,
)
}
// NewFilter creates a filter that returns if a fork ID should be rejected or not
// based on the local chain's status.
func NewFilter(chain Blockchain) Filter {
return newFilter(
chain.Config(),
chain.Genesis().Hash(),
func() (uint64, uint64) {
head := chain.CurrentHeader()
return head.Number.Uint64(), head.Time
},
)
}
// NewStaticFilter creates a filter at block zero.
func NewStaticFilter(config *params.ChainConfig, genesis common.Hash) Filter {
head := func() (uint64, uint64) { return 0, 0 }
return newFilter(config, genesis, head)
}
// newFilter is the internal version of NewFilter, taking closures as its arguments
// instead of a chain. The reason is to allow testing it without having to simulate
// an entire blockchain.
func newFilter(config *params.ChainConfig, genesis common.Hash, headfn func() (uint64, uint64)) Filter {
// Calculate the all the valid fork hash and fork next combos
var (
forksByBlock, forksByTime = gatherForks(config)
forks = append(append([]uint64{}, forksByBlock...), forksByTime...)
sums = make([][4]byte, len(forks)+1) // 0th is the genesis
)
hash := crc32.ChecksumIEEE(genesis[:])
sums[0] = checksumToBytes(hash)
for i, fork := range forks {
hash = checksumUpdate(hash, fork)
sums[i+1] = checksumToBytes(hash)
}
// Add two sentries to simplify the fork checks and don't require special
// casing the last one.
forks = append(forks, math.MaxUint64) // Last fork will never be passed
if len(forksByTime) == 0 {
// In purely block based forks, avoid the sentry spilling into timestapt territory
forksByBlock = append(forksByBlock, math.MaxUint64) // Last fork will never be passed
}
// Create a validator that will filter out incompatible chains
return func(id ID) error {
// Run the fork checksum validation ruleset:
// 1. If local and remote FORK_CSUM matches, compare local head to FORK_NEXT.
// The two nodes are in the same fork state currently. They might know
// of differing future forks, but that's not relevant until the fork
// triggers (might be postponed, nodes might be updated to match).
// 1a. A remotely announced but remotely not passed block is already passed
// locally, disconnect, since the chains are incompatible.
// 1b. No remotely announced fork; or not yet passed locally, connect.
// 2. If the remote FORK_CSUM is a subset of the local past forks and the
// remote FORK_NEXT matches with the locally following fork block number,
// connect.
// Remote node is currently syncing. It might eventually diverge from
// us, but at this current point in time we don't have enough information.
// 3. If the remote FORK_CSUM is a superset of the local past forks and can
// be completed with locally known future forks, connect.
// Local node is currently syncing. It might eventually diverge from
// the remote, but at this current point in time we don't have enough
// information.
// 4. Reject in all other cases.
block, time := headfn()
for i, fork := range forks {
// Pick the head comparison based on fork progression
head := block
if i >= len(forksByBlock) {
head = time
}
// If our head is beyond this fork, continue to the next (we have a dummy
// fork of maxuint64 as the last item to always fail this check eventually).
if head >= fork {
continue
}
// Found the first unpassed fork block, check if our current state matches
// the remote checksum (rule #1).
if sums[i] == id.Hash {
// Fork checksum matched, check if a remote future fork block already passed
// locally without the local node being aware of it (rule #1a).
if id.Next > 0 && (head >= id.Next || (id.Next > timestampThreshold && time >= id.Next)) {
return ErrLocalIncompatibleOrStale
}
// Haven't passed locally a remote-only fork, accept the connection (rule #1b).
return nil
}
// The local and remote nodes are in different forks currently, check if the
// remote checksum is a subset of our local forks (rule #2).
for j := 0; j < i; j++ {
if sums[j] == id.Hash {
// Remote checksum is a subset, validate based on the announced next fork
if forks[j] != id.Next {
return ErrRemoteStale
}
return nil
}
}
// Remote chain is not a subset of our local one, check if it's a superset by
// any chance, signalling that we're simply out of sync (rule #3).
for j := i + 1; j < len(sums); j++ {
if sums[j] == id.Hash {
// Yay, remote checksum is a superset, ignore upcoming forks
return nil
}
}
// No exact, subset or superset match. We are on differing chains, reject.
return ErrLocalIncompatibleOrStale
}
log.Error("Impossible fork ID validation", "id", id)
return nil // Something's very wrong, accept rather than reject
}
}
// checksumUpdate calculates the next IEEE CRC32 checksum based on the previous
// one and a fork block number (equivalent to CRC32(original-blob || fork)).
func checksumUpdate(hash uint32, fork uint64) uint32 {
var blob [8]byte
binary.BigEndian.PutUint64(blob[:], fork)
return crc32.Update(hash, crc32.IEEETable, blob[:])
}
// checksumToBytes converts a uint32 checksum into a [4]byte array.
func checksumToBytes(hash uint32) [4]byte {
var blob [4]byte
binary.BigEndian.PutUint32(blob[:], hash)
return blob
}
// gatherForks gathers all the known forks and creates two sorted lists out of
// them, one for the block number based forks and the second for the timestamps.
func gatherForks(config *params.ChainConfig) ([]uint64, []uint64) {
// Gather all the fork block numbers via reflection
kind := reflect.TypeOf(params.ChainConfig{})
conf := reflect.ValueOf(config).Elem()
x := uint64(0)
var (
forksByBlock []uint64
forksByTime []uint64
)
for i := 0; i < kind.NumField(); i++ {
// Fetch the next field and skip non-fork rules
field := kind.Field(i)
time := strings.HasSuffix(field.Name, "Time")
if !time && !strings.HasSuffix(field.Name, "Block") {
continue
}
// Extract the fork rule block number or timestamp and aggregate it
if field.Type == reflect.TypeOf(&x) {
if rule := conf.Field(i).Interface().(*uint64); rule != nil {
forksByTime = append(forksByTime, *rule)
}
}
if field.Type == reflect.TypeOf(new(big.Int)) {
if rule := conf.Field(i).Interface().(*big.Int); rule != nil {
forksByBlock = append(forksByBlock, rule.Uint64())
}
}
}
slices.Sort(forksByBlock)
slices.Sort(forksByTime)
// Deduplicate fork identifiers applying multiple forks
for i := 1; i < len(forksByBlock); i++ {
if forksByBlock[i] == forksByBlock[i-1] {
forksByBlock = append(forksByBlock[:i], forksByBlock[i+1:]...)
i--
}
}
for i := 1; i < len(forksByTime); i++ {
if forksByTime[i] == forksByTime[i-1] {
forksByTime = append(forksByTime[:i], forksByTime[i+1:]...)
i--
}
}
// Skip any forks in block 0, that's the genesis ruleset
if len(forksByBlock) > 0 && forksByBlock[0] == 0 {
forksByBlock = forksByBlock[1:]
}
if len(forksByTime) > 0 && forksByTime[0] == 0 {
forksByTime = forksByTime[1:]
}
return forksByBlock, forksByTime
}