2015-07-07 03:54:22 +03:00
|
|
|
// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
|
|
|
|
// Copyright (c) 2012 The Go Authors. All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived from
|
|
|
|
// this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
2014-12-10 01:00:52 +02:00
|
|
|
package ecies
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"crypto/elliptic"
|
|
|
|
"crypto/rand"
|
|
|
|
"crypto/sha256"
|
|
|
|
"flag"
|
|
|
|
"fmt"
|
|
|
|
"io/ioutil"
|
|
|
|
"testing"
|
|
|
|
)
|
|
|
|
|
|
|
|
var dumpEnc bool
|
|
|
|
|
|
|
|
func init() {
|
|
|
|
flDump := flag.Bool("dump", false, "write encrypted test message to file")
|
|
|
|
flag.Parse()
|
|
|
|
dumpEnc = *flDump
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure the KDF generates appropriately sized keys.
|
|
|
|
func TestKDF(t *testing.T) {
|
|
|
|
msg := []byte("Hello, world")
|
|
|
|
h := sha256.New()
|
|
|
|
|
|
|
|
k, err := concatKDF(h, msg, nil, 64)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
if len(k) != 64 {
|
|
|
|
fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
|
|
|
|
len(k))
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var skLen int
|
|
|
|
var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
|
|
|
|
|
|
|
|
// cmpParams compares a set of ECIES parameters. We assume, as per the
|
|
|
|
// docs, that AES is the only supported symmetric encryption algorithm.
|
|
|
|
func cmpParams(p1, p2 *ECIESParams) bool {
|
|
|
|
if p1.hashAlgo != p2.hashAlgo {
|
|
|
|
return false
|
|
|
|
} else if p1.KeyLen != p2.KeyLen {
|
|
|
|
return false
|
|
|
|
} else if p1.BlockSize != p2.BlockSize {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
// cmpPublic returns true if the two public keys represent the same pojnt.
|
|
|
|
func cmpPublic(pub1, pub2 PublicKey) bool {
|
|
|
|
if pub1.X == nil || pub1.Y == nil {
|
|
|
|
fmt.Println(ErrInvalidPublicKey.Error())
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if pub2.X == nil || pub2.Y == nil {
|
|
|
|
fmt.Println(ErrInvalidPublicKey.Error())
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
|
|
|
|
pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
|
|
|
|
|
|
|
|
return bytes.Equal(pub1Out, pub2Out)
|
|
|
|
}
|
|
|
|
|
|
|
|
// cmpPrivate returns true if the two private keys are the same.
|
|
|
|
func cmpPrivate(prv1, prv2 *PrivateKey) bool {
|
|
|
|
if prv1 == nil || prv1.D == nil {
|
|
|
|
return false
|
|
|
|
} else if prv2 == nil || prv2.D == nil {
|
|
|
|
return false
|
|
|
|
} else if prv1.D.Cmp(prv2.D) != 0 {
|
|
|
|
return false
|
|
|
|
} else {
|
|
|
|
return cmpPublic(prv1.PublicKey, prv2.PublicKey)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Validate the ECDH component.
|
|
|
|
func TestSharedKey(t *testing.T) {
|
|
|
|
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2
|
|
|
|
|
|
|
|
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if !bytes.Equal(sk1, sk2) {
|
|
|
|
fmt.Println(ErrBadSharedKeys.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Verify that the key generation code fails when too much key data is
|
|
|
|
// requested.
|
|
|
|
func TestTooBigSharedKey(t *testing.T) {
|
|
|
|
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
_, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2)
|
|
|
|
if err != ErrSharedKeyTooBig {
|
|
|
|
fmt.Println("ecdh: shared key should be too large for curve")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
_, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2)
|
|
|
|
if err != ErrSharedKeyTooBig {
|
|
|
|
fmt.Println("ecdh: shared key should be too large for curve")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure a public key can be successfully marshalled and unmarshalled, and
|
|
|
|
// that the decoded key is the same as the original.
|
|
|
|
func TestMarshalPublic(t *testing.T) {
|
|
|
|
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := MarshalPublic(&prv.PublicKey)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
pub, err := UnmarshalPublic(out)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if !cmpPublic(prv.PublicKey, *pub) {
|
|
|
|
fmt.Println("ecies: failed to unmarshal public key")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure that a private key can be encoded into DER format, and that
|
|
|
|
// the resulting key is properly parsed back into a public key.
|
|
|
|
func TestMarshalPrivate(t *testing.T) {
|
|
|
|
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := MarshalPrivate(prv)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if dumpEnc {
|
|
|
|
ioutil.WriteFile("test.out", out, 0644)
|
|
|
|
}
|
|
|
|
|
|
|
|
prv2, err := UnmarshalPrivate(out)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if !cmpPrivate(prv, prv2) {
|
|
|
|
fmt.Println("ecdh: private key import failed")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure that a private key can be successfully encoded to PEM format, and
|
|
|
|
// the resulting key is properly parsed back in.
|
|
|
|
func TestPrivatePEM(t *testing.T) {
|
|
|
|
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := ExportPrivatePEM(prv)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if dumpEnc {
|
|
|
|
ioutil.WriteFile("test.key", out, 0644)
|
|
|
|
}
|
|
|
|
|
|
|
|
prv2, err := ImportPrivatePEM(out)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
} else if !cmpPrivate(prv, prv2) {
|
|
|
|
fmt.Println("ecdh: import from PEM failed")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure that a public key can be successfully encoded to PEM format, and
|
|
|
|
// the resulting key is properly parsed back in.
|
|
|
|
func TestPublicPEM(t *testing.T) {
|
|
|
|
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := ExportPublicPEM(&prv.PublicKey)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if dumpEnc {
|
|
|
|
ioutil.WriteFile("test.pem", out, 0644)
|
|
|
|
}
|
|
|
|
|
|
|
|
pub2, err := ImportPublicPEM(out)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
} else if !cmpPublic(prv.PublicKey, *pub2) {
|
|
|
|
fmt.Println("ecdh: import from PEM failed")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Benchmark the generation of P256 keys.
|
|
|
|
func BenchmarkGenerateKeyP256(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
b.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Benchmark the generation of P256 shared keys.
|
|
|
|
func BenchmarkGenSharedKeyP256(b *testing.B) {
|
|
|
|
prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
b.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
_, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
b.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Verify that an encrypted message can be successfully decrypted.
|
|
|
|
func TestEncryptDecrypt(t *testing.T) {
|
|
|
|
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
message := []byte("Hello, world.")
|
|
|
|
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if !bytes.Equal(pt, message) {
|
|
|
|
fmt.Println("ecies: plaintext doesn't match message")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
|
|
|
|
if err == nil {
|
|
|
|
fmt.Println("ecies: encryption should not have succeeded")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestMarshalEncryption validates the encode/decode produces a valid
|
|
|
|
// ECIES encryption key.
|
|
|
|
func TestMarshalEncryption(t *testing.T) {
|
|
|
|
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := MarshalPrivate(prv1)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
prv2, err := UnmarshalPrivate(out)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
message := []byte("Hello, world.")
|
|
|
|
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if !bytes.Equal(pt, message) {
|
|
|
|
fmt.Println("ecies: plaintext doesn't match message")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
type testCase struct {
|
|
|
|
Curve elliptic.Curve
|
|
|
|
Name string
|
|
|
|
Expected bool
|
|
|
|
}
|
|
|
|
|
|
|
|
var testCases = []testCase{
|
|
|
|
testCase{
|
|
|
|
Curve: elliptic.P256(),
|
|
|
|
Name: "P256",
|
|
|
|
Expected: true,
|
|
|
|
},
|
|
|
|
testCase{
|
|
|
|
Curve: elliptic.P384(),
|
|
|
|
Name: "P384",
|
|
|
|
Expected: true,
|
|
|
|
},
|
|
|
|
testCase{
|
|
|
|
Curve: elliptic.P521(),
|
|
|
|
Name: "P521",
|
|
|
|
Expected: true,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test parameter selection for each curve, and that P224 fails automatic
|
|
|
|
// parameter selection (see README for a discussion of P224). Ensures that
|
|
|
|
// selecting a set of parameters automatically for the given curve works.
|
|
|
|
func TestParamSelection(t *testing.T) {
|
|
|
|
for _, c := range testCases {
|
|
|
|
testParamSelection(t, c)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func testParamSelection(t *testing.T, c testCase) {
|
|
|
|
params := ParamsFromCurve(c.Curve)
|
|
|
|
if params == nil && c.Expected {
|
|
|
|
fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
} else if params != nil && !c.Expected {
|
|
|
|
fmt.Printf("ecies: parameters should be invalid (%s)\n",
|
|
|
|
c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
message := []byte("Hello, world.")
|
|
|
|
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
if !bytes.Equal(pt, message) {
|
|
|
|
fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
|
|
|
|
c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
|
|
|
|
if err == nil {
|
|
|
|
fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
|
|
|
|
c.Name)
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure that the basic public key validation in the decryption operation
|
|
|
|
// works.
|
|
|
|
func TestBasicKeyValidation(t *testing.T) {
|
|
|
|
badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
|
|
|
|
|
|
|
|
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
message := []byte("Hello, world.")
|
|
|
|
ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
|
|
|
|
if err != nil {
|
|
|
|
fmt.Println(err.Error())
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
|
|
|
|
for _, b := range badBytes {
|
|
|
|
ct[0] = b
|
|
|
|
_, err := prv.Decrypt(rand.Reader, ct, nil, nil)
|
|
|
|
if err != ErrInvalidPublicKey {
|
|
|
|
fmt.Println("ecies: validated an invalid key")
|
|
|
|
t.FailNow()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|