go-ethereum/swarm/storage/dbstore.go

474 lines
10 KiB
Go
Raw Normal View History

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// disk storage layer for the package bzz
// DbStore implements the ChunkStore interface and is used by the DPA as
// persistent storage of chunks
// it implements purging based on access count allowing for external control of
// max capacity
package storage
import (
"bytes"
"encoding/binary"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/rlp"
"github.com/syndtr/goleveldb/leveldb"
"github.com/syndtr/goleveldb/leveldb/iterator"
)
const (
defaultDbCapacity = 5000000
defaultRadius = 0 // not yet used
gcArraySize = 10000
gcArrayFreeRatio = 0.1
// key prefixes for leveldb storage
kpIndex = 0
kpData = 1
)
var (
keyAccessCnt = []byte{2}
keyEntryCnt = []byte{3}
keyDataIdx = []byte{4}
keyGCPos = []byte{5}
)
type gcItem struct {
idx uint64
value uint64
idxKey []byte
}
type DbStore struct {
db *LDBDatabase
// this should be stored in db, accessed transactionally
entryCnt, accessCnt, dataIdx, capacity uint64
gcPos, gcStartPos []byte
gcArray []*gcItem
hashfunc Hasher
lock sync.Mutex
}
func NewDbStore(path string, hash Hasher, capacity uint64, radius int) (s *DbStore, err error) {
s = new(DbStore)
s.hashfunc = hash
s.db, err = NewLDBDatabase(path)
if err != nil {
return
}
s.setCapacity(capacity)
s.gcStartPos = make([]byte, 1)
s.gcStartPos[0] = kpIndex
s.gcArray = make([]*gcItem, gcArraySize)
data, _ := s.db.Get(keyEntryCnt)
s.entryCnt = BytesToU64(data)
data, _ = s.db.Get(keyAccessCnt)
s.accessCnt = BytesToU64(data)
data, _ = s.db.Get(keyDataIdx)
s.dataIdx = BytesToU64(data)
s.gcPos, _ = s.db.Get(keyGCPos)
if s.gcPos == nil {
s.gcPos = s.gcStartPos
}
return
}
type dpaDBIndex struct {
Idx uint64
Access uint64
}
func BytesToU64(data []byte) uint64 {
if len(data) < 8 {
return 0
}
return binary.LittleEndian.Uint64(data)
}
func U64ToBytes(val uint64) []byte {
data := make([]byte, 8)
binary.LittleEndian.PutUint64(data, val)
return data
}
func getIndexGCValue(index *dpaDBIndex) uint64 {
return index.Access
}
func (s *DbStore) updateIndexAccess(index *dpaDBIndex) {
index.Access = s.accessCnt
}
func getIndexKey(hash Key) []byte {
HashSize := len(hash)
key := make([]byte, HashSize+1)
key[0] = 0
copy(key[1:], hash[:])
return key
}
func getDataKey(idx uint64) []byte {
key := make([]byte, 9)
key[0] = 1
binary.BigEndian.PutUint64(key[1:9], idx)
return key
}
func encodeIndex(index *dpaDBIndex) []byte {
data, _ := rlp.EncodeToBytes(index)
return data
}
func encodeData(chunk *Chunk) []byte {
return chunk.SData
}
func decodeIndex(data []byte, index *dpaDBIndex) {
dec := rlp.NewStream(bytes.NewReader(data), 0)
dec.Decode(index)
}
func decodeData(data []byte, chunk *Chunk) {
chunk.SData = data
chunk.Size = int64(binary.LittleEndian.Uint64(data[0:8]))
}
func gcListPartition(list []*gcItem, left int, right int, pivotIndex int) int {
pivotValue := list[pivotIndex].value
dd := list[pivotIndex]
list[pivotIndex] = list[right]
list[right] = dd
storeIndex := left
for i := left; i < right; i++ {
if list[i].value < pivotValue {
dd = list[storeIndex]
list[storeIndex] = list[i]
list[i] = dd
storeIndex++
}
}
dd = list[storeIndex]
list[storeIndex] = list[right]
list[right] = dd
return storeIndex
}
func gcListSelect(list []*gcItem, left int, right int, n int) int {
if left == right {
return left
}
pivotIndex := (left + right) / 2
pivotIndex = gcListPartition(list, left, right, pivotIndex)
if n == pivotIndex {
return n
} else {
if n < pivotIndex {
return gcListSelect(list, left, pivotIndex-1, n)
} else {
return gcListSelect(list, pivotIndex+1, right, n)
}
}
}
func (s *DbStore) collectGarbage(ratio float32) {
it := s.db.NewIterator()
it.Seek(s.gcPos)
if it.Valid() {
s.gcPos = it.Key()
} else {
s.gcPos = nil
}
gcnt := 0
for (gcnt < gcArraySize) && (uint64(gcnt) < s.entryCnt) {
if (s.gcPos == nil) || (s.gcPos[0] != kpIndex) {
it.Seek(s.gcStartPos)
if it.Valid() {
s.gcPos = it.Key()
} else {
s.gcPos = nil
}
}
if (s.gcPos == nil) || (s.gcPos[0] != kpIndex) {
break
}
gci := new(gcItem)
gci.idxKey = s.gcPos
var index dpaDBIndex
decodeIndex(it.Value(), &index)
gci.idx = index.Idx
// the smaller, the more likely to be gc'd
gci.value = getIndexGCValue(&index)
s.gcArray[gcnt] = gci
gcnt++
it.Next()
if it.Valid() {
s.gcPos = it.Key()
} else {
s.gcPos = nil
}
}
it.Release()
cutidx := gcListSelect(s.gcArray, 0, gcnt-1, int(float32(gcnt)*ratio))
cutval := s.gcArray[cutidx].value
// fmt.Print(gcnt, " ", s.entryCnt, " ")
// actual gc
for i := 0; i < gcnt; i++ {
if s.gcArray[i].value <= cutval {
batch := new(leveldb.Batch)
batch.Delete(s.gcArray[i].idxKey)
batch.Delete(getDataKey(s.gcArray[i].idx))
s.entryCnt--
batch.Put(keyEntryCnt, U64ToBytes(s.entryCnt))
s.db.Write(batch)
}
}
// fmt.Println(s.entryCnt)
s.db.Put(keyGCPos, s.gcPos)
}
func (s *DbStore) Counter() uint64 {
s.lock.Lock()
defer s.lock.Unlock()
return s.dataIdx
}
func (s *DbStore) Put(chunk *Chunk) {
s.lock.Lock()
defer s.lock.Unlock()
ikey := getIndexKey(chunk.Key)
var index dpaDBIndex
if s.tryAccessIdx(ikey, &index) {
if chunk.dbStored != nil {
close(chunk.dbStored)
}
return // already exists, only update access
}
data := encodeData(chunk)
//data := ethutil.Encode([]interface{}{entry})
if s.entryCnt >= s.capacity {
s.collectGarbage(gcArrayFreeRatio)
}
batch := new(leveldb.Batch)
batch.Put(getDataKey(s.dataIdx), data)
index.Idx = s.dataIdx
s.updateIndexAccess(&index)
idata := encodeIndex(&index)
batch.Put(ikey, idata)
batch.Put(keyEntryCnt, U64ToBytes(s.entryCnt))
s.entryCnt++
batch.Put(keyDataIdx, U64ToBytes(s.dataIdx))
s.dataIdx++
batch.Put(keyAccessCnt, U64ToBytes(s.accessCnt))
s.accessCnt++
s.db.Write(batch)
if chunk.dbStored != nil {
close(chunk.dbStored)
}
glog.V(logger.Detail).Infof("DbStore.Put: %v. db storage counter: %v ", chunk.Key.Log(), s.dataIdx)
}
// try to find index; if found, update access cnt and return true
func (s *DbStore) tryAccessIdx(ikey []byte, index *dpaDBIndex) bool {
idata, err := s.db.Get(ikey)
if err != nil {
return false
}
decodeIndex(idata, index)
batch := new(leveldb.Batch)
batch.Put(keyAccessCnt, U64ToBytes(s.accessCnt))
s.accessCnt++
s.updateIndexAccess(index)
idata = encodeIndex(index)
batch.Put(ikey, idata)
s.db.Write(batch)
return true
}
func (s *DbStore) Get(key Key) (chunk *Chunk, err error) {
s.lock.Lock()
defer s.lock.Unlock()
var index dpaDBIndex
if s.tryAccessIdx(getIndexKey(key), &index) {
var data []byte
data, err = s.db.Get(getDataKey(index.Idx))
if err != nil {
return
}
hasher := s.hashfunc()
hasher.Write(data)
hash := hasher.Sum(nil)
if !bytes.Equal(hash, key) {
s.db.Delete(getDataKey(index.Idx))
err = fmt.Errorf("invalid chunk. hash=%x, key=%v", hash, key[:])
return
}
chunk = &Chunk{
Key: key,
}
decodeData(data, chunk)
} else {
err = notFound
}
return
}
func (s *DbStore) updateAccessCnt(key Key) {
s.lock.Lock()
defer s.lock.Unlock()
var index dpaDBIndex
s.tryAccessIdx(getIndexKey(key), &index) // result_chn == nil, only update access cnt
}
func (s *DbStore) setCapacity(c uint64) {
s.lock.Lock()
defer s.lock.Unlock()
s.capacity = c
if s.entryCnt > c {
var ratio float32
ratio = float32(1.01) - float32(c)/float32(s.entryCnt)
if ratio < gcArrayFreeRatio {
ratio = gcArrayFreeRatio
}
if ratio > 1 {
ratio = 1
}
for s.entryCnt > c {
s.collectGarbage(ratio)
}
}
}
func (s *DbStore) getEntryCnt() uint64 {
return s.entryCnt
}
func (s *DbStore) close() {
s.db.Close()
}
// describes a section of the DbStore representing the unsynced
// domain relevant to a peer
// Start - Stop designate a continuous area Keys in an address space
// typically the addresses closer to us than to the peer but not closer
// another closer peer in between
// From - To designates a time interval typically from the last disconnect
// till the latest connection (real time traffic is relayed)
type DbSyncState struct {
Start, Stop Key
First, Last uint64
}
// implements the syncer iterator interface
// iterates by storage index (~ time of storage = first entry to db)
type dbSyncIterator struct {
it iterator.Iterator
DbSyncState
}
// initialises a sync iterator from a syncToken (passed in with the handshake)
func (self *DbStore) NewSyncIterator(state DbSyncState) (si *dbSyncIterator, err error) {
if state.First > state.Last {
return nil, fmt.Errorf("no entries found")
}
si = &dbSyncIterator{
it: self.db.NewIterator(),
DbSyncState: state,
}
si.it.Seek(getIndexKey(state.Start))
return si, nil
}
// walk the area from Start to Stop and returns items within time interval
// First to Last
func (self *dbSyncIterator) Next() (key Key) {
for self.it.Valid() {
dbkey := self.it.Key()
if dbkey[0] != 0 {
break
}
key = Key(make([]byte, len(dbkey)-1))
copy(key[:], dbkey[1:])
if bytes.Compare(key[:], self.Start) <= 0 {
self.it.Next()
continue
}
if bytes.Compare(key[:], self.Stop) > 0 {
break
}
var index dpaDBIndex
decodeIndex(self.it.Value(), &index)
self.it.Next()
if (index.Idx >= self.First) && (index.Idx < self.Last) {
return
}
}
self.it.Release()
return nil
}