go-ethereum/les/helper_test.go

372 lines
12 KiB
Go
Raw Normal View History

2016-11-09 04:01:56 +03:00
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2016-10-14 06:51:29 +03:00
// This file contains some shares testing functionality, common to multiple
// different files and modules being tested.
package les
import (
"crypto/ecdsa"
"crypto/rand"
"math/big"
"sync"
"testing"
"time"
2016-10-14 06:51:29 +03:00
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
2016-10-14 06:51:29 +03:00
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/pow"
2016-10-14 06:51:29 +03:00
)
var (
testBankKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
testBankAddress = crypto.PubkeyToAddress(testBankKey.PublicKey)
testBankFunds = big.NewInt(1000000)
acc1Key, _ = crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a")
acc2Key, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
acc1Addr = crypto.PubkeyToAddress(acc1Key.PublicKey)
acc2Addr = crypto.PubkeyToAddress(acc2Key.PublicKey)
testContractCode = common.Hex2Bytes("606060405260cc8060106000396000f360606040526000357c01000000000000000000000000000000000000000000000000000000009004806360cd2685146041578063c16431b914606b57603f565b005b6055600480803590602001909190505060a9565b6040518082815260200191505060405180910390f35b60886004808035906020019091908035906020019091905050608a565b005b80600060005083606481101560025790900160005b50819055505b5050565b6000600060005082606481101560025790900160005b5054905060c7565b91905056")
testContractAddr common.Address
testContractCodeDeployed = testContractCode[16:]
testContractDeployed = uint64(2)
testBufLimit = uint64(100)
bigTxGas = new(big.Int).SetUint64(params.TxGas)
2016-10-14 06:51:29 +03:00
)
/*
contract test {
uint256[100] data;
function Put(uint256 addr, uint256 value) {
data[addr] = value;
}
function Get(uint256 addr) constant returns (uint256 value) {
return data[addr];
}
}
*/
func testChainGen(i int, block *core.BlockGen) {
2016-11-02 15:44:13 +03:00
signer := types.HomesteadSigner{}
2016-10-14 06:51:29 +03:00
switch i {
case 0:
// In block 1, the test bank sends account #1 some ether.
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), bigTxGas, nil, nil), signer, testBankKey)
2016-10-14 06:51:29 +03:00
block.AddTx(tx)
case 1:
// In block 2, the test bank sends some more ether to account #1.
// acc1Addr passes it on to account #2.
// acc1Addr creates a test contract.
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, testBankKey)
2016-10-14 06:51:29 +03:00
nonce := block.TxNonce(acc1Addr)
tx2, _ := types.SignTx(types.NewTransaction(nonce, acc2Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, acc1Key)
2016-10-14 06:51:29 +03:00
nonce++
tx3, _ := types.SignTx(types.NewContractCreation(nonce, big.NewInt(0), big.NewInt(200000), big.NewInt(0), testContractCode), signer, acc1Key)
2016-10-14 06:51:29 +03:00
testContractAddr = crypto.CreateAddress(acc1Addr, nonce)
block.AddTx(tx1)
block.AddTx(tx2)
block.AddTx(tx3)
case 2:
// Block 3 is empty but was mined by account #2.
block.SetCoinbase(acc2Addr)
block.SetExtra([]byte("yeehaw"))
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001")
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), testContractAddr, big.NewInt(0), big.NewInt(100000), nil, data), signer, testBankKey)
2016-10-14 06:51:29 +03:00
block.AddTx(tx)
case 3:
// Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data).
b2 := block.PrevBlock(1).Header()
b2.Extra = []byte("foo")
block.AddUncle(b2)
b3 := block.PrevBlock(2).Header()
b3.Extra = []byte("foo")
block.AddUncle(b3)
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002")
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), testContractAddr, big.NewInt(0), big.NewInt(100000), nil, data), signer, testBankKey)
2016-10-14 06:51:29 +03:00
block.AddTx(tx)
}
}
func testRCL() RequestCostList {
cl := make(RequestCostList, len(reqList))
for i, code := range reqList {
cl[i].MsgCode = code
cl[i].BaseCost = 0
cl[i].ReqCost = 0
}
return cl
}
// newTestProtocolManager creates a new protocol manager for testing purposes,
// with the given number of blocks already known, and potential notification
// channels for different events.
func newTestProtocolManager(lightSync bool, blocks int, generator func(int, *core.BlockGen)) (*ProtocolManager, ethdb.Database, *LesOdr, error) {
var (
evmux = new(event.TypeMux)
pow = new(pow.FakePow)
db, _ = ethdb.NewMemDatabase()
gspec = core.Genesis{
Config: params.TestChainConfig,
Alloc: core.GenesisAlloc{testBankAddress: {Balance: testBankFunds}},
}
genesis = gspec.MustCommit(db)
odr *LesOdr
chain BlockChain
2016-10-14 06:51:29 +03:00
)
if lightSync {
odr = NewLesOdr(db)
chain, _ = light.NewLightChain(odr, gspec.Config, pow, evmux)
2016-10-14 06:51:29 +03:00
} else {
blockchain, _ := core.NewBlockChain(db, gspec.Config, pow, evmux, vm.Config{})
gchain, _ := core.GenerateChain(gspec.Config, genesis, db, blocks, generator)
2016-10-14 06:51:29 +03:00
if _, err := blockchain.InsertChain(gchain); err != nil {
panic(err)
}
chain = blockchain
}
pm, err := NewProtocolManager(gspec.Config, lightSync, NetworkId, evmux, pow, chain, nil, db, odr, nil)
2016-10-14 06:51:29 +03:00
if err != nil {
return nil, nil, nil, err
}
if !lightSync {
srv := &LesServer{protocolManager: pm}
pm.server = srv
srv.defParams = &flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: 1,
}
srv.fcManager = flowcontrol.NewClientManager(50, 10, 1000000000)
srv.fcCostStats = newCostStats(nil)
}
pm.Start(nil)
2016-10-14 06:51:29 +03:00
return pm, db, odr, nil
}
// newTestProtocolManagerMust creates a new protocol manager for testing purposes,
// with the given number of blocks already known, and potential notification
// channels for different events. In case of an error, the constructor force-
// fails the test.
func newTestProtocolManagerMust(t *testing.T, lightSync bool, blocks int, generator func(int, *core.BlockGen)) (*ProtocolManager, ethdb.Database, *LesOdr) {
pm, db, odr, err := newTestProtocolManager(lightSync, blocks, generator)
if err != nil {
t.Fatalf("Failed to create protocol manager: %v", err)
}
return pm, db, odr
}
// testTxPool is a fake, helper transaction pool for testing purposes
type testTxPool struct {
pool []*types.Transaction // Collection of all transactions
added chan<- []*types.Transaction // Notification channel for new transactions
lock sync.RWMutex // Protects the transaction pool
}
// AddTransactions appends a batch of transactions to the pool, and notifies any
// listeners if the addition channel is non nil
func (p *testTxPool) AddBatch(txs []*types.Transaction) {
p.lock.Lock()
defer p.lock.Unlock()
p.pool = append(p.pool, txs...)
if p.added != nil {
p.added <- txs
}
}
// GetTransactions returns all the transactions known to the pool
func (p *testTxPool) GetTransactions() types.Transactions {
p.lock.RLock()
defer p.lock.RUnlock()
txs := make([]*types.Transaction, len(p.pool))
copy(txs, p.pool)
return txs
}
// newTestTransaction create a new dummy transaction.
func newTestTransaction(from *ecdsa.PrivateKey, nonce uint64, datasize int) *types.Transaction {
tx := types.NewTransaction(nonce, common.Address{}, big.NewInt(0), big.NewInt(100000), big.NewInt(0), make([]byte, datasize))
tx, _ = types.SignTx(tx, types.HomesteadSigner{}, from)
2016-10-14 06:51:29 +03:00
return tx
}
// testPeer is a simulated peer to allow testing direct network calls.
type testPeer struct {
net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging
app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side
*peer
}
// newTestPeer creates a new peer registered at the given protocol manager.
func newTestPeer(t *testing.T, name string, version int, pm *ProtocolManager, shake bool) (*testPeer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id discover.NodeID
rand.Read(id[:])
peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
// Start the peer on a new thread
errc := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
tp := &testPeer{
app: app,
net: net,
peer: peer,
}
// Execute any implicitly requested handshakes and return
if shake {
td, head, genesis := pm.blockchain.Status()
headNum := pm.blockchain.CurrentHeader().Number.Uint64()
tp.handshake(t, td, head, headNum, genesis)
}
return tp, errc
}
func newTestPeerPair(name string, version int, pm, pm2 *ProtocolManager) (*peer, <-chan error, *peer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id discover.NodeID
rand.Read(id[:])
peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
peer2 := pm2.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), app)
// Start the peer on a new thread
errc := make(chan error, 1)
errc2 := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
go func() {
select {
case pm2.newPeerCh <- peer2:
errc2 <- pm2.handle(peer2)
case <-pm2.quitSync:
errc2 <- p2p.DiscQuitting
}
}()
return peer, errc, peer2, errc2
}
// handshake simulates a trivial handshake that expects the same state from the
// remote side as we are simulating locally.
func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNum uint64, genesis common.Hash) {
var expList keyValueList
expList = expList.add("protocolVersion", uint64(p.version))
expList = expList.add("networkId", uint64(NetworkId))
expList = expList.add("headTd", td)
expList = expList.add("headHash", head)
expList = expList.add("headNum", headNum)
expList = expList.add("genesisHash", genesis)
sendList := make(keyValueList, len(expList))
copy(sendList, expList)
expList = expList.add("serveHeaders", nil)
expList = expList.add("serveChainSince", uint64(0))
expList = expList.add("serveStateSince", uint64(0))
expList = expList.add("txRelay", nil)
expList = expList.add("flowControl/BL", testBufLimit)
expList = expList.add("flowControl/MRR", uint64(1))
expList = expList.add("flowControl/MRC", testRCL())
if err := p2p.ExpectMsg(p.app, StatusMsg, expList); err != nil {
t.Fatalf("status recv: %v", err)
}
if err := p2p.Send(p.app, StatusMsg, sendList); err != nil {
t.Fatalf("status send: %v", err)
}
p.fcServerParams = &flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: 1,
}
}
// close terminates the local side of the peer, notifying the remote protocol
// manager of termination.
func (p *testPeer) close() {
p.app.Close()
}
type testServerPool struct {
peer *peer
lock sync.RWMutex
}
func (p *testServerPool) setPeer(peer *peer) {
p.lock.Lock()
defer p.lock.Unlock()
p.peer = peer
}
func (p *testServerPool) getAllPeers() map[distPeer]struct{} {
p.lock.RLock()
defer p.lock.RUnlock()
m := make(map[distPeer]struct{})
if p.peer != nil {
m[p.peer] = struct{}{}
}
return m
}
func (p *testServerPool) adjustResponseTime(*poolEntry, time.Duration, bool) {
}