consensus: implement Constantinople EIP 1234

This commit is contained in:
EOS Classic 2018-09-12 19:33:57 +09:00
parent bfce00385f
commit 0732617b65
No known key found for this signature in database
GPG Key ID: 0D626A44301D8C5E

@ -40,6 +40,7 @@ import (
var (
FrontierBlockReward = big.NewInt(5e+18) // Block reward in wei for successfully mining a block
ByzantiumBlockReward = big.NewInt(3e+18) // Block reward in wei for successfully mining a block upward from Byzantium
ConstantinopleBlockReward = big.NewInt(2e+18) // Block reward in wei for successfully mining a block upward from Constantinople
maxUncles = 2 // Maximum number of uncles allowed in a single block
allowedFutureBlockTime = 15 * time.Second // Max time from current time allowed for blocks, before they're considered future blocks
)
@ -299,6 +300,8 @@ func (ethash *Ethash) CalcDifficulty(chain consensus.ChainReader, time uint64, p
func CalcDifficulty(config *params.ChainConfig, time uint64, parent *types.Header) *big.Int {
next := new(big.Int).Add(parent.Number, big1)
switch {
case config.IsConstantinople(next):
return calcDifficultyConstantinople(time, parent)
case config.IsByzantium(next):
return calcDifficultyByzantium(time, parent)
case config.IsHomestead(next):
@ -317,8 +320,68 @@ var (
big10 = big.NewInt(10)
bigMinus99 = big.NewInt(-99)
big2999999 = big.NewInt(2999999)
big4999999 = big.NewInt(4999999)
)
// calcDifficultyConstantinople is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Constantinople rules.
func calcDifficultyConstantinople(time uint64, parent *types.Header) *big.Int {
// https://github.com/ethereum/EIPs/issues/100.
// algorithm:
// diff = (parent_diff +
// (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99))
// ) + 2^(periodCount - 2)
bigTime := new(big.Int).SetUint64(time)
bigParentTime := new(big.Int).Set(parent.Time)
// holds intermediate values to make the algo easier to read & audit
x := new(big.Int)
y := new(big.Int)
// (2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9
x.Sub(bigTime, bigParentTime)
x.Div(x, big9)
if parent.UncleHash == types.EmptyUncleHash {
x.Sub(big1, x)
} else {
x.Sub(big2, x)
}
// max((2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9, -99)
if x.Cmp(bigMinus99) < 0 {
x.Set(bigMinus99)
}
// parent_diff + (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99))
y.Div(parent.Difficulty, params.DifficultyBoundDivisor)
x.Mul(y, x)
x.Add(parent.Difficulty, x)
// minimum difficulty can ever be (before exponential factor)
if x.Cmp(params.MinimumDifficulty) < 0 {
x.Set(params.MinimumDifficulty)
}
// calculate a fake block number for the ice-age delay:
// https://github.com/ethereum/EIPs/pull/1234
// fake_block_number = max(0, block.number - 5_000_000)
fakeBlockNumber := new(big.Int)
if parent.Number.Cmp(big4999999) >= 0 {
fakeBlockNumber = fakeBlockNumber.Sub(parent.Number, big4999999) // Note, parent is 1 less than the actual block number
}
// for the exponential factor
periodCount := fakeBlockNumber
periodCount.Div(periodCount, expDiffPeriod)
// the exponential factor, commonly referred to as "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount.Cmp(big1) > 0 {
y.Sub(periodCount, big2)
y.Exp(big2, y, nil)
x.Add(x, y)
}
return x
}
// calcDifficultyByzantium is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Byzantium rules.
@ -592,6 +655,9 @@ func accumulateRewards(config *params.ChainConfig, state *state.StateDB, header
if config.IsByzantium(header.Number) {
blockReward = ByzantiumBlockReward
}
if config.IsConstantinople(header.Number) {
blockReward = ConstantinopleBlockReward
}
// Accumulate the rewards for the miner and any included uncles
reward := new(big.Int).Set(blockReward)
r := new(big.Int)