go-ethereum/eth/downloader/peer.go

610 lines
20 KiB
Go
Raw Normal View History

2015-07-07 03:54:22 +03:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 03:54:22 +03:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 03:54:22 +03:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 03:54:22 +03:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 03:54:22 +03:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 03:54:22 +03:00
// Contains the active peer-set of the downloader, maintaining both failures
// as well as reputation metrics to prioritize the block retrievals.
2015-04-12 13:38:25 +03:00
package downloader
import (
"errors"
"fmt"
"math"
"sort"
"strings"
2015-04-12 13:38:25 +03:00
"sync"
"sync/atomic"
"time"
2015-04-12 13:38:25 +03:00
"github.com/ethereum/go-ethereum/common"
)
const (
maxLackingHashes = 4096 // Maximum number of entries allowed on the list or lacking items
measurementImpact = 0.1 // The impact a single measurement has on a peer's final throughput value.
)
// Hash and block fetchers belonging to eth/61 and below
type relativeHashFetcherFn func(common.Hash) error
type absoluteHashFetcherFn func(uint64, int) error
type blockFetcherFn func([]common.Hash) error
// Block header and body fetchers belonging to eth/62 and above
type relativeHeaderFetcherFn func(common.Hash, int, int, bool) error
type absoluteHeaderFetcherFn func(uint64, int, int, bool) error
type blockBodyFetcherFn func([]common.Hash) error
type receiptFetcherFn func([]common.Hash) error
type stateFetcherFn func([]common.Hash) error
var (
errAlreadyFetching = errors.New("already fetching blocks from peer")
errAlreadyRegistered = errors.New("peer is already registered")
errNotRegistered = errors.New("peer is not registered")
)
// peer represents an active peer from which hashes and blocks are retrieved.
type peer struct {
id string // Unique identifier of the peer
head common.Hash // Hash of the peers latest known block
headerIdle int32 // Current header activity state of the peer (idle = 0, active = 1)
blockIdle int32 // Current block activity state of the peer (idle = 0, active = 1)
receiptIdle int32 // Current receipt activity state of the peer (idle = 0, active = 1)
stateIdle int32 // Current node data activity state of the peer (idle = 0, active = 1)
headerThroughput float64 // Number of headers measured to be retrievable per second
blockThroughput float64 // Number of blocks (bodies) measured to be retrievable per second
receiptThroughput float64 // Number of receipts measured to be retrievable per second
stateThroughput float64 // Number of node data pieces measured to be retrievable per second
rtt time.Duration // Request round trip time to track responsiveness (QoS)
headerStarted time.Time // Time instance when the last header fetch was started
blockStarted time.Time // Time instance when the last block (body) fetch was started
receiptStarted time.Time // Time instance when the last receipt fetch was started
stateStarted time.Time // Time instance when the last node data fetch was started
lacking map[common.Hash]struct{} // Set of hashes not to request (didn't have previously)
getRelHashes relativeHashFetcherFn // [eth/61] Method to retrieve a batch of hashes from an origin hash
getAbsHashes absoluteHashFetcherFn // [eth/61] Method to retrieve a batch of hashes from an absolute position
getBlocks blockFetcherFn // [eth/61] Method to retrieve a batch of blocks
getRelHeaders relativeHeaderFetcherFn // [eth/62] Method to retrieve a batch of headers from an origin hash
getAbsHeaders absoluteHeaderFetcherFn // [eth/62] Method to retrieve a batch of headers from an absolute position
getBlockBodies blockBodyFetcherFn // [eth/62] Method to retrieve a batch of block bodies
getReceipts receiptFetcherFn // [eth/63] Method to retrieve a batch of block transaction receipts
getNodeData stateFetcherFn // [eth/63] Method to retrieve a batch of state trie data
version int // Eth protocol version number to switch strategies
lock sync.RWMutex
}
// newPeer create a new downloader peer, with specific hash and block retrieval
// mechanisms.
func newPeer(id string, version int, head common.Hash,
getRelHashes relativeHashFetcherFn, getAbsHashes absoluteHashFetcherFn, getBlocks blockFetcherFn, // eth/61 callbacks, remove when upgrading
getRelHeaders relativeHeaderFetcherFn, getAbsHeaders absoluteHeaderFetcherFn, getBlockBodies blockBodyFetcherFn,
getReceipts receiptFetcherFn, getNodeData stateFetcherFn) *peer {
return &peer{
id: id,
head: head,
lacking: make(map[common.Hash]struct{}),
getRelHashes: getRelHashes,
getAbsHashes: getAbsHashes,
getBlocks: getBlocks,
getRelHeaders: getRelHeaders,
getAbsHeaders: getAbsHeaders,
getBlockBodies: getBlockBodies,
getReceipts: getReceipts,
getNodeData: getNodeData,
version: version,
}
}
// Reset clears the internal state of a peer entity.
func (p *peer) Reset() {
p.lock.Lock()
defer p.lock.Unlock()
atomic.StoreInt32(&p.headerIdle, 0)
atomic.StoreInt32(&p.blockIdle, 0)
atomic.StoreInt32(&p.receiptIdle, 0)
atomic.StoreInt32(&p.stateIdle, 0)
p.headerThroughput = 0
p.blockThroughput = 0
p.receiptThroughput = 0
p.stateThroughput = 0
p.lacking = make(map[common.Hash]struct{})
}
// Fetch61 sends a block retrieval request to the remote peer.
func (p *peer) Fetch61(request *fetchRequest) error {
// Sanity check the protocol version
if p.version != 61 {
panic(fmt.Sprintf("block fetch [eth/61] requested on eth/%d", p.version))
}
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.blockIdle, 0, 1) {
return errAlreadyFetching
}
p.blockStarted = time.Now()
// Convert the hash set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Hashes))
for hash, _ := range request.Hashes {
hashes = append(hashes, hash)
}
go p.getBlocks(hashes)
return nil
}
// FetchHeaders sends a header retrieval request to the remote peer.
func (p *peer) FetchHeaders(from uint64, count int) error {
// Sanity check the protocol version
if p.version < 62 {
panic(fmt.Sprintf("header fetch [eth/62+] requested on eth/%d", p.version))
}
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.headerIdle, 0, 1) {
return errAlreadyFetching
}
p.headerStarted = time.Now()
// Issue the header retrieval request (absolut upwards without gaps)
go p.getAbsHeaders(from, count, 0, false)
return nil
}
// FetchBodies sends a block body retrieval request to the remote peer.
func (p *peer) FetchBodies(request *fetchRequest) error {
// Sanity check the protocol version
if p.version < 62 {
panic(fmt.Sprintf("body fetch [eth/62+] requested on eth/%d", p.version))
}
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.blockIdle, 0, 1) {
return errAlreadyFetching
}
p.blockStarted = time.Now()
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
go p.getBlockBodies(hashes)
return nil
}
// FetchReceipts sends a receipt retrieval request to the remote peer.
func (p *peer) FetchReceipts(request *fetchRequest) error {
// Sanity check the protocol version
if p.version < 63 {
panic(fmt.Sprintf("body fetch [eth/63+] requested on eth/%d", p.version))
}
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.receiptIdle, 0, 1) {
return errAlreadyFetching
}
p.receiptStarted = time.Now()
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
go p.getReceipts(hashes)
return nil
}
// FetchNodeData sends a node state data retrieval request to the remote peer.
func (p *peer) FetchNodeData(request *fetchRequest) error {
// Sanity check the protocol version
if p.version < 63 {
panic(fmt.Sprintf("node data fetch [eth/63+] requested on eth/%d", p.version))
}
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.stateIdle, 0, 1) {
return errAlreadyFetching
}
p.stateStarted = time.Now()
// Convert the hash set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Hashes))
for hash, _ := range request.Hashes {
hashes = append(hashes, hash)
}
go p.getNodeData(hashes)
return nil
}
// SetHeadersIdle sets the peer to idle, allowing it to execute new header retrieval
// requests. Its estimated header retrieval throughput is updated with that measured
// just now.
func (p *peer) SetHeadersIdle(delivered int) {
p.setIdle(p.headerStarted, delivered, &p.headerThroughput, &p.headerIdle)
}
// SetBlocksIdle sets the peer to idle, allowing it to execute new block retrieval
// requests. Its estimated block retrieval throughput is updated with that measured
// just now.
func (p *peer) SetBlocksIdle(delivered int) {
p.setIdle(p.blockStarted, delivered, &p.blockThroughput, &p.blockIdle)
}
2015-04-12 13:38:25 +03:00
// SetBodiesIdle sets the peer to idle, allowing it to execute block body retrieval
// requests. Its estimated body retrieval throughput is updated with that measured
// just now.
func (p *peer) SetBodiesIdle(delivered int) {
p.setIdle(p.blockStarted, delivered, &p.blockThroughput, &p.blockIdle)
}
// SetReceiptsIdle sets the peer to idle, allowing it to execute new receipt
// retrieval requests. Its estimated receipt retrieval throughput is updated
// with that measured just now.
func (p *peer) SetReceiptsIdle(delivered int) {
p.setIdle(p.receiptStarted, delivered, &p.receiptThroughput, &p.receiptIdle)
}
// SetNodeDataIdle sets the peer to idle, allowing it to execute new state trie
// data retrieval requests. Its estimated state retrieval throughput is updated
// with that measured just now.
func (p *peer) SetNodeDataIdle(delivered int) {
p.setIdle(p.stateStarted, delivered, &p.stateThroughput, &p.stateIdle)
}
// setIdle sets the peer to idle, allowing it to execute new retrieval requests.
// Its estimated retrieval throughput is updated with that measured just now.
func (p *peer) setIdle(started time.Time, delivered int, throughput *float64, idle *int32) {
// Irrelevant of the scaling, make sure the peer ends up idle
defer atomic.StoreInt32(idle, 0)
p.lock.Lock()
defer p.lock.Unlock()
// If nothing was delivered (hard timeout / unavailable data), reduce throughput to minimum
if delivered == 0 {
*throughput = 0
return
}
// Otherwise update the throughput with a new measurement
elapsed := time.Since(started) + 1 // +1 (ns) to ensure non-zero divisor
measured := float64(delivered) / (float64(elapsed) / float64(time.Second))
*throughput = (1-measurementImpact)*(*throughput) + measurementImpact*measured
p.rtt = time.Duration((1-measurementImpact)*float64(p.rtt) + measurementImpact*float64(elapsed))
}
// HeaderCapacity retrieves the peers header download allowance based on its
// previously discovered throughput.
func (p *peer) HeaderCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.headerThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxHeaderFetch)))
}
// BlockCapacity retrieves the peers block download allowance based on its
// previously discovered throughput.
func (p *peer) BlockCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.blockThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxBlockFetch)))
}
// ReceiptCapacity retrieves the peers receipt download allowance based on its
// previously discovered throughput.
func (p *peer) ReceiptCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.receiptThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxReceiptFetch)))
}
2015-04-12 13:38:25 +03:00
// NodeDataCapacity retrieves the peers state download allowance based on its
// previously discovered throughput.
func (p *peer) NodeDataCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.stateThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxStateFetch)))
}
// MarkLacking appends a new entity to the set of items (blocks, receipts, states)
// that a peer is known not to have (i.e. have been requested before). If the
// set reaches its maximum allowed capacity, items are randomly dropped off.
func (p *peer) MarkLacking(hash common.Hash) {
p.lock.Lock()
defer p.lock.Unlock()
for len(p.lacking) >= maxLackingHashes {
for drop, _ := range p.lacking {
delete(p.lacking, drop)
break
}
}
p.lacking[hash] = struct{}{}
}
// Lacks retrieves whether the hash of a blockchain item is on the peers lacking
// list (i.e. whether we know that the peer does not have it).
func (p *peer) Lacks(hash common.Hash) bool {
p.lock.RLock()
defer p.lock.RUnlock()
_, ok := p.lacking[hash]
return ok
}
// String implements fmt.Stringer.
func (p *peer) String() string {
p.lock.RLock()
defer p.lock.RUnlock()
return fmt.Sprintf("Peer %s [%s]", p.id, strings.Join([]string{
fmt.Sprintf("hs %3.2f/s", p.headerThroughput),
fmt.Sprintf("bs %3.2f/s", p.blockThroughput),
fmt.Sprintf("rs %3.2f/s", p.receiptThroughput),
fmt.Sprintf("ss %3.2f/s", p.stateThroughput),
fmt.Sprintf("miss %4d", len(p.lacking)),
fmt.Sprintf("rtt %v", p.rtt),
}, ", "))
}
// peerSet represents the collection of active peer participating in the chain
// download procedure.
type peerSet struct {
peers map[string]*peer
lock sync.RWMutex
2015-04-12 13:38:25 +03:00
}
// newPeerSet creates a new peer set top track the active download sources.
func newPeerSet() *peerSet {
return &peerSet{
peers: make(map[string]*peer),
}
2015-04-12 13:38:25 +03:00
}
// Reset iterates over the current peer set, and resets each of the known peers
// to prepare for a next batch of block retrieval.
func (ps *peerSet) Reset() {
ps.lock.RLock()
defer ps.lock.RUnlock()
2015-04-12 13:38:25 +03:00
for _, peer := range ps.peers {
peer.Reset()
}
}
// Register injects a new peer into the working set, or returns an error if the
// peer is already known.
//
// The method also sets the starting throughput values of the new peer to the
// average of all existing peers, to give it a realistic chance of being used
// for data retrievals.
func (ps *peerSet) Register(p *peer) error {
// Retrieve the current median RTT as a sane default
p.rtt = ps.medianRTT()
// Register the new peer with some meaningful defaults
ps.lock.Lock()
defer ps.lock.Unlock()
if _, ok := ps.peers[p.id]; ok {
return errAlreadyRegistered
}
if len(ps.peers) > 0 {
p.headerThroughput, p.blockThroughput, p.receiptThroughput, p.stateThroughput = 0, 0, 0, 0
for _, peer := range ps.peers {
peer.lock.RLock()
p.headerThroughput += peer.headerThroughput
p.blockThroughput += peer.blockThroughput
p.receiptThroughput += peer.receiptThroughput
p.stateThroughput += peer.stateThroughput
peer.lock.RUnlock()
}
p.headerThroughput /= float64(len(ps.peers))
p.blockThroughput /= float64(len(ps.peers))
p.receiptThroughput /= float64(len(ps.peers))
p.stateThroughput /= float64(len(ps.peers))
}
ps.peers[p.id] = p
return nil
}
// Unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity.
func (ps *peerSet) Unregister(id string) error {
ps.lock.Lock()
defer ps.lock.Unlock()
if _, ok := ps.peers[id]; !ok {
return errNotRegistered
}
delete(ps.peers, id)
return nil
2015-04-12 13:38:25 +03:00
}
// Peer retrieves the registered peer with the given id.
func (ps *peerSet) Peer(id string) *peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
return ps.peers[id]
}
// Len returns if the current number of peers in the set.
func (ps *peerSet) Len() int {
ps.lock.RLock()
defer ps.lock.RUnlock()
return len(ps.peers)
}
// AllPeers retrieves a flat list of all the peers within the set.
func (ps *peerSet) AllPeers() []*peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, 0, len(ps.peers))
for _, p := range ps.peers {
list = append(list, p)
}
return list
}
// BlockIdlePeers retrieves a flat list of all the currently idle peers within the
// active peer set, ordered by their reputation.
func (ps *peerSet) BlockIdlePeers() ([]*peer, int) {
idle := func(p *peer) bool {
return atomic.LoadInt32(&p.blockIdle) == 0
}
throughput := func(p *peer) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.blockThroughput
}
return ps.idlePeers(61, 61, idle, throughput)
}
// HeaderIdlePeers retrieves a flat list of all the currently header-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) HeaderIdlePeers() ([]*peer, int) {
idle := func(p *peer) bool {
return atomic.LoadInt32(&p.headerIdle) == 0
}
throughput := func(p *peer) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.headerThroughput
}
return ps.idlePeers(62, 64, idle, throughput)
}
// BodyIdlePeers retrieves a flat list of all the currently body-idle peers within
// the active peer set, ordered by their reputation.
func (ps *peerSet) BodyIdlePeers() ([]*peer, int) {
idle := func(p *peer) bool {
return atomic.LoadInt32(&p.blockIdle) == 0
}
throughput := func(p *peer) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.blockThroughput
}
return ps.idlePeers(62, 64, idle, throughput)
}
// ReceiptIdlePeers retrieves a flat list of all the currently receipt-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) ReceiptIdlePeers() ([]*peer, int) {
idle := func(p *peer) bool {
return atomic.LoadInt32(&p.receiptIdle) == 0
}
throughput := func(p *peer) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.receiptThroughput
}
return ps.idlePeers(63, 64, idle, throughput)
}
// NodeDataIdlePeers retrieves a flat list of all the currently node-data-idle
// peers within the active peer set, ordered by their reputation.
func (ps *peerSet) NodeDataIdlePeers() ([]*peer, int) {
idle := func(p *peer) bool {
return atomic.LoadInt32(&p.stateIdle) == 0
}
throughput := func(p *peer) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.stateThroughput
}
return ps.idlePeers(63, 64, idle, throughput)
}
// idlePeers retrieves a flat list of all currently idle peers satisfying the
// protocol version constraints, using the provided function to check idleness.
// The resulting set of peers are sorted by their measure throughput.
func (ps *peerSet) idlePeers(minProtocol, maxProtocol int, idleCheck func(*peer) bool, throughput func(*peer) float64) ([]*peer, int) {
ps.lock.RLock()
defer ps.lock.RUnlock()
idle, total := make([]*peer, 0, len(ps.peers)), 0
for _, p := range ps.peers {
if p.version >= minProtocol && p.version <= maxProtocol {
if idleCheck(p) {
idle = append(idle, p)
}
total++
}
}
for i := 0; i < len(idle); i++ {
for j := i + 1; j < len(idle); j++ {
if throughput(idle[i]) < throughput(idle[j]) {
idle[i], idle[j] = idle[j], idle[i]
}
}
}
return idle, total
}
// medianRTT returns the median RTT of te peerset, considering only the tuning
// peers if there are more peers available.
func (ps *peerSet) medianRTT() time.Duration {
// Gather all the currnetly measured round trip times
ps.lock.RLock()
defer ps.lock.RUnlock()
rtts := make([]float64, 0, len(ps.peers))
for _, p := range ps.peers {
p.lock.RLock()
rtts = append(rtts, float64(p.rtt))
p.lock.RUnlock()
}
sort.Float64s(rtts)
median := rttMaxEstimate
if qosTuningPeers <= len(rtts) {
median = time.Duration(rtts[qosTuningPeers/2]) // Median of our tuning peers
} else if len(rtts) > 0 {
median = time.Duration(rtts[len(rtts)/2]) // Median of our connected peers (maintain even like this some baseline qos)
}
// Restrict the RTT into some QoS defaults, irrelevant of true RTT
if median < rttMinEstimate {
median = rttMinEstimate
}
if median > rttMaxEstimate {
median = rttMaxEstimate
}
return median
}