go-ethereum/p2p/discover/table.go

697 lines
20 KiB
Go
Raw Normal View History

2015-07-07 03:54:22 +03:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 03:54:22 +03:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 03:54:22 +03:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 03:54:22 +03:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 03:54:22 +03:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 03:54:22 +03:00
// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover
import (
"context"
"fmt"
"net/netip"
"slices"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-25 01:59:00 +03:00
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/netutil"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
maxReplacements = 10 // Size of per-bucket replacement list
// We keep buckets for the upper 1/15 of distances because
// it's very unlikely we'll ever encounter a node that's closer.
hashBits = len(common.Hash{}) * 8
nBuckets = hashBits / 15 // Number of buckets
bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket
// IP address limits.
bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
tableIPLimit, tableSubnet = 10, 24
seedMinTableTime = 5 * time.Minute
seedCount = 30
seedMaxAge = 5 * 24 * time.Hour
)
// Table is the 'node table', a Kademlia-like index of neighbor nodes. The table keeps
// itself up-to-date by verifying the liveness of neighbors and requesting their node
// records when announcements of a new record version are received.
type Table struct {
mutex sync.Mutex // protects buckets, bucket content, nursery, rand
buckets [nBuckets]*bucket // index of known nodes by distance
nursery []*enode.Node // bootstrap nodes
rand reseedingRandom // source of randomness, periodically reseeded
ips netutil.DistinctNetSet
revalidation tableRevalidation
db *enode.DB // database of known nodes
net transport
cfg Config
log log.Logger
// loop channels
refreshReq chan chan struct{}
revalResponseCh chan revalidationResponse
addNodeCh chan addNodeOp
addNodeHandled chan bool
trackRequestCh chan trackRequestOp
initDone chan struct{}
closeReq chan struct{}
closed chan struct{}
nodeAddedHook func(*bucket, *tableNode)
nodeRemovedHook func(*bucket, *tableNode)
}
// transport is implemented by the UDP transports.
type transport interface {
Self() *enode.Node
RequestENR(*enode.Node) (*enode.Node, error)
lookupRandom() []*enode.Node
lookupSelf() []*enode.Node
ping(*enode.Node) (seq uint64, err error)
}
// bucket contains nodes, ordered by their last activity. the entry
// that was most recently active is the first element in entries.
type bucket struct {
entries []*tableNode // live entries, sorted by time of last contact
replacements []*tableNode // recently seen nodes to be used if revalidation fails
ips netutil.DistinctNetSet
index int
}
type addNodeOp struct {
node *enode.Node
isInbound bool
forceSetLive bool // for tests
}
type trackRequestOp struct {
node *enode.Node
foundNodes []*enode.Node
success bool
}
func newTable(t transport, db *enode.DB, cfg Config) (*Table, error) {
cfg = cfg.withDefaults()
tab := &Table{
net: t,
db: db,
cfg: cfg,
log: cfg.Log,
refreshReq: make(chan chan struct{}),
revalResponseCh: make(chan revalidationResponse),
addNodeCh: make(chan addNodeOp),
addNodeHandled: make(chan bool),
trackRequestCh: make(chan trackRequestOp),
initDone: make(chan struct{}),
closeReq: make(chan struct{}),
closed: make(chan struct{}),
ips: netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
}
for i := range tab.buckets {
tab.buckets[i] = &bucket{
index: i,
ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
}
}
tab.rand.seed()
tab.revalidation.init(&cfg)
// initial table content
if err := tab.setFallbackNodes(cfg.Bootnodes); err != nil {
return nil, err
}
tab.loadSeedNodes()
return tab, nil
}
// Nodes returns all nodes contained in the table.
func (tab *Table) Nodes() [][]BucketNode {
2015-05-21 03:11:41 +03:00
tab.mutex.Lock()
defer tab.mutex.Unlock()
nodes := make([][]BucketNode, len(tab.buckets))
for i, b := range &tab.buckets {
nodes[i] = make([]BucketNode, len(b.entries))
for j, n := range b.entries {
nodes[i][j] = BucketNode{
Node: n.Node,
Checks: int(n.livenessChecks),
Live: n.isValidatedLive,
AddedToTable: n.addedToTable,
AddedToBucket: n.addedToBucket,
}
2015-05-21 03:11:41 +03:00
}
}
return nodes
}
func (tab *Table) self() *enode.Node {
return tab.net.Self()
}
// getNode returns the node with the given ID or nil if it isn't in the table.
func (tab *Table) getNode(id enode.ID) *enode.Node {
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.bucket(id)
for _, e := range b.entries {
if e.ID() == id {
return e.Node
}
}
return nil
}
// close terminates the network listener and flushes the node database.
func (tab *Table) close() {
close(tab.closeReq)
<-tab.closed
}
// setFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-25 01:59:00 +03:00
func (tab *Table) setFallbackNodes(nodes []*enode.Node) error {
nursery := make([]*enode.Node, 0, len(nodes))
for _, n := range nodes {
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-25 01:59:00 +03:00
if err := n.ValidateComplete(); err != nil {
return fmt.Errorf("bad bootstrap node %q: %v", n, err)
}
if tab.cfg.NetRestrict != nil && !tab.cfg.NetRestrict.ContainsAddr(n.IPAddr()) {
tab.log.Error("Bootstrap node filtered by netrestrict", "id", n.ID(), "ip", n.IPAddr())
continue
}
nursery = append(nursery, n)
}
tab.nursery = nursery
return nil
}
// isInitDone returns whether the table's initial seeding procedure has completed.
func (tab *Table) isInitDone() bool {
select {
case <-tab.initDone:
return true
default:
return false
}
}
func (tab *Table) refresh() <-chan struct{} {
done := make(chan struct{})
select {
case tab.refreshReq <- done:
case <-tab.closeReq:
close(done)
}
return done
}
// findnodeByID returns the n nodes in the table that are closest to the given id.
// This is used by the FINDNODE/v4 handler.
//
// The preferLive parameter says whether the caller wants liveness-checked results. If
// preferLive is true and the table contains any verified nodes, the result will not
// contain unverified nodes. However, if there are no verified nodes at all, the result
// will contain unverified nodes.
func (tab *Table) findnodeByID(target enode.ID, nresults int, preferLive bool) *nodesByDistance {
tab.mutex.Lock()
defer tab.mutex.Unlock()
// Scan all buckets. There might be a better way to do this, but there aren't that many
// buckets, so this solution should be fine. The worst-case complexity of this loop
// is O(tab.len() * nresults).
nodes := &nodesByDistance{target: target}
liveNodes := &nodesByDistance{target: target}
for _, b := range &tab.buckets {
for _, n := range b.entries {
nodes.push(n.Node, nresults)
if preferLive && n.isValidatedLive {
liveNodes.push(n.Node, nresults)
}
}
}
if preferLive && len(liveNodes.entries) > 0 {
return liveNodes
}
return nodes
}
// appendBucketNodes adds nodes at the given distance to the result slice.
// This is used by the FINDNODE/v5 handler.
func (tab *Table) appendBucketNodes(dist uint, result []*enode.Node, checkLive bool) []*enode.Node {
if dist > 256 {
return result
}
if dist == 0 {
return append(result, tab.self())
}
tab.mutex.Lock()
for _, n := range tab.bucketAtDistance(int(dist)).entries {
if !checkLive || n.isValidatedLive {
result = append(result, n.Node)
}
}
tab.mutex.Unlock()
// Shuffle result to avoid always returning same nodes in FINDNODE/v5.
tab.rand.Shuffle(len(result), func(i, j int) {
result[i], result[j] = result[j], result[i]
})
return result
}
// len returns the number of nodes in the table.
func (tab *Table) len() (n int) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
for _, b := range &tab.buckets {
n += len(b.entries)
}
return n
}
// addFoundNode adds a node which may not be live. If the bucket has space available,
// adding the node succeeds immediately. Otherwise, the node is added to the replacements
// list.
//
// The caller must not hold tab.mutex.
func (tab *Table) addFoundNode(n *enode.Node, forceSetLive bool) bool {
op := addNodeOp{node: n, isInbound: false, forceSetLive: forceSetLive}
select {
case tab.addNodeCh <- op:
return <-tab.addNodeHandled
case <-tab.closeReq:
return false
}
}
// addInboundNode adds a node from an inbound contact. If the bucket has no space, the
// node is added to the replacements list.
//
// There is an additional safety measure: if the table is still initializing the node is
// not added. This prevents an attack where the table could be filled by just sending ping
// repeatedly.
//
// The caller must not hold tab.mutex.
func (tab *Table) addInboundNode(n *enode.Node) bool {
op := addNodeOp{node: n, isInbound: true}
select {
case tab.addNodeCh <- op:
return <-tab.addNodeHandled
case <-tab.closeReq:
return false
}
}
func (tab *Table) trackRequest(n *enode.Node, success bool, foundNodes []*enode.Node) {
op := trackRequestOp{n, foundNodes, success}
select {
case tab.trackRequestCh <- op:
case <-tab.closeReq:
}
}
// loop is the main loop of Table.
func (tab *Table) loop() {
var (
refresh = time.NewTimer(tab.nextRefreshTime())
refreshDone = make(chan struct{}) // where doRefresh reports completion
waiting = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
revalTimer = mclock.NewAlarm(tab.cfg.Clock)
reseedRandTimer = time.NewTicker(10 * time.Minute)
)
defer refresh.Stop()
defer revalTimer.Stop()
defer reseedRandTimer.Stop()
// Start initial refresh.
go tab.doRefresh(refreshDone)
loop:
for {
nextTime := tab.revalidation.run(tab, tab.cfg.Clock.Now())
revalTimer.Schedule(nextTime)
select {
case <-reseedRandTimer.C:
tab.rand.seed()
case <-revalTimer.C():
case r := <-tab.revalResponseCh:
tab.revalidation.handleResponse(tab, r)
case op := <-tab.addNodeCh:
tab.mutex.Lock()
ok := tab.handleAddNode(op)
tab.mutex.Unlock()
tab.addNodeHandled <- ok
case op := <-tab.trackRequestCh:
tab.handleTrackRequest(op)
case <-refresh.C:
if refreshDone == nil {
refreshDone = make(chan struct{})
go tab.doRefresh(refreshDone)
}
case req := <-tab.refreshReq:
waiting = append(waiting, req)
if refreshDone == nil {
refreshDone = make(chan struct{})
go tab.doRefresh(refreshDone)
}
case <-refreshDone:
for _, ch := range waiting {
close(ch)
}
waiting, refreshDone = nil, nil
refresh.Reset(tab.nextRefreshTime())
case <-tab.closeReq:
break loop
}
}
if refreshDone != nil {
<-refreshDone
}
for _, ch := range waiting {
close(ch)
}
close(tab.closed)
}
// doRefresh performs a lookup for a random target to keep buckets full. seed nodes are
// inserted if the table is empty (initial bootstrap or discarded faulty peers).
func (tab *Table) doRefresh(done chan struct{}) {
defer close(done)
// Load nodes from the database and insert
// them. This should yield a few previously seen nodes that are
// (hopefully) still alive.
p2p/discover: move bond logic from table to transport (#17048) * p2p/discover: move bond logic from table to transport This commit moves node endpoint verification (bonding) from the table to the UDP transport implementation. Previously, adding a node to the table entailed pinging the node if needed. With this change, the ping-back logic is embedded in the packet handler at a lower level. It is easy to verify that the basic protocol is unchanged: we still require a valid pong reply from the node before findnode is accepted. The node database tracked the time of last ping sent to the node and time of last valid pong received from the node. Node endpoints are considered verified when a valid pong is received and the time of last pong was called 'bond time'. The time of last ping sent was unused. In this commit, the last ping database entry is repurposed to mean last ping _received_. This entry is now used to track whether the node needs to be pinged back. The other big change is how nodes are added to the table. We used to add nodes in Table.bond, which ran when a remote node pinged us or when we encountered the node in a neighbors reply. The transport now adds to the table directly after the endpoint is verified through ping. To ensure that the Table can't be filled just by pinging the node repeatedly, we retain the isInitDone check. During init, only nodes from neighbors replies are added. * p2p/discover: reduce findnode failure counter on success * p2p/discover: remove unused parameter of loadSeedNodes * p2p/discover: improve ping-back check and comments * p2p/discover: add neighbors reply nodes always, not just during init
2018-07-03 16:24:12 +03:00
tab.loadSeedNodes()
// Run self lookup to discover new neighbor nodes.
tab.net.lookupSelf()
// The Kademlia paper specifies that the bucket refresh should
// perform a lookup in the least recently used bucket. We cannot
// adhere to this because the findnode target is a 512bit value
// (not hash-sized) and it is not easily possible to generate a
// sha3 preimage that falls into a chosen bucket.
// We perform a few lookups with a random target instead.
for i := 0; i < 3; i++ {
tab.net.lookupRandom()
}
}
p2p/discover: move bond logic from table to transport (#17048) * p2p/discover: move bond logic from table to transport This commit moves node endpoint verification (bonding) from the table to the UDP transport implementation. Previously, adding a node to the table entailed pinging the node if needed. With this change, the ping-back logic is embedded in the packet handler at a lower level. It is easy to verify that the basic protocol is unchanged: we still require a valid pong reply from the node before findnode is accepted. The node database tracked the time of last ping sent to the node and time of last valid pong received from the node. Node endpoints are considered verified when a valid pong is received and the time of last pong was called 'bond time'. The time of last ping sent was unused. In this commit, the last ping database entry is repurposed to mean last ping _received_. This entry is now used to track whether the node needs to be pinged back. The other big change is how nodes are added to the table. We used to add nodes in Table.bond, which ran when a remote node pinged us or when we encountered the node in a neighbors reply. The transport now adds to the table directly after the endpoint is verified through ping. To ensure that the Table can't be filled just by pinging the node repeatedly, we retain the isInitDone check. During init, only nodes from neighbors replies are added. * p2p/discover: reduce findnode failure counter on success * p2p/discover: remove unused parameter of loadSeedNodes * p2p/discover: improve ping-back check and comments * p2p/discover: add neighbors reply nodes always, not just during init
2018-07-03 16:24:12 +03:00
func (tab *Table) loadSeedNodes() {
seeds := tab.db.QuerySeeds(seedCount, seedMaxAge)
seeds = append(seeds, tab.nursery...)
for i := range seeds {
seed := seeds[i]
if tab.log.Enabled(context.Background(), log.LevelTrace) {
age := time.Since(tab.db.LastPongReceived(seed.ID(), seed.IPAddr()))
addr, _ := seed.UDPEndpoint()
tab.log.Trace("Found seed node in database", "id", seed.ID(), "addr", addr, "age", age)
}
tab.mutex.Lock()
tab.handleAddNode(addNodeOp{node: seed, isInbound: false})
tab.mutex.Unlock()
}
}
func (tab *Table) nextRefreshTime() time.Duration {
half := tab.cfg.RefreshInterval / 2
return half + time.Duration(tab.rand.Int63n(int64(half)))
}
// bucket returns the bucket for the given node ID hash.
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-25 01:59:00 +03:00
func (tab *Table) bucket(id enode.ID) *bucket {
d := enode.LogDist(tab.self().ID(), id)
return tab.bucketAtDistance(d)
}
func (tab *Table) bucketAtDistance(d int) *bucket {
if d <= bucketMinDistance {
return tab.buckets[0]
}
return tab.buckets[d-bucketMinDistance-1]
}
func (tab *Table) addIP(b *bucket, ip netip.Addr) bool {
if !ip.IsValid() || ip.IsUnspecified() {
return false // Nodes without IP cannot be added.
}
if netutil.AddrIsLAN(ip) {
return true
}
if !tab.ips.AddAddr(ip) {
tab.log.Debug("IP exceeds table limit", "ip", ip)
return false
}
if !b.ips.AddAddr(ip) {
tab.log.Debug("IP exceeds bucket limit", "ip", ip)
tab.ips.RemoveAddr(ip)
return false
}
return true
}
func (tab *Table) removeIP(b *bucket, ip netip.Addr) {
if netutil.AddrIsLAN(ip) {
return
}
tab.ips.RemoveAddr(ip)
b.ips.RemoveAddr(ip)
}
// handleAddNode adds the node in the request to the table, if there is space.
// The caller must hold tab.mutex.
func (tab *Table) handleAddNode(req addNodeOp) bool {
if req.node.ID() == tab.self().ID() {
return false
}
// For nodes from inbound contact, there is an additional safety measure: if the table
// is still initializing the node is not added.
if req.isInbound && !tab.isInitDone() {
return false
}
b := tab.bucket(req.node.ID())
n, _ := tab.bumpInBucket(b, req.node, req.isInbound)
if n != nil {
// Already in bucket.
return false
}
if len(b.entries) >= bucketSize {
// Bucket full, maybe add as replacement.
tab.addReplacement(b, req.node)
return false
}
if !tab.addIP(b, req.node.IPAddr()) {
// Can't add: IP limit reached.
return false
}
// Add to bucket.
wn := &tableNode{Node: req.node}
if req.forceSetLive {
wn.livenessChecks = 1
wn.isValidatedLive = true
}
b.entries = append(b.entries, wn)
b.replacements = deleteNode(b.replacements, wn.ID())
tab.nodeAdded(b, wn)
return true
}
// addReplacement adds n to the replacement cache of bucket b.
func (tab *Table) addReplacement(b *bucket, n *enode.Node) {
if containsID(b.replacements, n.ID()) {
// TODO: update ENR
return
}
if !tab.addIP(b, n.IPAddr()) {
return
}
wn := &tableNode{Node: n, addedToTable: time.Now()}
var removed *tableNode
b.replacements, removed = pushNode(b.replacements, wn, maxReplacements)
if removed != nil {
tab.removeIP(b, removed.IPAddr())
}
}
func (tab *Table) nodeAdded(b *bucket, n *tableNode) {
if n.addedToTable == (time.Time{}) {
n.addedToTable = time.Now()
}
n.addedToBucket = time.Now()
tab.revalidation.nodeAdded(tab, n)
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(b, n)
}
if metrics.Enabled {
bucketsCounter[b.index].Inc(1)
}
}
func (tab *Table) nodeRemoved(b *bucket, n *tableNode) {
tab.revalidation.nodeRemoved(n)
if tab.nodeRemovedHook != nil {
tab.nodeRemovedHook(b, n)
}
if metrics.Enabled {
bucketsCounter[b.index].Dec(1)
}
}
// deleteInBucket removes node n from the table.
// If there are replacement nodes in the bucket, the node is replaced.
func (tab *Table) deleteInBucket(b *bucket, id enode.ID) *tableNode {
index := slices.IndexFunc(b.entries, func(e *tableNode) bool { return e.ID() == id })
if index == -1 {
// Entry has been removed already.
return nil
}
// Remove the node.
n := b.entries[index]
b.entries = slices.Delete(b.entries, index, index+1)
tab.removeIP(b, n.IPAddr())
tab.nodeRemoved(b, n)
// Add replacement.
if len(b.replacements) == 0 {
tab.log.Debug("Removed dead node", "b", b.index, "id", n.ID(), "ip", n.IPAddr())
return nil
}
rindex := tab.rand.Intn(len(b.replacements))
rep := b.replacements[rindex]
b.replacements = slices.Delete(b.replacements, rindex, rindex+1)
b.entries = append(b.entries, rep)
tab.nodeAdded(b, rep)
tab.log.Debug("Replaced dead node", "b", b.index, "id", n.ID(), "ip", n.IPAddr(), "r", rep.ID(), "rip", rep.IPAddr())
return rep
}
// bumpInBucket updates a node record if it exists in the bucket.
// The second return value reports whether the node's endpoint (IP/port) was updated.
func (tab *Table) bumpInBucket(b *bucket, newRecord *enode.Node, isInbound bool) (n *tableNode, endpointChanged bool) {
i := slices.IndexFunc(b.entries, func(elem *tableNode) bool {
return elem.ID() == newRecord.ID()
})
if i == -1 {
return nil, false // not in bucket
}
n = b.entries[i]
// For inbound updates (from the node itself) we accept any change, even if it sets
// back the sequence number. For found nodes (!isInbound), seq has to advance. Note
// this check also ensures found discv4 nodes (which always have seq=0) can't be
// updated.
if newRecord.Seq() <= n.Seq() && !isInbound {
return n, false
}
// Check endpoint update against IP limits.
ipchanged := newRecord.IPAddr() != n.IPAddr()
portchanged := newRecord.UDP() != n.UDP()
if ipchanged {
tab.removeIP(b, n.IPAddr())
if !tab.addIP(b, newRecord.IPAddr()) {
// It doesn't fit with the limit, put the previous record back.
tab.addIP(b, n.IPAddr())
return n, false
}
}
// Apply update.
n.Node = newRecord
if ipchanged || portchanged {
// Ensure node is revalidated quickly for endpoint changes.
tab.revalidation.nodeEndpointChanged(tab, n)
return n, true
}
return n, false
}
func (tab *Table) handleTrackRequest(op trackRequestOp) {
var fails int
if op.success {
// Reset failure counter because it counts _consecutive_ failures.
tab.db.UpdateFindFails(op.node.ID(), op.node.IPAddr(), 0)
} else {
fails = tab.db.FindFails(op.node.ID(), op.node.IPAddr())
fails++
tab.db.UpdateFindFails(op.node.ID(), op.node.IPAddr(), fails)
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.bucket(op.node.ID())
// Remove the node from the local table if it fails to return anything useful too
// many times, but only if there are enough other nodes in the bucket. This latter
// condition specifically exists to make bootstrapping in smaller test networks more
// reliable.
if fails >= maxFindnodeFailures && len(b.entries) >= bucketSize/4 {
tab.deleteInBucket(b, op.node.ID())
}
// Add found nodes.
for _, n := range op.foundNodes {
tab.handleAddNode(addNodeOp{n, false, false})
}
}
// pushNode adds n to the front of list, keeping at most max items.
func pushNode(list []*tableNode, n *tableNode, max int) ([]*tableNode, *tableNode) {
if len(list) < max {
list = append(list, nil)
}
removed := list[len(list)-1]
copy(list[1:], list)
list[0] = n
return list, removed
}