consensus, core/*, params: metropolis preparation refactor
This commit is a preparation for the upcoming metropolis hardfork. It prepares the state, core and vm packages such that integration with metropolis becomes less of a hassle. * Difficulty calculation requires header instead of individual parameters * statedb.StartRecord renamed to statedb.Prepare and added Finalise method required by metropolis, which removes unwanted accounts from the state (i.e. selfdestruct) * State keeps record of destructed objects (in addition to dirty objects) * core/vm pre-compiles may now return errors * core/vm pre-compiles gas check now take the full byte slice as argument instead of just the size * core/vm now keeps several hard-fork instruction tables instead of a single instruction table and removes the need for hard-fork checks in the instructions * core/vm contains a empty restruction function which is added in preparation of metropolis write-only mode operations * Adds the bn256 curve * Adds and sets the metropolis chain config block parameters (2^64-1)
This commit is contained in:
parent
a2f23ca9b1
commit
10a57fc3d4
@ -239,7 +239,7 @@ func (ethash *Ethash) verifyHeader(chain consensus.ChainReader, header, parent *
|
||||
return errZeroBlockTime
|
||||
}
|
||||
// Verify the block's difficulty based in it's timestamp and parent's difficulty
|
||||
expected := CalcDifficulty(chain.Config(), header.Time.Uint64(), parent.Time.Uint64(), parent.Number, parent.Difficulty)
|
||||
expected := CalcDifficulty(chain.Config(), header.Time.Uint64(), parent)
|
||||
if expected.Cmp(header.Difficulty) != 0 {
|
||||
return fmt.Errorf("invalid difficulty: have %v, want %v", header.Difficulty, expected)
|
||||
}
|
||||
@ -283,16 +283,19 @@ func (ethash *Ethash) verifyHeader(chain consensus.ChainReader, header, parent *
|
||||
return nil
|
||||
}
|
||||
|
||||
// CalcDifficulty is the difficulty adjustment algorithm. It returns the difficulty
|
||||
// that a new block should have when created at time given the parent block's time
|
||||
// and difficulty.
|
||||
// CalcDifficulty is the difficulty adjustment algorithm. It returns
|
||||
// the difficulty that a new block should have when created at time
|
||||
// given the parent block's time and difficulty.
|
||||
//
|
||||
// TODO (karalabe): Move the chain maker into this package and make this private!
|
||||
func CalcDifficulty(config *params.ChainConfig, time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
|
||||
if config.IsHomestead(new(big.Int).Add(parentNumber, common.Big1)) {
|
||||
return calcDifficultyHomestead(time, parentTime, parentNumber, parentDiff)
|
||||
func CalcDifficulty(config *params.ChainConfig, time uint64, parent *types.Header) *big.Int {
|
||||
next := new(big.Int).Add(parent.Number, common.Big1)
|
||||
switch {
|
||||
case config.IsHomestead(next):
|
||||
return calcDifficultyHomestead(time, parent)
|
||||
default:
|
||||
return calcDifficultyFrontier(time, parent)
|
||||
}
|
||||
return calcDifficultyFrontier(time, parentTime, parentNumber, parentDiff)
|
||||
}
|
||||
|
||||
// Some weird constants to avoid constant memory allocs for them.
|
||||
@ -305,15 +308,15 @@ var (
|
||||
// calcDifficultyHomestead is the difficulty adjustment algorithm. It returns
|
||||
// the difficulty that a new block should have when created at time given the
|
||||
// parent block's time and difficulty. The calculation uses the Homestead rules.
|
||||
func calcDifficultyHomestead(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
|
||||
func calcDifficultyHomestead(time uint64, parent *types.Header) *big.Int {
|
||||
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki
|
||||
// algorithm:
|
||||
// diff = (parent_diff +
|
||||
// (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
|
||||
// ) + 2^(periodCount - 2)
|
||||
|
||||
bigTime := new(big.Int).SetUint64(time)
|
||||
bigParentTime := new(big.Int).SetUint64(parentTime)
|
||||
bigTime := new(big.Int).Set(parent.Time)
|
||||
bigParentTime := new(big.Int).Set(parent.Time)
|
||||
|
||||
// holds intermediate values to make the algo easier to read & audit
|
||||
x := new(big.Int)
|
||||
@ -329,16 +332,16 @@ func calcDifficultyHomestead(time, parentTime uint64, parentNumber, parentDiff *
|
||||
x.Set(bigMinus99)
|
||||
}
|
||||
// (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
|
||||
y.Div(parentDiff, params.DifficultyBoundDivisor)
|
||||
y.Div(parent.Difficulty, params.DifficultyBoundDivisor)
|
||||
x.Mul(y, x)
|
||||
x.Add(parentDiff, x)
|
||||
x.Add(parent.Difficulty, x)
|
||||
|
||||
// minimum difficulty can ever be (before exponential factor)
|
||||
if x.Cmp(params.MinimumDifficulty) < 0 {
|
||||
x.Set(params.MinimumDifficulty)
|
||||
}
|
||||
// for the exponential factor
|
||||
periodCount := new(big.Int).Add(parentNumber, common.Big1)
|
||||
periodCount := new(big.Int).Add(parent.Number, common.Big1)
|
||||
periodCount.Div(periodCount, expDiffPeriod)
|
||||
|
||||
// the exponential factor, commonly referred to as "the bomb"
|
||||
@ -354,25 +357,25 @@ func calcDifficultyHomestead(time, parentTime uint64, parentNumber, parentDiff *
|
||||
// calcDifficultyFrontier is the difficulty adjustment algorithm. It returns the
|
||||
// difficulty that a new block should have when created at time given the parent
|
||||
// block's time and difficulty. The calculation uses the Frontier rules.
|
||||
func calcDifficultyFrontier(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
|
||||
func calcDifficultyFrontier(time uint64, parent *types.Header) *big.Int {
|
||||
diff := new(big.Int)
|
||||
adjust := new(big.Int).Div(parentDiff, params.DifficultyBoundDivisor)
|
||||
adjust := new(big.Int).Div(parent.Difficulty, params.DifficultyBoundDivisor)
|
||||
bigTime := new(big.Int)
|
||||
bigParentTime := new(big.Int)
|
||||
|
||||
bigTime.SetUint64(time)
|
||||
bigParentTime.SetUint64(parentTime)
|
||||
bigParentTime.Set(parent.Time)
|
||||
|
||||
if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
|
||||
diff.Add(parentDiff, adjust)
|
||||
diff.Add(parent.Difficulty, adjust)
|
||||
} else {
|
||||
diff.Sub(parentDiff, adjust)
|
||||
diff.Sub(parent.Difficulty, adjust)
|
||||
}
|
||||
if diff.Cmp(params.MinimumDifficulty) < 0 {
|
||||
diff.Set(params.MinimumDifficulty)
|
||||
}
|
||||
|
||||
periodCount := new(big.Int).Add(parentNumber, common.Big1)
|
||||
periodCount := new(big.Int).Add(parent.Number, common.Big1)
|
||||
periodCount.Div(periodCount, expDiffPeriod)
|
||||
if periodCount.Cmp(common.Big1) > 0 {
|
||||
// diff = diff + 2^(periodCount - 2)
|
||||
@ -434,8 +437,7 @@ func (ethash *Ethash) Prepare(chain consensus.ChainReader, header *types.Header)
|
||||
if parent == nil {
|
||||
return consensus.ErrUnknownAncestor
|
||||
}
|
||||
header.Difficulty = CalcDifficulty(chain.Config(), header.Time.Uint64(),
|
||||
parent.Time.Uint64(), parent.Number, parent.Difficulty)
|
||||
header.Difficulty = CalcDifficulty(chain.Config(), header.Time.Uint64(), parent)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
@ -23,6 +23,7 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common/math"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
"github.com/ethereum/go-ethereum/params"
|
||||
)
|
||||
|
||||
@ -71,7 +72,11 @@ func TestCalcDifficulty(t *testing.T) {
|
||||
config := ¶ms.ChainConfig{HomesteadBlock: big.NewInt(1150000)}
|
||||
for name, test := range tests {
|
||||
number := new(big.Int).Sub(test.CurrentBlocknumber, big.NewInt(1))
|
||||
diff := CalcDifficulty(config, test.CurrentTimestamp, test.ParentTimestamp, number, test.ParentDifficulty)
|
||||
diff := CalcDifficulty(config, test.CurrentTimestamp, &types.Header{
|
||||
Number: number,
|
||||
Time: test.ParentTimestamp,
|
||||
Difficulty: test.ParentDifficulty,
|
||||
})
|
||||
if diff.Cmp(test.CurrentDifficulty) != 0 {
|
||||
t.Error(name, "failed. Expected", test.CurrentDifficulty, "and calculated", diff)
|
||||
}
|
||||
|
@ -84,7 +84,7 @@ func (b *BlockGen) AddTx(tx *types.Transaction) {
|
||||
if b.gasPool == nil {
|
||||
b.SetCoinbase(common.Address{})
|
||||
}
|
||||
b.statedb.StartRecord(tx.Hash(), common.Hash{}, len(b.txs))
|
||||
b.statedb.Prepare(tx.Hash(), common.Hash{}, len(b.txs))
|
||||
receipt, _, err := ApplyTransaction(b.config, nil, &b.header.Coinbase, b.gasPool, b.statedb, b.header, tx, b.header.GasUsed, vm.Config{})
|
||||
if err != nil {
|
||||
panic(err)
|
||||
@ -142,7 +142,7 @@ func (b *BlockGen) OffsetTime(seconds int64) {
|
||||
if b.header.Time.Cmp(b.parent.Header().Time) <= 0 {
|
||||
panic("block time out of range")
|
||||
}
|
||||
b.header.Difficulty = ethash.CalcDifficulty(b.config, b.header.Time.Uint64(), b.parent.Time().Uint64(), b.parent.Number(), b.parent.Difficulty())
|
||||
b.header.Difficulty = ethash.CalcDifficulty(b.config, b.header.Time.Uint64(), b.parent.Header())
|
||||
}
|
||||
|
||||
// GenerateChain creates a chain of n blocks. The first block's
|
||||
@ -209,11 +209,19 @@ func makeHeader(config *params.ChainConfig, parent *types.Block, state *state.St
|
||||
} else {
|
||||
time = new(big.Int).Add(parent.Time(), big.NewInt(10)) // block time is fixed at 10 seconds
|
||||
}
|
||||
parentHeader := parent.Header()
|
||||
// adjust the parent time
|
||||
parentHeader.Time = new(big.Int).Sub(time, big.NewInt(10))
|
||||
|
||||
return &types.Header{
|
||||
Root: state.IntermediateRoot(config.IsEIP158(parent.Number())),
|
||||
ParentHash: parent.Hash(),
|
||||
Coinbase: parent.Coinbase(),
|
||||
Difficulty: ethash.CalcDifficulty(config, time.Uint64(), new(big.Int).Sub(time, big.NewInt(10)).Uint64(), parent.Number(), parent.Difficulty()),
|
||||
Difficulty: ethash.CalcDifficulty(config, time.Uint64(), &types.Header{
|
||||
Number: parent.Number(),
|
||||
Time: new(big.Int).Sub(time, big.NewInt(10)),
|
||||
Difficulty: parent.Difficulty(),
|
||||
}),
|
||||
GasLimit: CalcGasLimit(parent),
|
||||
GasUsed: new(big.Int),
|
||||
Number: new(big.Int).Add(parent.Number(), common.Big1),
|
||||
|
@ -64,6 +64,7 @@ type StateDB struct {
|
||||
// This map holds 'live' objects, which will get modified while processing a state transition.
|
||||
stateObjects map[common.Address]*stateObject
|
||||
stateObjectsDirty map[common.Address]struct{}
|
||||
stateObjectsDestructed map[common.Address]struct{}
|
||||
|
||||
// The refund counter, also used by state transitioning.
|
||||
refund *big.Int
|
||||
@ -97,6 +98,7 @@ func New(root common.Hash, db ethdb.Database) (*StateDB, error) {
|
||||
codeSizeCache: csc,
|
||||
stateObjects: make(map[common.Address]*stateObject),
|
||||
stateObjectsDirty: make(map[common.Address]struct{}),
|
||||
stateObjectsDestructed: make(map[common.Address]struct{}),
|
||||
refund: new(big.Int),
|
||||
logs: make(map[common.Hash][]*types.Log),
|
||||
preimages: make(map[common.Hash][]byte),
|
||||
@ -119,6 +121,7 @@ func (self *StateDB) New(root common.Hash) (*StateDB, error) {
|
||||
codeSizeCache: self.codeSizeCache,
|
||||
stateObjects: make(map[common.Address]*stateObject),
|
||||
stateObjectsDirty: make(map[common.Address]struct{}),
|
||||
stateObjectsDestructed: make(map[common.Address]struct{}),
|
||||
refund: new(big.Int),
|
||||
logs: make(map[common.Hash][]*types.Log),
|
||||
preimages: make(map[common.Hash][]byte),
|
||||
@ -138,6 +141,7 @@ func (self *StateDB) Reset(root common.Hash) error {
|
||||
self.trie = tr
|
||||
self.stateObjects = make(map[common.Address]*stateObject)
|
||||
self.stateObjectsDirty = make(map[common.Address]struct{})
|
||||
self.stateObjectsDestructed = make(map[common.Address]struct{})
|
||||
self.thash = common.Hash{}
|
||||
self.bhash = common.Hash{}
|
||||
self.txIndex = 0
|
||||
@ -173,12 +177,6 @@ func (self *StateDB) pushTrie(t *trie.SecureTrie) {
|
||||
}
|
||||
}
|
||||
|
||||
func (self *StateDB) StartRecord(thash, bhash common.Hash, ti int) {
|
||||
self.thash = thash
|
||||
self.bhash = bhash
|
||||
self.txIndex = ti
|
||||
}
|
||||
|
||||
func (self *StateDB) AddLog(log *types.Log) {
|
||||
self.journal = append(self.journal, addLogChange{txhash: self.thash})
|
||||
|
||||
@ -516,6 +514,7 @@ func (self *StateDB) Copy() *StateDB {
|
||||
codeSizeCache: self.codeSizeCache,
|
||||
stateObjects: make(map[common.Address]*stateObject, len(self.stateObjectsDirty)),
|
||||
stateObjectsDirty: make(map[common.Address]struct{}, len(self.stateObjectsDirty)),
|
||||
stateObjectsDestructed: make(map[common.Address]struct{}, len(self.stateObjectsDestructed)),
|
||||
refund: new(big.Int).Set(self.refund),
|
||||
logs: make(map[common.Hash][]*types.Log, len(self.logs)),
|
||||
logSize: self.logSize,
|
||||
@ -525,6 +524,9 @@ func (self *StateDB) Copy() *StateDB {
|
||||
for addr := range self.stateObjectsDirty {
|
||||
state.stateObjects[addr] = self.stateObjects[addr].deepCopy(state, state.MarkStateObjectDirty)
|
||||
state.stateObjectsDirty[addr] = struct{}{}
|
||||
if self.stateObjects[addr].suicided {
|
||||
state.stateObjectsDestructed[addr] = struct{}{}
|
||||
}
|
||||
}
|
||||
for hash, logs := range self.logs {
|
||||
state.logs[hash] = make([]*types.Log, len(logs))
|
||||
@ -590,6 +592,27 @@ func (s *StateDB) IntermediateRoot(deleteEmptyObjects bool) common.Hash {
|
||||
return s.trie.Hash()
|
||||
}
|
||||
|
||||
// Prepare sets the current transaction hash and index and block hash which is
|
||||
// used when the EVM emits new state logs.
|
||||
func (self *StateDB) Prepare(thash, bhash common.Hash, ti int) {
|
||||
self.thash = thash
|
||||
self.bhash = bhash
|
||||
self.txIndex = ti
|
||||
}
|
||||
|
||||
// Finalise finalises the state by removing the self destructed objects
|
||||
// in the current stateObjectsDestructed buffer and clears the journal
|
||||
// as well as the refunds.
|
||||
//
|
||||
// Please note that Finalise is used by EIP#98 and is used instead of
|
||||
// IntermediateRoot.
|
||||
func (s *StateDB) Finalise() {
|
||||
for addr := range s.stateObjectsDestructed {
|
||||
s.deleteStateObject(s.stateObjects[addr])
|
||||
}
|
||||
s.clearJournalAndRefund()
|
||||
}
|
||||
|
||||
// DeleteSuicides flags the suicided objects for deletion so that it
|
||||
// won't be referenced again when called / queried up on.
|
||||
//
|
||||
|
@ -69,7 +69,7 @@ func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg
|
||||
}
|
||||
// Iterate over and process the individual transactions
|
||||
for i, tx := range block.Transactions() {
|
||||
statedb.StartRecord(tx.Hash(), block.Hash(), i)
|
||||
statedb.Prepare(tx.Hash(), block.Hash(), i)
|
||||
receipt, _, err := ApplyTransaction(p.config, p.bc, nil, gp, statedb, header, tx, totalUsedGas, cfg)
|
||||
if err != nil {
|
||||
return nil, nil, nil, err
|
||||
@ -107,7 +107,8 @@ func ApplyTransaction(config *params.ChainConfig, bc *BlockChain, author *common
|
||||
usedGas.Add(usedGas, gas)
|
||||
// Create a new receipt for the transaction, storing the intermediate root and gas used by the tx
|
||||
// based on the eip phase, we're passing wether the root touch-delete accounts.
|
||||
receipt := types.NewReceipt(statedb.IntermediateRoot(config.IsEIP158(header.Number)).Bytes(), usedGas)
|
||||
root := statedb.IntermediateRoot(config.IsEIP158(header.Number))
|
||||
receipt := types.NewReceipt(root.Bytes(), usedGas)
|
||||
receipt.TxHash = tx.Hash()
|
||||
receipt.GasUsed = new(big.Int).Set(gas)
|
||||
// if the transaction created a contract, store the creation address in the receipt.
|
||||
|
@ -27,7 +27,12 @@ import (
|
||||
"github.com/ethereum/go-ethereum/params"
|
||||
)
|
||||
|
||||
var ErrInvalidChainId = errors.New("invalid chaid id for signer")
|
||||
var (
|
||||
ErrInvalidChainId = errors.New("invalid chaid id for signer")
|
||||
|
||||
errAbstractSigner = errors.New("abstract signer")
|
||||
abstractSignerAddress = common.HexToAddress("ffffffffffffffffffffffffffffffffffffff")
|
||||
)
|
||||
|
||||
// sigCache is used to cache the derived sender and contains
|
||||
// the signer used to derive it.
|
||||
@ -103,6 +108,17 @@ type Signer interface {
|
||||
Equal(Signer) bool
|
||||
}
|
||||
|
||||
/*
|
||||
// WithSignature returns a new transaction with the given signature. This signature
|
||||
// needs to be in the [R || S || V] format where V is 0 or 1.
|
||||
func (s EIP86Signer) WithSignature(tx *Transaction, sig []byte) (*Transaction, error) {
|
||||
}
|
||||
|
||||
// Hash returns the hash to be signed by the sender.
|
||||
// It does not uniquely identify the transaction.
|
||||
func (s EIP86Signer) Hash(tx *Transaction) common.Hash {}
|
||||
*/
|
||||
|
||||
// EIP155Transaction implements TransactionInterface using the
|
||||
// EIP155 rules
|
||||
type EIP155Signer struct {
|
||||
|
@ -18,6 +18,7 @@ package vm
|
||||
|
||||
import (
|
||||
"crypto/sha256"
|
||||
"errors"
|
||||
"math/big"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
@ -27,15 +28,17 @@ import (
|
||||
"golang.org/x/crypto/ripemd160"
|
||||
)
|
||||
|
||||
var errBadPrecompileInput = errors.New("bad pre compile input")
|
||||
|
||||
// Precompiled contract is the basic interface for native Go contracts. The implementation
|
||||
// requires a deterministic gas count based on the input size of the Run method of the
|
||||
// contract.
|
||||
type PrecompiledContract interface {
|
||||
RequiredGas(inputSize int) uint64 // RequiredPrice calculates the contract gas use
|
||||
Run(input []byte) []byte // Run runs the precompiled contract
|
||||
RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
|
||||
Run(input []byte) ([]byte, error) // Run runs the precompiled contract
|
||||
}
|
||||
|
||||
// Precompiled contains the default set of ethereum contracts
|
||||
// PrecompiledContracts contains the default set of ethereum contracts
|
||||
var PrecompiledContracts = map[common.Address]PrecompiledContract{
|
||||
common.BytesToAddress([]byte{1}): &ecrecover{},
|
||||
common.BytesToAddress([]byte{2}): &sha256hash{},
|
||||
@ -45,11 +48,9 @@ var PrecompiledContracts = map[common.Address]PrecompiledContract{
|
||||
|
||||
// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
|
||||
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
|
||||
gas := p.RequiredGas(len(input))
|
||||
gas := p.RequiredGas(input)
|
||||
if contract.UseGas(gas) {
|
||||
ret = p.Run(input)
|
||||
|
||||
return ret, nil
|
||||
return p.Run(input)
|
||||
} else {
|
||||
return nil, ErrOutOfGas
|
||||
}
|
||||
@ -58,11 +59,11 @@ func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contr
|
||||
// ECRECOVER implemented as a native contract
|
||||
type ecrecover struct{}
|
||||
|
||||
func (c *ecrecover) RequiredGas(inputSize int) uint64 {
|
||||
func (c *ecrecover) RequiredGas(input []byte) uint64 {
|
||||
return params.EcrecoverGas
|
||||
}
|
||||
|
||||
func (c *ecrecover) Run(in []byte) []byte {
|
||||
func (c *ecrecover) Run(in []byte) ([]byte, error) {
|
||||
const ecRecoverInputLength = 128
|
||||
|
||||
in = common.RightPadBytes(in, ecRecoverInputLength)
|
||||
@ -76,18 +77,18 @@ func (c *ecrecover) Run(in []byte) []byte {
|
||||
// tighter sig s values in homestead only apply to tx sigs
|
||||
if !allZero(in[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
|
||||
log.Trace("ECRECOVER error: v, r or s value invalid")
|
||||
return nil
|
||||
return nil, nil
|
||||
}
|
||||
// v needs to be at the end for libsecp256k1
|
||||
pubKey, err := crypto.Ecrecover(in[:32], append(in[64:128], v))
|
||||
// make sure the public key is a valid one
|
||||
if err != nil {
|
||||
log.Trace("ECRECOVER failed", "err", err)
|
||||
return nil
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
// the first byte of pubkey is bitcoin heritage
|
||||
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32)
|
||||
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
|
||||
}
|
||||
|
||||
// SHA256 implemented as a native contract
|
||||
@ -97,12 +98,12 @@ type sha256hash struct{}
|
||||
//
|
||||
// This method does not require any overflow checking as the input size gas costs
|
||||
// required for anything significant is so high it's impossible to pay for.
|
||||
func (c *sha256hash) RequiredGas(inputSize int) uint64 {
|
||||
return uint64(inputSize+31)/32*params.Sha256WordGas + params.Sha256Gas
|
||||
func (c *sha256hash) RequiredGas(input []byte) uint64 {
|
||||
return uint64(len(input)+31)/32*params.Sha256WordGas + params.Sha256Gas
|
||||
}
|
||||
func (c *sha256hash) Run(in []byte) []byte {
|
||||
func (c *sha256hash) Run(in []byte) ([]byte, error) {
|
||||
h := sha256.Sum256(in)
|
||||
return h[:]
|
||||
return h[:], nil
|
||||
}
|
||||
|
||||
// RIPMED160 implemented as a native contract
|
||||
@ -112,13 +113,13 @@ type ripemd160hash struct{}
|
||||
//
|
||||
// This method does not require any overflow checking as the input size gas costs
|
||||
// required for anything significant is so high it's impossible to pay for.
|
||||
func (c *ripemd160hash) RequiredGas(inputSize int) uint64 {
|
||||
return uint64(inputSize+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas
|
||||
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
|
||||
return uint64(len(input)+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas
|
||||
}
|
||||
func (c *ripemd160hash) Run(in []byte) []byte {
|
||||
func (c *ripemd160hash) Run(in []byte) ([]byte, error) {
|
||||
ripemd := ripemd160.New()
|
||||
ripemd.Write(in)
|
||||
return common.LeftPadBytes(ripemd.Sum(nil), 32)
|
||||
return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
|
||||
}
|
||||
|
||||
// data copy implemented as a native contract
|
||||
@ -128,9 +129,9 @@ type dataCopy struct{}
|
||||
//
|
||||
// This method does not require any overflow checking as the input size gas costs
|
||||
// required for anything significant is so high it's impossible to pay for.
|
||||
func (c *dataCopy) RequiredGas(inputSize int) uint64 {
|
||||
return uint64(inputSize+31)/32*params.IdentityWordGas + params.IdentityGas
|
||||
func (c *dataCopy) RequiredGas(input []byte) uint64 {
|
||||
return uint64(len(input)+31)/32*params.IdentityWordGas + params.IdentityGas
|
||||
}
|
||||
func (c *dataCopy) Run(in []byte) []byte {
|
||||
return in
|
||||
func (c *dataCopy) Run(in []byte) ([]byte, error) {
|
||||
return in, nil
|
||||
}
|
||||
|
1
core/vm/contracts_test.go
Normal file
1
core/vm/contracts_test.go
Normal file
@ -0,0 +1 @@
|
||||
package vm
|
@ -33,7 +33,20 @@ type (
|
||||
GetHashFunc func(uint64) common.Hash
|
||||
)
|
||||
|
||||
// Context provides the EVM with auxiliary information. Once provided it shouldn't be modified.
|
||||
// run runs the given contract and takes care of running precompiles with a fallback to the byte code interpreter.
|
||||
func run(evm *EVM, snapshot int, contract *Contract, input []byte) ([]byte, error) {
|
||||
if contract.CodeAddr != nil {
|
||||
precompiledContracts := PrecompiledContracts
|
||||
if p := precompiledContracts[*contract.CodeAddr]; p != nil {
|
||||
return RunPrecompiledContract(p, input, contract)
|
||||
}
|
||||
}
|
||||
|
||||
return evm.interpreter.Run(snapshot, contract, input)
|
||||
}
|
||||
|
||||
// Context provides the EVM with auxiliary information. Once provided
|
||||
// it shouldn't be modified.
|
||||
type Context struct {
|
||||
// CanTransfer returns whether the account contains
|
||||
// sufficient ether to transfer the value
|
||||
@ -55,7 +68,13 @@ type Context struct {
|
||||
Difficulty *big.Int // Provides information for DIFFICULTY
|
||||
}
|
||||
|
||||
// EVM provides information about external sources for the EVM
|
||||
// EVM is the Ethereum Virtual Machine base object and provides
|
||||
// the necessary tools to run a contract on the given state with
|
||||
// the provided context. It should be noted that any error
|
||||
// generated through any of the calls should be considered a
|
||||
// revert-state-and-consume-all-gas operation, no checks on
|
||||
// specific errors should ever be performed. The interpreter makes
|
||||
// sure that any errors generated are to be considered faulty code.
|
||||
//
|
||||
// The EVM should never be reused and is not thread safe.
|
||||
type EVM struct {
|
||||
@ -68,6 +87,8 @@ type EVM struct {
|
||||
|
||||
// chainConfig contains information about the current chain
|
||||
chainConfig *params.ChainConfig
|
||||
// chain rules contains the chain rules for the current epoch
|
||||
chainRules params.Rules
|
||||
// virtual machine configuration options used to initialise the
|
||||
// evm.
|
||||
vmConfig Config
|
||||
@ -79,21 +100,23 @@ type EVM struct {
|
||||
abort int32
|
||||
}
|
||||
|
||||
// NewEVM retutrns a new EVM evmironment.
|
||||
// NewEVM retutrns a new EVM evmironment. The returned EVM is not thread safe
|
||||
// and should only ever be used *once*.
|
||||
func NewEVM(ctx Context, statedb StateDB, chainConfig *params.ChainConfig, vmConfig Config) *EVM {
|
||||
evm := &EVM{
|
||||
Context: ctx,
|
||||
StateDB: statedb,
|
||||
vmConfig: vmConfig,
|
||||
chainConfig: chainConfig,
|
||||
chainRules: chainConfig.Rules(ctx.BlockNumber),
|
||||
}
|
||||
|
||||
evm.interpreter = NewInterpreter(evm, vmConfig)
|
||||
return evm
|
||||
}
|
||||
|
||||
// Cancel cancels any running EVM operation. This may be called concurrently and it's safe to be
|
||||
// called multiple times.
|
||||
// Cancel cancels any running EVM operation. This may be called concurrently and
|
||||
// it's safe to be called multiple times.
|
||||
func (evm *EVM) Cancel() {
|
||||
atomic.StoreInt32(&evm.abort, 1)
|
||||
}
|
||||
@ -134,13 +157,12 @@ func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas
|
||||
contract := NewContract(caller, to, value, gas)
|
||||
contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr))
|
||||
|
||||
ret, err = evm.interpreter.Run(contract, input)
|
||||
ret, err = run(evm, snapshot, contract, input)
|
||||
// When an error was returned by the EVM or when setting the creation code
|
||||
// above we revert to the snapshot and consume any gas remaining. Additionally
|
||||
// when we're in homestead this also counts for code storage gas errors.
|
||||
if err != nil {
|
||||
contract.UseGas(contract.Gas)
|
||||
|
||||
evm.StateDB.RevertToSnapshot(snapshot)
|
||||
}
|
||||
return ret, contract.Gas, err
|
||||
@ -175,10 +197,9 @@ func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte,
|
||||
contract := NewContract(caller, to, value, gas)
|
||||
contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr))
|
||||
|
||||
ret, err = evm.interpreter.Run(contract, input)
|
||||
ret, err = run(evm, snapshot, contract, input)
|
||||
if err != nil {
|
||||
contract.UseGas(contract.Gas)
|
||||
|
||||
evm.StateDB.RevertToSnapshot(snapshot)
|
||||
}
|
||||
|
||||
@ -210,10 +231,9 @@ func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []by
|
||||
contract := NewContract(caller, to, nil, gas).AsDelegate()
|
||||
contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr))
|
||||
|
||||
ret, err = evm.interpreter.Run(contract, input)
|
||||
ret, err = run(evm, snapshot, contract, input)
|
||||
if err != nil {
|
||||
contract.UseGas(contract.Gas)
|
||||
|
||||
evm.StateDB.RevertToSnapshot(snapshot)
|
||||
}
|
||||
|
||||
@ -253,8 +273,7 @@ func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *big.I
|
||||
contract := NewContract(caller, AccountRef(contractAddr), value, gas)
|
||||
contract.SetCallCode(&contractAddr, crypto.Keccak256Hash(code), code)
|
||||
|
||||
ret, err = evm.interpreter.Run(contract, nil)
|
||||
|
||||
ret, err = run(evm, snapshot, contract, nil)
|
||||
// check whether the max code size has been exceeded
|
||||
maxCodeSizeExceeded := len(ret) > params.MaxCodeSize
|
||||
// if the contract creation ran successfully and no errors were returned
|
||||
@ -275,10 +294,8 @@ func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *big.I
|
||||
// when we're in homestead this also counts for code storage gas errors.
|
||||
if maxCodeSizeExceeded ||
|
||||
(err != nil && (evm.ChainConfig().IsHomestead(evm.BlockNumber) || err != ErrCodeStoreOutOfGas)) {
|
||||
contract.UseGas(contract.Gas)
|
||||
evm.StateDB.RevertToSnapshot(snapshot)
|
||||
|
||||
// Nothing should be returned when an error is thrown.
|
||||
return nil, contractAddr, 0, err
|
||||
}
|
||||
// If the vm returned with an error the return value should be set to nil.
|
||||
// This isn't consensus critical but merely to for behaviour reasons such as
|
||||
|
@ -27,7 +27,9 @@ import (
|
||||
"github.com/ethereum/go-ethereum/params"
|
||||
)
|
||||
|
||||
var bigZero = new(big.Int)
|
||||
var (
|
||||
bigZero = new(big.Int)
|
||||
)
|
||||
|
||||
func opAdd(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
|
||||
x, y := stack.pop(), stack.pop()
|
||||
@ -599,7 +601,7 @@ func opCall(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Sta
|
||||
contract.Gas += returnGas
|
||||
|
||||
evm.interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize)
|
||||
return nil, nil
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func opCallCode(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
|
||||
@ -633,16 +635,10 @@ func opCallCode(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack
|
||||
contract.Gas += returnGas
|
||||
|
||||
evm.interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize)
|
||||
return nil, nil
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func opDelegateCall(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
|
||||
// if not homestead return an error. DELEGATECALL is not supported
|
||||
// during pre-homestead.
|
||||
if !evm.ChainConfig().IsHomestead(evm.BlockNumber) {
|
||||
return nil, fmt.Errorf("invalid opcode %x", DELEGATECALL)
|
||||
}
|
||||
|
||||
gas, to, inOffset, inSize, outOffset, outSize := stack.pop().Uint64(), stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop()
|
||||
|
||||
toAddr := common.BigToAddress(to)
|
||||
@ -658,7 +654,7 @@ func opDelegateCall(pc *uint64, evm *EVM, contract *Contract, memory *Memory, st
|
||||
contract.Gas += returnGas
|
||||
|
||||
evm.interpreter.intPool.put(to, inOffset, inSize, outOffset, outSize)
|
||||
return nil, nil
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func opReturn(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
|
||||
@ -666,6 +662,7 @@ func opReturn(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *S
|
||||
ret := memory.GetPtr(offset.Int64(), size.Int64())
|
||||
|
||||
evm.interpreter.intPool.put(offset, size)
|
||||
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
|
@ -45,50 +45,60 @@ type Config struct {
|
||||
DisableGasMetering bool
|
||||
// Enable recording of SHA3/keccak preimages
|
||||
EnablePreimageRecording bool
|
||||
// JumpTable contains the EVM instruction table. This
|
||||
// JumpTable contains the in instruction table. This
|
||||
// may me left uninitialised and will be set the default
|
||||
// table.
|
||||
JumpTable [256]operation
|
||||
}
|
||||
|
||||
// Interpreter is used to run Ethereum based contracts and will utilise the
|
||||
// passed environment to query external sources for state information.
|
||||
// passed evmironment to query external sources for state information.
|
||||
// The Interpreter will run the byte code VM or JIT VM based on the passed
|
||||
// configuration.
|
||||
type Interpreter struct {
|
||||
env *EVM
|
||||
evm *EVM
|
||||
cfg Config
|
||||
gasTable params.GasTable
|
||||
intPool *intPool
|
||||
|
||||
readonly bool
|
||||
}
|
||||
|
||||
// NewInterpreter returns a new instance of the Interpreter.
|
||||
func NewInterpreter(env *EVM, cfg Config) *Interpreter {
|
||||
func NewInterpreter(evm *EVM, cfg Config) *Interpreter {
|
||||
// We use the STOP instruction whether to see
|
||||
// the jump table was initialised. If it was not
|
||||
// we'll set the default jump table.
|
||||
if !cfg.JumpTable[STOP].valid {
|
||||
cfg.JumpTable = defaultJumpTable
|
||||
switch {
|
||||
case evm.ChainConfig().IsHomestead(evm.BlockNumber):
|
||||
cfg.JumpTable = homesteadInstructionSet
|
||||
default:
|
||||
cfg.JumpTable = baseInstructionSet
|
||||
}
|
||||
}
|
||||
|
||||
return &Interpreter{
|
||||
env: env,
|
||||
evm: evm,
|
||||
cfg: cfg,
|
||||
gasTable: env.ChainConfig().GasTable(env.BlockNumber),
|
||||
gasTable: evm.ChainConfig().GasTable(evm.BlockNumber),
|
||||
intPool: newIntPool(),
|
||||
}
|
||||
}
|
||||
|
||||
// Run loops and evaluates the contract's code with the given input data
|
||||
func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err error) {
|
||||
evm.env.depth++
|
||||
defer func() { evm.env.depth-- }()
|
||||
func (in *Interpreter) enforceRestrictions(op OpCode, operation operation, stack *Stack) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
if contract.CodeAddr != nil {
|
||||
if p := PrecompiledContracts[*contract.CodeAddr]; p != nil {
|
||||
return RunPrecompiledContract(p, input, contract)
|
||||
}
|
||||
}
|
||||
// Run loops and evaluates the contract's code with the given input data and returns
|
||||
// the return byte-slice and an error if one occured.
|
||||
//
|
||||
// It's important to note that any errors returned by the interpreter should be
|
||||
// considered a revert-and-consume-all-gas operation. No error specific checks
|
||||
// should be handled to reduce complexity and errors further down the in.
|
||||
func (in *Interpreter) Run(snapshot int, contract *Contract, input []byte) (ret []byte, err error) {
|
||||
in.evm.depth++
|
||||
defer func() { in.evm.depth-- }()
|
||||
|
||||
// Don't bother with the execution if there's no code.
|
||||
if len(contract.Code) == 0 {
|
||||
@ -105,7 +115,8 @@ func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err e
|
||||
mem = NewMemory() // bound memory
|
||||
stack = newstack() // local stack
|
||||
// For optimisation reason we're using uint64 as the program counter.
|
||||
// It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Practically much less so feasible.
|
||||
// It's theoretically possible to go above 2^64. The YP defines the PC
|
||||
// to be uint256. Practically much less so feasible.
|
||||
pc = uint64(0) // program counter
|
||||
cost uint64
|
||||
)
|
||||
@ -113,27 +124,30 @@ func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err e
|
||||
|
||||
// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
|
||||
defer func() {
|
||||
if err != nil && evm.cfg.Debug {
|
||||
if err != nil && in.cfg.Debug {
|
||||
// XXX For debugging
|
||||
//fmt.Printf("%04d: %8v cost = %-8d stack = %-8d ERR = %v\n", pc, op, cost, stack.len(), err)
|
||||
evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.depth, err)
|
||||
in.cfg.Tracer.CaptureState(in.evm, pc, op, contract.Gas, cost, mem, stack, contract, in.evm.depth, err)
|
||||
}
|
||||
}()
|
||||
|
||||
log.Debug("EVM running contract", "hash", codehash[:])
|
||||
log.Debug("in running contract", "hash", codehash[:])
|
||||
tstart := time.Now()
|
||||
defer log.Debug("EVM finished running contract", "hash", codehash[:], "elapsed", time.Since(tstart))
|
||||
defer log.Debug("in finished running contract", "hash", codehash[:], "elapsed", time.Since(tstart))
|
||||
|
||||
// The Interpreter main run loop (contextual). This loop runs until either an
|
||||
// explicit STOP, RETURN or SELFDESTRUCT is executed, an error occurred during
|
||||
// the execution of one of the operations or until the evm.done is set by
|
||||
// the execution of one of the operations or until the in.done is set by
|
||||
// the parent context.Context.
|
||||
for atomic.LoadInt32(&evm.env.abort) == 0 {
|
||||
for atomic.LoadInt32(&in.evm.abort) == 0 {
|
||||
// Get the memory location of pc
|
||||
op = contract.GetOp(pc)
|
||||
|
||||
// get the operation from the jump table matching the opcode
|
||||
operation := evm.cfg.JumpTable[op]
|
||||
operation := in.cfg.JumpTable[op]
|
||||
if err := in.enforceRestrictions(op, operation, stack); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// if the op is invalid abort the process and return an error
|
||||
if !operation.valid {
|
||||
@ -161,10 +175,10 @@ func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err e
|
||||
}
|
||||
}
|
||||
|
||||
if !evm.cfg.DisableGasMetering {
|
||||
if !in.cfg.DisableGasMetering {
|
||||
// consume the gas and return an error if not enough gas is available.
|
||||
// cost is explicitly set so that the capture state defer method cas get the proper cost
|
||||
cost, err = operation.gasCost(evm.gasTable, evm.env, contract, stack, mem, memorySize)
|
||||
cost, err = operation.gasCost(in.gasTable, in.evm, contract, stack, mem, memorySize)
|
||||
if err != nil || !contract.UseGas(cost) {
|
||||
return nil, ErrOutOfGas
|
||||
}
|
||||
@ -173,19 +187,20 @@ func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err e
|
||||
mem.Resize(memorySize)
|
||||
}
|
||||
|
||||
if evm.cfg.Debug {
|
||||
evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.depth, err)
|
||||
if in.cfg.Debug {
|
||||
in.cfg.Tracer.CaptureState(in.evm, pc, op, contract.Gas, cost, mem, stack, contract, in.evm.depth, err)
|
||||
}
|
||||
// XXX For debugging
|
||||
//fmt.Printf("%04d: %8v cost = %-8d stack = %-8d\n", pc, op, cost, stack.len())
|
||||
|
||||
// execute the operation
|
||||
res, err := operation.execute(&pc, evm.env, contract, mem, stack)
|
||||
res, err := operation.execute(&pc, in.evm, contract, mem, stack)
|
||||
// verifyPool is a build flag. Pool verification makes sure the integrity
|
||||
// of the integer pool by comparing values to a default value.
|
||||
if verifyPool {
|
||||
verifyIntegerPool(evm.intPool)
|
||||
verifyIntegerPool(in.intPool)
|
||||
}
|
||||
|
||||
switch {
|
||||
case err != nil:
|
||||
return nil, err
|
||||
@ -194,6 +209,11 @@ func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err e
|
||||
case !operation.jumps:
|
||||
pc++
|
||||
}
|
||||
// if the operation returned a value make sure that is also set
|
||||
// the last return data.
|
||||
if res != nil {
|
||||
mem.lastReturn = ret
|
||||
}
|
||||
}
|
||||
return nil, nil
|
||||
}
|
||||
|
@ -47,13 +47,32 @@ type operation struct {
|
||||
// jumps indicates whether operation made a jump. This prevents the program
|
||||
// counter from further incrementing.
|
||||
jumps bool
|
||||
// writes determines whether this a state modifying operation
|
||||
writes bool
|
||||
// valid is used to check whether the retrieved operation is valid and known
|
||||
valid bool
|
||||
// reverts determined whether the operation reverts state
|
||||
reverts bool
|
||||
}
|
||||
|
||||
var defaultJumpTable = NewJumpTable()
|
||||
var (
|
||||
baseInstructionSet = NewBaseInstructionSet()
|
||||
homesteadInstructionSet = NewHomesteadInstructionSet()
|
||||
)
|
||||
|
||||
func NewJumpTable() [256]operation {
|
||||
func NewHomesteadInstructionSet() [256]operation {
|
||||
instructionSet := NewBaseInstructionSet()
|
||||
instructionSet[DELEGATECALL] = operation{
|
||||
execute: opDelegateCall,
|
||||
gasCost: gasDelegateCall,
|
||||
validateStack: makeStackFunc(6, 1),
|
||||
memorySize: memoryDelegateCall,
|
||||
valid: true,
|
||||
}
|
||||
return instructionSet
|
||||
}
|
||||
|
||||
func NewBaseInstructionSet() [256]operation {
|
||||
return [256]operation{
|
||||
STOP: {
|
||||
execute: opStop,
|
||||
@ -357,6 +376,7 @@ func NewJumpTable() [256]operation {
|
||||
gasCost: gasSStore,
|
||||
validateStack: makeStackFunc(2, 0),
|
||||
valid: true,
|
||||
writes: true,
|
||||
},
|
||||
JUMP: {
|
||||
execute: opJump,
|
||||
@ -821,6 +841,7 @@ func NewJumpTable() [256]operation {
|
||||
validateStack: makeStackFunc(3, 1),
|
||||
memorySize: memoryCreate,
|
||||
valid: true,
|
||||
writes: true,
|
||||
},
|
||||
CALL: {
|
||||
execute: opCall,
|
||||
@ -844,19 +865,13 @@ func NewJumpTable() [256]operation {
|
||||
halts: true,
|
||||
valid: true,
|
||||
},
|
||||
DELEGATECALL: {
|
||||
execute: opDelegateCall,
|
||||
gasCost: gasDelegateCall,
|
||||
validateStack: makeStackFunc(6, 1),
|
||||
memorySize: memoryDelegateCall,
|
||||
valid: true,
|
||||
},
|
||||
SELFDESTRUCT: {
|
||||
execute: opSuicide,
|
||||
gasCost: gasSuicide,
|
||||
validateStack: makeStackFunc(1, 0),
|
||||
halts: true,
|
||||
valid: true,
|
||||
writes: true,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
@ -22,6 +22,7 @@ import "fmt"
|
||||
type Memory struct {
|
||||
store []byte
|
||||
lastGasCost uint64
|
||||
lastReturn []byte
|
||||
}
|
||||
|
||||
func NewMemory() *Memory {
|
||||
|
428
crypto/bn256/bn256.go
Normal file
428
crypto/bn256/bn256.go
Normal file
@ -0,0 +1,428 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package bn256 implements a particular bilinear group at the 128-bit security level.
|
||||
//
|
||||
// Bilinear groups are the basis of many of the new cryptographic protocols
|
||||
// that have been proposed over the past decade. They consist of a triplet of
|
||||
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
|
||||
// (where gₓ is a generator of the respective group). That function is called
|
||||
// a pairing function.
|
||||
//
|
||||
// This package specifically implements the Optimal Ate pairing over a 256-bit
|
||||
// Barreto-Naehrig curve as described in
|
||||
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
|
||||
// with the implementation described in that paper.
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// BUG(agl): this implementation is not constant time.
|
||||
// TODO(agl): keep GF(p²) elements in Mongomery form.
|
||||
|
||||
// G1 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G1 struct {
|
||||
p *curvePoint
|
||||
}
|
||||
|
||||
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
|
||||
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
|
||||
var k *big.Int
|
||||
var err error
|
||||
|
||||
for {
|
||||
k, err = rand.Int(r, Order)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
if k.Sign() > 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return k, new(G1).ScalarBaseMult(k), nil
|
||||
}
|
||||
|
||||
func (g *G1) String() string {
|
||||
return "bn256.G1" + g.p.String()
|
||||
}
|
||||
|
||||
// CurvePoints returns p's curve points in big integer
|
||||
func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
|
||||
return e.p.x, e.p.y, e.p.z, e.p.t
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets e to g*k where g is the generator of the group and
|
||||
// then returns e.
|
||||
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = newCurvePoint(nil)
|
||||
}
|
||||
e.p.Mul(curveGen, k, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = newCurvePoint(nil)
|
||||
}
|
||||
e.p.Mul(a.p, k, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
// BUG(agl): this function is not complete: a==b fails.
|
||||
func (e *G1) Add(a, b *G1) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = newCurvePoint(nil)
|
||||
}
|
||||
e.p.Add(a.p, b.p, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// Neg sets e to -a and then returns e.
|
||||
func (e *G1) Neg(a *G1) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = newCurvePoint(nil)
|
||||
}
|
||||
e.p.Negative(a.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Marshal converts n to a byte slice.
|
||||
func (n *G1) Marshal() []byte {
|
||||
n.p.MakeAffine(nil)
|
||||
|
||||
xBytes := new(big.Int).Mod(n.p.x, P).Bytes()
|
||||
yBytes := new(big.Int).Mod(n.p.y, P).Bytes()
|
||||
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
ret := make([]byte, numBytes*2)
|
||||
copy(ret[1*numBytes-len(xBytes):], xBytes)
|
||||
copy(ret[2*numBytes-len(yBytes):], yBytes)
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *G1) Unmarshal(m []byte) (*G1, bool) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
if len(m) != 2*numBytes {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
if e.p == nil {
|
||||
e.p = newCurvePoint(nil)
|
||||
}
|
||||
|
||||
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
|
||||
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
|
||||
|
||||
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
|
||||
// This is the point at infinity.
|
||||
e.p.y.SetInt64(1)
|
||||
e.p.z.SetInt64(0)
|
||||
e.p.t.SetInt64(0)
|
||||
} else {
|
||||
e.p.z.SetInt64(1)
|
||||
e.p.t.SetInt64(1)
|
||||
|
||||
if !e.p.IsOnCurve() {
|
||||
return nil, false
|
||||
}
|
||||
}
|
||||
|
||||
return e, true
|
||||
}
|
||||
|
||||
// G2 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G2 struct {
|
||||
p *twistPoint
|
||||
}
|
||||
|
||||
// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
|
||||
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
|
||||
var k *big.Int
|
||||
var err error
|
||||
|
||||
for {
|
||||
k, err = rand.Int(r, Order)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
if k.Sign() > 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return k, new(G2).ScalarBaseMult(k), nil
|
||||
}
|
||||
|
||||
func (g *G2) String() string {
|
||||
return "bn256.G2" + g.p.String()
|
||||
}
|
||||
|
||||
// CurvePoints returns the curve points of p which includes the real
|
||||
// and imaginary parts of the curve point.
|
||||
func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
|
||||
return e.p.x, e.p.y, e.p.z, e.p.t
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets e to g*k where g is the generator of the group and
|
||||
// then returns out.
|
||||
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = newTwistPoint(nil)
|
||||
}
|
||||
e.p.Mul(twistGen, k, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = newTwistPoint(nil)
|
||||
}
|
||||
e.p.Mul(a.p, k, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
// BUG(agl): this function is not complete: a==b fails.
|
||||
func (e *G2) Add(a, b *G2) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = newTwistPoint(nil)
|
||||
}
|
||||
e.p.Add(a.p, b.p, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// Marshal converts n into a byte slice.
|
||||
func (n *G2) Marshal() []byte {
|
||||
n.p.MakeAffine(nil)
|
||||
|
||||
xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
|
||||
xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
|
||||
yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
|
||||
yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
|
||||
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
ret := make([]byte, numBytes*4)
|
||||
copy(ret[1*numBytes-len(xxBytes):], xxBytes)
|
||||
copy(ret[2*numBytes-len(xyBytes):], xyBytes)
|
||||
copy(ret[3*numBytes-len(yxBytes):], yxBytes)
|
||||
copy(ret[4*numBytes-len(yyBytes):], yyBytes)
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *G2) Unmarshal(m []byte) (*G2, bool) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
if len(m) != 4*numBytes {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
if e.p == nil {
|
||||
e.p = newTwistPoint(nil)
|
||||
}
|
||||
|
||||
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
|
||||
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
|
||||
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
|
||||
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
|
||||
|
||||
if e.p.x.x.Sign() == 0 &&
|
||||
e.p.x.y.Sign() == 0 &&
|
||||
e.p.y.x.Sign() == 0 &&
|
||||
e.p.y.y.Sign() == 0 {
|
||||
// This is the point at infinity.
|
||||
e.p.y.SetOne()
|
||||
e.p.z.SetZero()
|
||||
e.p.t.SetZero()
|
||||
} else {
|
||||
e.p.z.SetOne()
|
||||
e.p.t.SetOne()
|
||||
|
||||
if !e.p.IsOnCurve() {
|
||||
return nil, false
|
||||
}
|
||||
}
|
||||
|
||||
return e, true
|
||||
}
|
||||
|
||||
// GT is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type GT struct {
|
||||
p *gfP12
|
||||
}
|
||||
|
||||
func (g *GT) String() string {
|
||||
return "bn256.GT" + g.p.String()
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
|
||||
if e.p == nil {
|
||||
e.p = newGFp12(nil)
|
||||
}
|
||||
e.p.Exp(a.p, k, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
func (e *GT) Add(a, b *GT) *GT {
|
||||
if e.p == nil {
|
||||
e.p = newGFp12(nil)
|
||||
}
|
||||
e.p.Mul(a.p, b.p, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// Neg sets e to -a and then returns e.
|
||||
func (e *GT) Neg(a *GT) *GT {
|
||||
if e.p == nil {
|
||||
e.p = newGFp12(nil)
|
||||
}
|
||||
e.p.Invert(a.p, new(bnPool))
|
||||
return e
|
||||
}
|
||||
|
||||
// Marshal converts n into a byte slice.
|
||||
func (n *GT) Marshal() []byte {
|
||||
n.p.Minimal()
|
||||
|
||||
xxxBytes := n.p.x.x.x.Bytes()
|
||||
xxyBytes := n.p.x.x.y.Bytes()
|
||||
xyxBytes := n.p.x.y.x.Bytes()
|
||||
xyyBytes := n.p.x.y.y.Bytes()
|
||||
xzxBytes := n.p.x.z.x.Bytes()
|
||||
xzyBytes := n.p.x.z.y.Bytes()
|
||||
yxxBytes := n.p.y.x.x.Bytes()
|
||||
yxyBytes := n.p.y.x.y.Bytes()
|
||||
yyxBytes := n.p.y.y.x.Bytes()
|
||||
yyyBytes := n.p.y.y.y.Bytes()
|
||||
yzxBytes := n.p.y.z.x.Bytes()
|
||||
yzyBytes := n.p.y.z.y.Bytes()
|
||||
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
ret := make([]byte, numBytes*12)
|
||||
copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
|
||||
copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
|
||||
copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
|
||||
copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
|
||||
copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
|
||||
copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
|
||||
copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
|
||||
copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
|
||||
copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
|
||||
copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
|
||||
copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
|
||||
copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *GT) Unmarshal(m []byte) (*GT, bool) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
if len(m) != 12*numBytes {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
if e.p == nil {
|
||||
e.p = newGFp12(nil)
|
||||
}
|
||||
|
||||
e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
|
||||
e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
|
||||
e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
|
||||
e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
|
||||
e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
|
||||
e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
|
||||
e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
|
||||
e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
|
||||
e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
|
||||
e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
|
||||
e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
|
||||
e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
|
||||
|
||||
return e, true
|
||||
}
|
||||
|
||||
// Pair calculates an Optimal Ate pairing.
|
||||
func Pair(g1 *G1, g2 *G2) *GT {
|
||||
return >{optimalAte(g2.p, g1.p, new(bnPool))}
|
||||
}
|
||||
|
||||
func PairingCheck(a []*G1, b []*G2) bool {
|
||||
pool := new(bnPool)
|
||||
e := newGFp12(pool)
|
||||
e.SetOne()
|
||||
for i := 0; i < len(a); i++ {
|
||||
new_e := miller(b[i].p, a[i].p, pool)
|
||||
e.Mul(e, new_e, pool)
|
||||
}
|
||||
ret := finalExponentiation(e, pool)
|
||||
e.Put(pool)
|
||||
return ret.IsOne()
|
||||
}
|
||||
|
||||
// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
|
||||
// number of allocations made during processing.
|
||||
type bnPool struct {
|
||||
bns []*big.Int
|
||||
count int
|
||||
}
|
||||
|
||||
func (pool *bnPool) Get() *big.Int {
|
||||
if pool == nil {
|
||||
return new(big.Int)
|
||||
}
|
||||
|
||||
pool.count++
|
||||
l := len(pool.bns)
|
||||
if l == 0 {
|
||||
return new(big.Int)
|
||||
}
|
||||
|
||||
bn := pool.bns[l-1]
|
||||
pool.bns = pool.bns[:l-1]
|
||||
return bn
|
||||
}
|
||||
|
||||
func (pool *bnPool) Put(bn *big.Int) {
|
||||
if pool == nil {
|
||||
return
|
||||
}
|
||||
pool.bns = append(pool.bns, bn)
|
||||
pool.count--
|
||||
}
|
||||
|
||||
func (pool *bnPool) Count() int {
|
||||
return pool.count
|
||||
}
|
304
crypto/bn256/bn256_test.go
Normal file
304
crypto/bn256/bn256_test.go
Normal file
@ -0,0 +1,304 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/rand"
|
||||
"math/big"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestGFp2Invert(t *testing.T) {
|
||||
pool := new(bnPool)
|
||||
|
||||
a := newGFp2(pool)
|
||||
a.x.SetString("23423492374", 10)
|
||||
a.y.SetString("12934872398472394827398470", 10)
|
||||
|
||||
inv := newGFp2(pool)
|
||||
inv.Invert(a, pool)
|
||||
|
||||
b := newGFp2(pool).Mul(inv, a, pool)
|
||||
if b.x.Int64() != 0 || b.y.Int64() != 1 {
|
||||
t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y)
|
||||
}
|
||||
|
||||
a.Put(pool)
|
||||
b.Put(pool)
|
||||
inv.Put(pool)
|
||||
|
||||
if c := pool.Count(); c > 0 {
|
||||
t.Errorf("Pool count non-zero: %d\n", c)
|
||||
}
|
||||
}
|
||||
|
||||
func isZero(n *big.Int) bool {
|
||||
return new(big.Int).Mod(n, P).Int64() == 0
|
||||
}
|
||||
|
||||
func isOne(n *big.Int) bool {
|
||||
return new(big.Int).Mod(n, P).Int64() == 1
|
||||
}
|
||||
|
||||
func TestGFp6Invert(t *testing.T) {
|
||||
pool := new(bnPool)
|
||||
|
||||
a := newGFp6(pool)
|
||||
a.x.x.SetString("239487238491", 10)
|
||||
a.x.y.SetString("2356249827341", 10)
|
||||
a.y.x.SetString("082659782", 10)
|
||||
a.y.y.SetString("182703523765", 10)
|
||||
a.z.x.SetString("978236549263", 10)
|
||||
a.z.y.SetString("64893242", 10)
|
||||
|
||||
inv := newGFp6(pool)
|
||||
inv.Invert(a, pool)
|
||||
|
||||
b := newGFp6(pool).Mul(inv, a, pool)
|
||||
if !isZero(b.x.x) ||
|
||||
!isZero(b.x.y) ||
|
||||
!isZero(b.y.x) ||
|
||||
!isZero(b.y.y) ||
|
||||
!isZero(b.z.x) ||
|
||||
!isOne(b.z.y) {
|
||||
t.Fatalf("bad result for a^-1*a: %s", b)
|
||||
}
|
||||
|
||||
a.Put(pool)
|
||||
b.Put(pool)
|
||||
inv.Put(pool)
|
||||
|
||||
if c := pool.Count(); c > 0 {
|
||||
t.Errorf("Pool count non-zero: %d\n", c)
|
||||
}
|
||||
}
|
||||
|
||||
func TestGFp12Invert(t *testing.T) {
|
||||
pool := new(bnPool)
|
||||
|
||||
a := newGFp12(pool)
|
||||
a.x.x.x.SetString("239846234862342323958623", 10)
|
||||
a.x.x.y.SetString("2359862352529835623", 10)
|
||||
a.x.y.x.SetString("928836523", 10)
|
||||
a.x.y.y.SetString("9856234", 10)
|
||||
a.x.z.x.SetString("235635286", 10)
|
||||
a.x.z.y.SetString("5628392833", 10)
|
||||
a.y.x.x.SetString("252936598265329856238956532167968", 10)
|
||||
a.y.x.y.SetString("23596239865236954178968", 10)
|
||||
a.y.y.x.SetString("95421692834", 10)
|
||||
a.y.y.y.SetString("236548", 10)
|
||||
a.y.z.x.SetString("924523", 10)
|
||||
a.y.z.y.SetString("12954623", 10)
|
||||
|
||||
inv := newGFp12(pool)
|
||||
inv.Invert(a, pool)
|
||||
|
||||
b := newGFp12(pool).Mul(inv, a, pool)
|
||||
if !isZero(b.x.x.x) ||
|
||||
!isZero(b.x.x.y) ||
|
||||
!isZero(b.x.y.x) ||
|
||||
!isZero(b.x.y.y) ||
|
||||
!isZero(b.x.z.x) ||
|
||||
!isZero(b.x.z.y) ||
|
||||
!isZero(b.y.x.x) ||
|
||||
!isZero(b.y.x.y) ||
|
||||
!isZero(b.y.y.x) ||
|
||||
!isZero(b.y.y.y) ||
|
||||
!isZero(b.y.z.x) ||
|
||||
!isOne(b.y.z.y) {
|
||||
t.Fatalf("bad result for a^-1*a: %s", b)
|
||||
}
|
||||
|
||||
a.Put(pool)
|
||||
b.Put(pool)
|
||||
inv.Put(pool)
|
||||
|
||||
if c := pool.Count(); c > 0 {
|
||||
t.Errorf("Pool count non-zero: %d\n", c)
|
||||
}
|
||||
}
|
||||
|
||||
func TestCurveImpl(t *testing.T) {
|
||||
pool := new(bnPool)
|
||||
|
||||
g := &curvePoint{
|
||||
pool.Get().SetInt64(1),
|
||||
pool.Get().SetInt64(-2),
|
||||
pool.Get().SetInt64(1),
|
||||
pool.Get().SetInt64(0),
|
||||
}
|
||||
|
||||
x := pool.Get().SetInt64(32498273234)
|
||||
X := newCurvePoint(pool).Mul(g, x, pool)
|
||||
|
||||
y := pool.Get().SetInt64(98732423523)
|
||||
Y := newCurvePoint(pool).Mul(g, y, pool)
|
||||
|
||||
s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool)
|
||||
s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool)
|
||||
|
||||
if s1.x.Cmp(s2.x) != 0 ||
|
||||
s2.x.Cmp(s1.x) != 0 {
|
||||
t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y)
|
||||
}
|
||||
|
||||
pool.Put(x)
|
||||
X.Put(pool)
|
||||
pool.Put(y)
|
||||
Y.Put(pool)
|
||||
s1.Put(pool)
|
||||
s2.Put(pool)
|
||||
g.Put(pool)
|
||||
|
||||
if c := pool.Count(); c > 0 {
|
||||
t.Errorf("Pool count non-zero: %d\n", c)
|
||||
}
|
||||
}
|
||||
|
||||
func TestOrderG1(t *testing.T) {
|
||||
g := new(G1).ScalarBaseMult(Order)
|
||||
if !g.p.IsInfinity() {
|
||||
t.Error("G1 has incorrect order")
|
||||
}
|
||||
|
||||
one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
|
||||
g.Add(g, one)
|
||||
g.p.MakeAffine(nil)
|
||||
if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 {
|
||||
t.Errorf("1+0 != 1 in G1")
|
||||
}
|
||||
}
|
||||
|
||||
func TestOrderG2(t *testing.T) {
|
||||
g := new(G2).ScalarBaseMult(Order)
|
||||
if !g.p.IsInfinity() {
|
||||
t.Error("G2 has incorrect order")
|
||||
}
|
||||
|
||||
one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
|
||||
g.Add(g, one)
|
||||
g.p.MakeAffine(nil)
|
||||
if g.p.x.x.Cmp(one.p.x.x) != 0 ||
|
||||
g.p.x.y.Cmp(one.p.x.y) != 0 ||
|
||||
g.p.y.x.Cmp(one.p.y.x) != 0 ||
|
||||
g.p.y.y.Cmp(one.p.y.y) != 0 {
|
||||
t.Errorf("1+0 != 1 in G2")
|
||||
}
|
||||
}
|
||||
|
||||
func TestOrderGT(t *testing.T) {
|
||||
gt := Pair(&G1{curveGen}, &G2{twistGen})
|
||||
g := new(GT).ScalarMult(gt, Order)
|
||||
if !g.p.IsOne() {
|
||||
t.Error("GT has incorrect order")
|
||||
}
|
||||
}
|
||||
|
||||
func TestBilinearity(t *testing.T) {
|
||||
for i := 0; i < 2; i++ {
|
||||
a, p1, _ := RandomG1(rand.Reader)
|
||||
b, p2, _ := RandomG2(rand.Reader)
|
||||
e1 := Pair(p1, p2)
|
||||
|
||||
e2 := Pair(&G1{curveGen}, &G2{twistGen})
|
||||
e2.ScalarMult(e2, a)
|
||||
e2.ScalarMult(e2, b)
|
||||
|
||||
minusE2 := new(GT).Neg(e2)
|
||||
e1.Add(e1, minusE2)
|
||||
|
||||
if !e1.p.IsOne() {
|
||||
t.Fatalf("bad pairing result: %s", e1)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestG1Marshal(t *testing.T) {
|
||||
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
|
||||
form := g.Marshal()
|
||||
_, ok := new(G1).Unmarshal(form)
|
||||
if !ok {
|
||||
t.Fatalf("failed to unmarshal")
|
||||
}
|
||||
|
||||
g.ScalarBaseMult(Order)
|
||||
form = g.Marshal()
|
||||
g2, ok := new(G1).Unmarshal(form)
|
||||
if !ok {
|
||||
t.Fatalf("failed to unmarshal ∞")
|
||||
}
|
||||
if !g2.p.IsInfinity() {
|
||||
t.Fatalf("∞ unmarshaled incorrectly")
|
||||
}
|
||||
}
|
||||
|
||||
func TestG2Marshal(t *testing.T) {
|
||||
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
|
||||
form := g.Marshal()
|
||||
_, ok := new(G2).Unmarshal(form)
|
||||
if !ok {
|
||||
t.Fatalf("failed to unmarshal")
|
||||
}
|
||||
|
||||
g.ScalarBaseMult(Order)
|
||||
form = g.Marshal()
|
||||
g2, ok := new(G2).Unmarshal(form)
|
||||
if !ok {
|
||||
t.Fatalf("failed to unmarshal ∞")
|
||||
}
|
||||
if !g2.p.IsInfinity() {
|
||||
t.Fatalf("∞ unmarshaled incorrectly")
|
||||
}
|
||||
}
|
||||
|
||||
func TestG1Identity(t *testing.T) {
|
||||
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0))
|
||||
if !g.p.IsInfinity() {
|
||||
t.Error("failure")
|
||||
}
|
||||
}
|
||||
|
||||
func TestG2Identity(t *testing.T) {
|
||||
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0))
|
||||
if !g.p.IsInfinity() {
|
||||
t.Error("failure")
|
||||
}
|
||||
}
|
||||
|
||||
func TestTripartiteDiffieHellman(t *testing.T) {
|
||||
a, _ := rand.Int(rand.Reader, Order)
|
||||
b, _ := rand.Int(rand.Reader, Order)
|
||||
c, _ := rand.Int(rand.Reader, Order)
|
||||
|
||||
pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
|
||||
qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
|
||||
pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
|
||||
qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
|
||||
pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
|
||||
qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
|
||||
|
||||
k1 := Pair(pb, qc)
|
||||
k1.ScalarMult(k1, a)
|
||||
k1Bytes := k1.Marshal()
|
||||
|
||||
k2 := Pair(pc, qa)
|
||||
k2.ScalarMult(k2, b)
|
||||
k2Bytes := k2.Marshal()
|
||||
|
||||
k3 := Pair(pa, qb)
|
||||
k3.ScalarMult(k3, c)
|
||||
k3Bytes := k3.Marshal()
|
||||
|
||||
if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
|
||||
t.Errorf("keys didn't agree")
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPairing(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
Pair(&G1{curveGen}, &G2{twistGen})
|
||||
}
|
||||
}
|
44
crypto/bn256/constants.go
Normal file
44
crypto/bn256/constants.go
Normal file
@ -0,0 +1,44 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
func bigFromBase10(s string) *big.Int {
|
||||
n, _ := new(big.Int).SetString(s, 10)
|
||||
return n
|
||||
}
|
||||
|
||||
// u is the BN parameter that determines the prime: 1868033³.
|
||||
var u = bigFromBase10("4965661367192848881")
|
||||
|
||||
// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
|
||||
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
|
||||
|
||||
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
|
||||
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
|
||||
|
||||
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
|
||||
var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")}
|
||||
|
||||
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
|
||||
var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")}
|
||||
|
||||
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
|
||||
var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")}
|
||||
|
||||
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
|
||||
var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616")
|
||||
|
||||
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
|
||||
var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966")
|
||||
|
||||
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
|
||||
var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617")
|
||||
|
||||
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
|
||||
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")}
|
278
crypto/bn256/curve.go
Normal file
278
crypto/bn256/curve.go
Normal file
@ -0,0 +1,278 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
|
||||
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
|
||||
// GF(p).
|
||||
type curvePoint struct {
|
||||
x, y, z, t *big.Int
|
||||
}
|
||||
|
||||
var curveB = new(big.Int).SetInt64(3)
|
||||
|
||||
// curveGen is the generator of G₁.
|
||||
var curveGen = &curvePoint{
|
||||
new(big.Int).SetInt64(1),
|
||||
new(big.Int).SetInt64(-2),
|
||||
new(big.Int).SetInt64(1),
|
||||
new(big.Int).SetInt64(1),
|
||||
}
|
||||
|
||||
func newCurvePoint(pool *bnPool) *curvePoint {
|
||||
return &curvePoint{
|
||||
pool.Get(),
|
||||
pool.Get(),
|
||||
pool.Get(),
|
||||
pool.Get(),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *curvePoint) String() string {
|
||||
c.MakeAffine(new(bnPool))
|
||||
return "(" + c.x.String() + ", " + c.y.String() + ")"
|
||||
}
|
||||
|
||||
func (c *curvePoint) Put(pool *bnPool) {
|
||||
pool.Put(c.x)
|
||||
pool.Put(c.y)
|
||||
pool.Put(c.z)
|
||||
pool.Put(c.t)
|
||||
}
|
||||
|
||||
func (c *curvePoint) Set(a *curvePoint) {
|
||||
c.x.Set(a.x)
|
||||
c.y.Set(a.y)
|
||||
c.z.Set(a.z)
|
||||
c.t.Set(a.t)
|
||||
}
|
||||
|
||||
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
|
||||
func (c *curvePoint) IsOnCurve() bool {
|
||||
yy := new(big.Int).Mul(c.y, c.y)
|
||||
xxx := new(big.Int).Mul(c.x, c.x)
|
||||
xxx.Mul(xxx, c.x)
|
||||
yy.Sub(yy, xxx)
|
||||
yy.Sub(yy, curveB)
|
||||
if yy.Sign() < 0 || yy.Cmp(P) >= 0 {
|
||||
yy.Mod(yy, P)
|
||||
}
|
||||
return yy.Sign() == 0
|
||||
}
|
||||
|
||||
func (c *curvePoint) SetInfinity() {
|
||||
c.z.SetInt64(0)
|
||||
}
|
||||
|
||||
func (c *curvePoint) IsInfinity() bool {
|
||||
return c.z.Sign() == 0
|
||||
}
|
||||
|
||||
func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
|
||||
if a.IsInfinity() {
|
||||
c.Set(b)
|
||||
return
|
||||
}
|
||||
if b.IsInfinity() {
|
||||
c.Set(a)
|
||||
return
|
||||
}
|
||||
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
||||
|
||||
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
|
||||
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
|
||||
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
|
||||
z1z1 := pool.Get().Mul(a.z, a.z)
|
||||
z1z1.Mod(z1z1, P)
|
||||
z2z2 := pool.Get().Mul(b.z, b.z)
|
||||
z2z2.Mod(z2z2, P)
|
||||
u1 := pool.Get().Mul(a.x, z2z2)
|
||||
u1.Mod(u1, P)
|
||||
u2 := pool.Get().Mul(b.x, z1z1)
|
||||
u2.Mod(u2, P)
|
||||
|
||||
t := pool.Get().Mul(b.z, z2z2)
|
||||
t.Mod(t, P)
|
||||
s1 := pool.Get().Mul(a.y, t)
|
||||
s1.Mod(s1, P)
|
||||
|
||||
t.Mul(a.z, z1z1)
|
||||
t.Mod(t, P)
|
||||
s2 := pool.Get().Mul(b.y, t)
|
||||
s2.Mod(s2, P)
|
||||
|
||||
// Compute x = (2h)²(s²-u1-u2)
|
||||
// where s = (s2-s1)/(u2-u1) is the slope of the line through
|
||||
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
|
||||
// This is also:
|
||||
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
|
||||
// = r² - j - 2v
|
||||
// with the notations below.
|
||||
h := pool.Get().Sub(u2, u1)
|
||||
xEqual := h.Sign() == 0
|
||||
|
||||
t.Add(h, h)
|
||||
// i = 4h²
|
||||
i := pool.Get().Mul(t, t)
|
||||
i.Mod(i, P)
|
||||
// j = 4h³
|
||||
j := pool.Get().Mul(h, i)
|
||||
j.Mod(j, P)
|
||||
|
||||
t.Sub(s2, s1)
|
||||
yEqual := t.Sign() == 0
|
||||
if xEqual && yEqual {
|
||||
c.Double(a, pool)
|
||||
return
|
||||
}
|
||||
r := pool.Get().Add(t, t)
|
||||
|
||||
v := pool.Get().Mul(u1, i)
|
||||
v.Mod(v, P)
|
||||
|
||||
// t4 = 4(s2-s1)²
|
||||
t4 := pool.Get().Mul(r, r)
|
||||
t4.Mod(t4, P)
|
||||
t.Add(v, v)
|
||||
t6 := pool.Get().Sub(t4, j)
|
||||
c.x.Sub(t6, t)
|
||||
|
||||
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
|
||||
// This is also
|
||||
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
|
||||
t.Sub(v, c.x) // t7
|
||||
t4.Mul(s1, j) // t8
|
||||
t4.Mod(t4, P)
|
||||
t6.Add(t4, t4) // t9
|
||||
t4.Mul(r, t) // t10
|
||||
t4.Mod(t4, P)
|
||||
c.y.Sub(t4, t6)
|
||||
|
||||
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
|
||||
t.Add(a.z, b.z) // t11
|
||||
t4.Mul(t, t) // t12
|
||||
t4.Mod(t4, P)
|
||||
t.Sub(t4, z1z1) // t13
|
||||
t4.Sub(t, z2z2) // t14
|
||||
c.z.Mul(t4, h)
|
||||
c.z.Mod(c.z, P)
|
||||
|
||||
pool.Put(z1z1)
|
||||
pool.Put(z2z2)
|
||||
pool.Put(u1)
|
||||
pool.Put(u2)
|
||||
pool.Put(t)
|
||||
pool.Put(s1)
|
||||
pool.Put(s2)
|
||||
pool.Put(h)
|
||||
pool.Put(i)
|
||||
pool.Put(j)
|
||||
pool.Put(r)
|
||||
pool.Put(v)
|
||||
pool.Put(t4)
|
||||
pool.Put(t6)
|
||||
}
|
||||
|
||||
func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
||||
A := pool.Get().Mul(a.x, a.x)
|
||||
A.Mod(A, P)
|
||||
B := pool.Get().Mul(a.y, a.y)
|
||||
B.Mod(B, P)
|
||||
C := pool.Get().Mul(B, B)
|
||||
C.Mod(C, P)
|
||||
|
||||
t := pool.Get().Add(a.x, B)
|
||||
t2 := pool.Get().Mul(t, t)
|
||||
t2.Mod(t2, P)
|
||||
t.Sub(t2, A)
|
||||
t2.Sub(t, C)
|
||||
d := pool.Get().Add(t2, t2)
|
||||
t.Add(A, A)
|
||||
e := pool.Get().Add(t, A)
|
||||
f := pool.Get().Mul(e, e)
|
||||
f.Mod(f, P)
|
||||
|
||||
t.Add(d, d)
|
||||
c.x.Sub(f, t)
|
||||
|
||||
t.Add(C, C)
|
||||
t2.Add(t, t)
|
||||
t.Add(t2, t2)
|
||||
c.y.Sub(d, c.x)
|
||||
t2.Mul(e, c.y)
|
||||
t2.Mod(t2, P)
|
||||
c.y.Sub(t2, t)
|
||||
|
||||
t.Mul(a.y, a.z)
|
||||
t.Mod(t, P)
|
||||
c.z.Add(t, t)
|
||||
|
||||
pool.Put(A)
|
||||
pool.Put(B)
|
||||
pool.Put(C)
|
||||
pool.Put(t)
|
||||
pool.Put(t2)
|
||||
pool.Put(d)
|
||||
pool.Put(e)
|
||||
pool.Put(f)
|
||||
}
|
||||
|
||||
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
|
||||
sum := newCurvePoint(pool)
|
||||
sum.SetInfinity()
|
||||
t := newCurvePoint(pool)
|
||||
|
||||
for i := scalar.BitLen(); i >= 0; i-- {
|
||||
t.Double(sum, pool)
|
||||
if scalar.Bit(i) != 0 {
|
||||
sum.Add(t, a, pool)
|
||||
} else {
|
||||
sum.Set(t)
|
||||
}
|
||||
}
|
||||
|
||||
c.Set(sum)
|
||||
sum.Put(pool)
|
||||
t.Put(pool)
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
|
||||
if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
|
||||
return c
|
||||
}
|
||||
|
||||
zInv := pool.Get().ModInverse(c.z, P)
|
||||
t := pool.Get().Mul(c.y, zInv)
|
||||
t.Mod(t, P)
|
||||
zInv2 := pool.Get().Mul(zInv, zInv)
|
||||
zInv2.Mod(zInv2, P)
|
||||
c.y.Mul(t, zInv2)
|
||||
c.y.Mod(c.y, P)
|
||||
t.Mul(c.x, zInv2)
|
||||
t.Mod(t, P)
|
||||
c.x.Set(t)
|
||||
c.z.SetInt64(1)
|
||||
c.t.SetInt64(1)
|
||||
|
||||
pool.Put(zInv)
|
||||
pool.Put(t)
|
||||
pool.Put(zInv2)
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *curvePoint) Negative(a *curvePoint) {
|
||||
c.x.Set(a.x)
|
||||
c.y.Neg(a.y)
|
||||
c.z.Set(a.z)
|
||||
c.t.SetInt64(0)
|
||||
}
|
43
crypto/bn256/example_test.go
Normal file
43
crypto/bn256/example_test.go
Normal file
@ -0,0 +1,43 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
)
|
||||
|
||||
func ExamplePair() {
|
||||
// This implements the tripartite Diffie-Hellman algorithm from "A One
|
||||
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
|
||||
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
|
||||
|
||||
// Each of three parties, a, b and c, generate a private value.
|
||||
a, _ := rand.Int(rand.Reader, Order)
|
||||
b, _ := rand.Int(rand.Reader, Order)
|
||||
c, _ := rand.Int(rand.Reader, Order)
|
||||
|
||||
// Then each party calculates g₁ and g₂ times their private value.
|
||||
pa := new(G1).ScalarBaseMult(a)
|
||||
qa := new(G2).ScalarBaseMult(a)
|
||||
|
||||
pb := new(G1).ScalarBaseMult(b)
|
||||
qb := new(G2).ScalarBaseMult(b)
|
||||
|
||||
pc := new(G1).ScalarBaseMult(c)
|
||||
qc := new(G2).ScalarBaseMult(c)
|
||||
|
||||
// Now each party exchanges its public values with the other two and
|
||||
// all parties can calculate the shared key.
|
||||
k1 := Pair(pb, qc)
|
||||
k1.ScalarMult(k1, a)
|
||||
|
||||
k2 := Pair(pc, qa)
|
||||
k2.ScalarMult(k2, b)
|
||||
|
||||
k3 := Pair(pa, qb)
|
||||
k3.ScalarMult(k3, c)
|
||||
|
||||
// k1, k2 and k3 will all be equal.
|
||||
}
|
200
crypto/bn256/gfp12.go
Normal file
200
crypto/bn256/gfp12.go
Normal file
@ -0,0 +1,200 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
// For details of the algorithms used, see "Multiplication and Squaring on
|
||||
// Pairing-Friendly Fields, Devegili et al.
|
||||
// http://eprint.iacr.org/2006/471.pdf.
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
|
||||
// where ω²=τ.
|
||||
type gfP12 struct {
|
||||
x, y *gfP6 // value is xω + y
|
||||
}
|
||||
|
||||
func newGFp12(pool *bnPool) *gfP12 {
|
||||
return &gfP12{newGFp6(pool), newGFp6(pool)}
|
||||
}
|
||||
|
||||
func (e *gfP12) String() string {
|
||||
return "(" + e.x.String() + "," + e.y.String() + ")"
|
||||
}
|
||||
|
||||
func (e *gfP12) Put(pool *bnPool) {
|
||||
e.x.Put(pool)
|
||||
e.y.Put(pool)
|
||||
}
|
||||
|
||||
func (e *gfP12) Set(a *gfP12) *gfP12 {
|
||||
e.x.Set(a.x)
|
||||
e.y.Set(a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) SetZero() *gfP12 {
|
||||
e.x.SetZero()
|
||||
e.y.SetZero()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) SetOne() *gfP12 {
|
||||
e.x.SetZero()
|
||||
e.y.SetOne()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Minimal() {
|
||||
e.x.Minimal()
|
||||
e.y.Minimal()
|
||||
}
|
||||
|
||||
func (e *gfP12) IsZero() bool {
|
||||
e.Minimal()
|
||||
return e.x.IsZero() && e.y.IsZero()
|
||||
}
|
||||
|
||||
func (e *gfP12) IsOne() bool {
|
||||
e.Minimal()
|
||||
return e.x.IsZero() && e.y.IsOne()
|
||||
}
|
||||
|
||||
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
|
||||
e.x.Negative(a.x)
|
||||
e.y.Set(a.y)
|
||||
return a
|
||||
}
|
||||
|
||||
func (e *gfP12) Negative(a *gfP12) *gfP12 {
|
||||
e.x.Negative(a.x)
|
||||
e.y.Negative(a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
|
||||
func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
|
||||
e.x.Frobenius(a.x, pool)
|
||||
e.y.Frobenius(a.y, pool)
|
||||
e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
|
||||
return e
|
||||
}
|
||||
|
||||
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
|
||||
func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
|
||||
e.x.FrobeniusP2(a.x)
|
||||
e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
|
||||
e.y.FrobeniusP2(a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
|
||||
e.x.Add(a.x, b.x)
|
||||
e.y.Add(a.y, b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
|
||||
e.x.Sub(a.x, b.x)
|
||||
e.y.Sub(a.y, b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
|
||||
tx := newGFp6(pool)
|
||||
tx.Mul(a.x, b.y, pool)
|
||||
t := newGFp6(pool)
|
||||
t.Mul(b.x, a.y, pool)
|
||||
tx.Add(tx, t)
|
||||
|
||||
ty := newGFp6(pool)
|
||||
ty.Mul(a.y, b.y, pool)
|
||||
t.Mul(a.x, b.x, pool)
|
||||
t.MulTau(t, pool)
|
||||
e.y.Add(ty, t)
|
||||
e.x.Set(tx)
|
||||
|
||||
tx.Put(pool)
|
||||
ty.Put(pool)
|
||||
t.Put(pool)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
|
||||
e.x.Mul(e.x, b, pool)
|
||||
e.y.Mul(e.y, b, pool)
|
||||
return e
|
||||
}
|
||||
|
||||
func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
|
||||
sum := newGFp12(pool)
|
||||
sum.SetOne()
|
||||
t := newGFp12(pool)
|
||||
|
||||
for i := power.BitLen() - 1; i >= 0; i-- {
|
||||
t.Square(sum, pool)
|
||||
if power.Bit(i) != 0 {
|
||||
sum.Mul(t, a, pool)
|
||||
} else {
|
||||
sum.Set(t)
|
||||
}
|
||||
}
|
||||
|
||||
c.Set(sum)
|
||||
|
||||
sum.Put(pool)
|
||||
t.Put(pool)
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
|
||||
// Complex squaring algorithm
|
||||
v0 := newGFp6(pool)
|
||||
v0.Mul(a.x, a.y, pool)
|
||||
|
||||
t := newGFp6(pool)
|
||||
t.MulTau(a.x, pool)
|
||||
t.Add(a.y, t)
|
||||
ty := newGFp6(pool)
|
||||
ty.Add(a.x, a.y)
|
||||
ty.Mul(ty, t, pool)
|
||||
ty.Sub(ty, v0)
|
||||
t.MulTau(v0, pool)
|
||||
ty.Sub(ty, t)
|
||||
|
||||
e.y.Set(ty)
|
||||
e.x.Double(v0)
|
||||
|
||||
v0.Put(pool)
|
||||
t.Put(pool)
|
||||
ty.Put(pool)
|
||||
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
|
||||
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||||
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||||
t1 := newGFp6(pool)
|
||||
t2 := newGFp6(pool)
|
||||
|
||||
t1.Square(a.x, pool)
|
||||
t2.Square(a.y, pool)
|
||||
t1.MulTau(t1, pool)
|
||||
t1.Sub(t2, t1)
|
||||
t2.Invert(t1, pool)
|
||||
|
||||
e.x.Negative(a.x)
|
||||
e.y.Set(a.y)
|
||||
e.MulScalar(e, t2, pool)
|
||||
|
||||
t1.Put(pool)
|
||||
t2.Put(pool)
|
||||
|
||||
return e
|
||||
}
|
227
crypto/bn256/gfp2.go
Normal file
227
crypto/bn256/gfp2.go
Normal file
@ -0,0 +1,227 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
// For details of the algorithms used, see "Multiplication and Squaring on
|
||||
// Pairing-Friendly Fields, Devegili et al.
|
||||
// http://eprint.iacr.org/2006/471.pdf.
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// gfP2 implements a field of size p² as a quadratic extension of the base
|
||||
// field where i²=-1.
|
||||
type gfP2 struct {
|
||||
x, y *big.Int // value is xi+y.
|
||||
}
|
||||
|
||||
func newGFp2(pool *bnPool) *gfP2 {
|
||||
return &gfP2{pool.Get(), pool.Get()}
|
||||
}
|
||||
|
||||
func (e *gfP2) String() string {
|
||||
x := new(big.Int).Mod(e.x, P)
|
||||
y := new(big.Int).Mod(e.y, P)
|
||||
return "(" + x.String() + "," + y.String() + ")"
|
||||
}
|
||||
|
||||
func (e *gfP2) Put(pool *bnPool) {
|
||||
pool.Put(e.x)
|
||||
pool.Put(e.y)
|
||||
}
|
||||
|
||||
func (e *gfP2) Set(a *gfP2) *gfP2 {
|
||||
e.x.Set(a.x)
|
||||
e.y.Set(a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) SetZero() *gfP2 {
|
||||
e.x.SetInt64(0)
|
||||
e.y.SetInt64(0)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) SetOne() *gfP2 {
|
||||
e.x.SetInt64(0)
|
||||
e.y.SetInt64(1)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Minimal() {
|
||||
if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 {
|
||||
e.x.Mod(e.x, P)
|
||||
}
|
||||
if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 {
|
||||
e.y.Mod(e.y, P)
|
||||
}
|
||||
}
|
||||
|
||||
func (e *gfP2) IsZero() bool {
|
||||
return e.x.Sign() == 0 && e.y.Sign() == 0
|
||||
}
|
||||
|
||||
func (e *gfP2) IsOne() bool {
|
||||
if e.x.Sign() != 0 {
|
||||
return false
|
||||
}
|
||||
words := e.y.Bits()
|
||||
return len(words) == 1 && words[0] == 1
|
||||
}
|
||||
|
||||
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
|
||||
e.y.Set(a.y)
|
||||
e.x.Neg(a.x)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Negative(a *gfP2) *gfP2 {
|
||||
e.x.Neg(a.x)
|
||||
e.y.Neg(a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
|
||||
e.x.Add(a.x, b.x)
|
||||
e.y.Add(a.y, b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
|
||||
e.x.Sub(a.x, b.x)
|
||||
e.y.Sub(a.y, b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Double(a *gfP2) *gfP2 {
|
||||
e.x.Lsh(a.x, 1)
|
||||
e.y.Lsh(a.y, 1)
|
||||
return e
|
||||
}
|
||||
|
||||
func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
|
||||
sum := newGFp2(pool)
|
||||
sum.SetOne()
|
||||
t := newGFp2(pool)
|
||||
|
||||
for i := power.BitLen() - 1; i >= 0; i-- {
|
||||
t.Square(sum, pool)
|
||||
if power.Bit(i) != 0 {
|
||||
sum.Mul(t, a, pool)
|
||||
} else {
|
||||
sum.Set(t)
|
||||
}
|
||||
}
|
||||
|
||||
c.Set(sum)
|
||||
|
||||
sum.Put(pool)
|
||||
t.Put(pool)
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
// See "Multiplication and Squaring in Pairing-Friendly Fields",
|
||||
// http://eprint.iacr.org/2006/471.pdf
|
||||
func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
|
||||
tx := pool.Get().Mul(a.x, b.y)
|
||||
t := pool.Get().Mul(b.x, a.y)
|
||||
tx.Add(tx, t)
|
||||
tx.Mod(tx, P)
|
||||
|
||||
ty := pool.Get().Mul(a.y, b.y)
|
||||
t.Mul(a.x, b.x)
|
||||
ty.Sub(ty, t)
|
||||
e.y.Mod(ty, P)
|
||||
e.x.Set(tx)
|
||||
|
||||
pool.Put(tx)
|
||||
pool.Put(ty)
|
||||
pool.Put(t)
|
||||
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
|
||||
e.x.Mul(a.x, b)
|
||||
e.y.Mul(a.y, b)
|
||||
return e
|
||||
}
|
||||
|
||||
// MulXi sets e=ξa where ξ=i+9 and then returns e.
|
||||
func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
|
||||
// (xi+y)(i+3) = (9x+y)i+(9y-x)
|
||||
tx := pool.Get().Lsh(a.x, 3)
|
||||
tx.Add(tx, a.x)
|
||||
tx.Add(tx, a.y)
|
||||
|
||||
ty := pool.Get().Lsh(a.y, 3)
|
||||
ty.Add(ty, a.y)
|
||||
ty.Sub(ty, a.x)
|
||||
|
||||
e.x.Set(tx)
|
||||
e.y.Set(ty)
|
||||
|
||||
pool.Put(tx)
|
||||
pool.Put(ty)
|
||||
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
|
||||
// Complex squaring algorithm:
|
||||
// (xi+b)² = (x+y)(y-x) + 2*i*x*y
|
||||
t1 := pool.Get().Sub(a.y, a.x)
|
||||
t2 := pool.Get().Add(a.x, a.y)
|
||||
ty := pool.Get().Mul(t1, t2)
|
||||
ty.Mod(ty, P)
|
||||
|
||||
t1.Mul(a.x, a.y)
|
||||
t1.Lsh(t1, 1)
|
||||
|
||||
e.x.Mod(t1, P)
|
||||
e.y.Set(ty)
|
||||
|
||||
pool.Put(t1)
|
||||
pool.Put(t2)
|
||||
pool.Put(ty)
|
||||
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
|
||||
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||||
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||||
t := pool.Get()
|
||||
t.Mul(a.y, a.y)
|
||||
t2 := pool.Get()
|
||||
t2.Mul(a.x, a.x)
|
||||
t.Add(t, t2)
|
||||
|
||||
inv := pool.Get()
|
||||
inv.ModInverse(t, P)
|
||||
|
||||
e.x.Neg(a.x)
|
||||
e.x.Mul(e.x, inv)
|
||||
e.x.Mod(e.x, P)
|
||||
|
||||
e.y.Mul(a.y, inv)
|
||||
e.y.Mod(e.y, P)
|
||||
|
||||
pool.Put(t)
|
||||
pool.Put(t2)
|
||||
pool.Put(inv)
|
||||
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Real() *big.Int {
|
||||
return e.x
|
||||
}
|
||||
|
||||
func (e *gfP2) Imag() *big.Int {
|
||||
return e.y
|
||||
}
|
296
crypto/bn256/gfp6.go
Normal file
296
crypto/bn256/gfp6.go
Normal file
@ -0,0 +1,296 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
// For details of the algorithms used, see "Multiplication and Squaring on
|
||||
// Pairing-Friendly Fields, Devegili et al.
|
||||
// http://eprint.iacr.org/2006/471.pdf.
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
|
||||
// and ξ=i+9.
|
||||
type gfP6 struct {
|
||||
x, y, z *gfP2 // value is xτ² + yτ + z
|
||||
}
|
||||
|
||||
func newGFp6(pool *bnPool) *gfP6 {
|
||||
return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
|
||||
}
|
||||
|
||||
func (e *gfP6) String() string {
|
||||
return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
|
||||
}
|
||||
|
||||
func (e *gfP6) Put(pool *bnPool) {
|
||||
e.x.Put(pool)
|
||||
e.y.Put(pool)
|
||||
e.z.Put(pool)
|
||||
}
|
||||
|
||||
func (e *gfP6) Set(a *gfP6) *gfP6 {
|
||||
e.x.Set(a.x)
|
||||
e.y.Set(a.y)
|
||||
e.z.Set(a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) SetZero() *gfP6 {
|
||||
e.x.SetZero()
|
||||
e.y.SetZero()
|
||||
e.z.SetZero()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) SetOne() *gfP6 {
|
||||
e.x.SetZero()
|
||||
e.y.SetZero()
|
||||
e.z.SetOne()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Minimal() {
|
||||
e.x.Minimal()
|
||||
e.y.Minimal()
|
||||
e.z.Minimal()
|
||||
}
|
||||
|
||||
func (e *gfP6) IsZero() bool {
|
||||
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
|
||||
}
|
||||
|
||||
func (e *gfP6) IsOne() bool {
|
||||
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
|
||||
}
|
||||
|
||||
func (e *gfP6) Negative(a *gfP6) *gfP6 {
|
||||
e.x.Negative(a.x)
|
||||
e.y.Negative(a.y)
|
||||
e.z.Negative(a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
|
||||
e.x.Conjugate(a.x)
|
||||
e.y.Conjugate(a.y)
|
||||
e.z.Conjugate(a.z)
|
||||
|
||||
e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
|
||||
e.y.Mul(e.y, xiToPMinus1Over3, pool)
|
||||
return e
|
||||
}
|
||||
|
||||
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
|
||||
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
|
||||
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
|
||||
e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
|
||||
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
|
||||
e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
|
||||
e.z.Set(a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
|
||||
e.x.Add(a.x, b.x)
|
||||
e.y.Add(a.y, b.y)
|
||||
e.z.Add(a.z, b.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
|
||||
e.x.Sub(a.x, b.x)
|
||||
e.y.Sub(a.y, b.y)
|
||||
e.z.Sub(a.z, b.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Double(a *gfP6) *gfP6 {
|
||||
e.x.Double(a.x)
|
||||
e.y.Double(a.y)
|
||||
e.z.Double(a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
|
||||
// "Multiplication and Squaring on Pairing-Friendly Fields"
|
||||
// Section 4, Karatsuba method.
|
||||
// http://eprint.iacr.org/2006/471.pdf
|
||||
|
||||
v0 := newGFp2(pool)
|
||||
v0.Mul(a.z, b.z, pool)
|
||||
v1 := newGFp2(pool)
|
||||
v1.Mul(a.y, b.y, pool)
|
||||
v2 := newGFp2(pool)
|
||||
v2.Mul(a.x, b.x, pool)
|
||||
|
||||
t0 := newGFp2(pool)
|
||||
t0.Add(a.x, a.y)
|
||||
t1 := newGFp2(pool)
|
||||
t1.Add(b.x, b.y)
|
||||
tz := newGFp2(pool)
|
||||
tz.Mul(t0, t1, pool)
|
||||
|
||||
tz.Sub(tz, v1)
|
||||
tz.Sub(tz, v2)
|
||||
tz.MulXi(tz, pool)
|
||||
tz.Add(tz, v0)
|
||||
|
||||
t0.Add(a.y, a.z)
|
||||
t1.Add(b.y, b.z)
|
||||
ty := newGFp2(pool)
|
||||
ty.Mul(t0, t1, pool)
|
||||
ty.Sub(ty, v0)
|
||||
ty.Sub(ty, v1)
|
||||
t0.MulXi(v2, pool)
|
||||
ty.Add(ty, t0)
|
||||
|
||||
t0.Add(a.x, a.z)
|
||||
t1.Add(b.x, b.z)
|
||||
tx := newGFp2(pool)
|
||||
tx.Mul(t0, t1, pool)
|
||||
tx.Sub(tx, v0)
|
||||
tx.Add(tx, v1)
|
||||
tx.Sub(tx, v2)
|
||||
|
||||
e.x.Set(tx)
|
||||
e.y.Set(ty)
|
||||
e.z.Set(tz)
|
||||
|
||||
t0.Put(pool)
|
||||
t1.Put(pool)
|
||||
tx.Put(pool)
|
||||
ty.Put(pool)
|
||||
tz.Put(pool)
|
||||
v0.Put(pool)
|
||||
v1.Put(pool)
|
||||
v2.Put(pool)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
|
||||
e.x.Mul(a.x, b, pool)
|
||||
e.y.Mul(a.y, b, pool)
|
||||
e.z.Mul(a.z, b, pool)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
|
||||
e.x.MulScalar(a.x, b)
|
||||
e.y.MulScalar(a.y, b)
|
||||
e.z.MulScalar(a.z, b)
|
||||
return e
|
||||
}
|
||||
|
||||
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
|
||||
func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
|
||||
tz := newGFp2(pool)
|
||||
tz.MulXi(a.x, pool)
|
||||
ty := newGFp2(pool)
|
||||
ty.Set(a.y)
|
||||
e.y.Set(a.z)
|
||||
e.x.Set(ty)
|
||||
e.z.Set(tz)
|
||||
tz.Put(pool)
|
||||
ty.Put(pool)
|
||||
}
|
||||
|
||||
func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
|
||||
v0 := newGFp2(pool).Square(a.z, pool)
|
||||
v1 := newGFp2(pool).Square(a.y, pool)
|
||||
v2 := newGFp2(pool).Square(a.x, pool)
|
||||
|
||||
c0 := newGFp2(pool).Add(a.x, a.y)
|
||||
c0.Square(c0, pool)
|
||||
c0.Sub(c0, v1)
|
||||
c0.Sub(c0, v2)
|
||||
c0.MulXi(c0, pool)
|
||||
c0.Add(c0, v0)
|
||||
|
||||
c1 := newGFp2(pool).Add(a.y, a.z)
|
||||
c1.Square(c1, pool)
|
||||
c1.Sub(c1, v0)
|
||||
c1.Sub(c1, v1)
|
||||
xiV2 := newGFp2(pool).MulXi(v2, pool)
|
||||
c1.Add(c1, xiV2)
|
||||
|
||||
c2 := newGFp2(pool).Add(a.x, a.z)
|
||||
c2.Square(c2, pool)
|
||||
c2.Sub(c2, v0)
|
||||
c2.Add(c2, v1)
|
||||
c2.Sub(c2, v2)
|
||||
|
||||
e.x.Set(c2)
|
||||
e.y.Set(c1)
|
||||
e.z.Set(c0)
|
||||
|
||||
v0.Put(pool)
|
||||
v1.Put(pool)
|
||||
v2.Put(pool)
|
||||
c0.Put(pool)
|
||||
c1.Put(pool)
|
||||
c2.Put(pool)
|
||||
xiV2.Put(pool)
|
||||
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
|
||||
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||||
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||||
|
||||
// Here we can give a short explanation of how it works: let j be a cubic root of
|
||||
// unity in GF(p²) so that 1+j+j²=0.
|
||||
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
||||
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
|
||||
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
|
||||
//
|
||||
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
||||
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
|
||||
//
|
||||
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
|
||||
t1 := newGFp2(pool)
|
||||
|
||||
A := newGFp2(pool)
|
||||
A.Square(a.z, pool)
|
||||
t1.Mul(a.x, a.y, pool)
|
||||
t1.MulXi(t1, pool)
|
||||
A.Sub(A, t1)
|
||||
|
||||
B := newGFp2(pool)
|
||||
B.Square(a.x, pool)
|
||||
B.MulXi(B, pool)
|
||||
t1.Mul(a.y, a.z, pool)
|
||||
B.Sub(B, t1)
|
||||
|
||||
C := newGFp2(pool)
|
||||
C.Square(a.y, pool)
|
||||
t1.Mul(a.x, a.z, pool)
|
||||
C.Sub(C, t1)
|
||||
|
||||
F := newGFp2(pool)
|
||||
F.Mul(C, a.y, pool)
|
||||
F.MulXi(F, pool)
|
||||
t1.Mul(A, a.z, pool)
|
||||
F.Add(F, t1)
|
||||
t1.Mul(B, a.x, pool)
|
||||
t1.MulXi(t1, pool)
|
||||
F.Add(F, t1)
|
||||
|
||||
F.Invert(F, pool)
|
||||
|
||||
e.x.Mul(C, F, pool)
|
||||
e.y.Mul(B, F, pool)
|
||||
e.z.Mul(A, F, pool)
|
||||
|
||||
t1.Put(pool)
|
||||
A.Put(pool)
|
||||
B.Put(pool)
|
||||
C.Put(pool)
|
||||
F.Put(pool)
|
||||
|
||||
return e
|
||||
}
|
71
crypto/bn256/main_test.go
Normal file
71
crypto/bn256/main_test.go
Normal file
@ -0,0 +1,71 @@
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"crypto/rand"
|
||||
)
|
||||
|
||||
func TestRandomG2Marshal(t *testing.T) {
|
||||
for i := 0; i < 10; i++ {
|
||||
n, g2, err := RandomG2(rand.Reader)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
continue
|
||||
}
|
||||
t.Logf("%d: %x\n", n, g2.Marshal())
|
||||
}
|
||||
}
|
||||
|
||||
func TestPairings(t *testing.T) {
|
||||
a1 := new(G1).ScalarBaseMult(bigFromBase10("1"))
|
||||
a2 := new(G1).ScalarBaseMult(bigFromBase10("2"))
|
||||
a37 := new(G1).ScalarBaseMult(bigFromBase10("37"))
|
||||
an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
|
||||
|
||||
b0 := new(G2).ScalarBaseMult(bigFromBase10("0"))
|
||||
b1 := new(G2).ScalarBaseMult(bigFromBase10("1"))
|
||||
b2 := new(G2).ScalarBaseMult(bigFromBase10("2"))
|
||||
b27 := new(G2).ScalarBaseMult(bigFromBase10("27"))
|
||||
b999 := new(G2).ScalarBaseMult(bigFromBase10("999"))
|
||||
bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
|
||||
|
||||
p1 := Pair(a1, b1)
|
||||
pn1 := Pair(a1, bn1)
|
||||
np1 := Pair(an1, b1)
|
||||
if pn1.String() != np1.String() {
|
||||
t.Error("Pairing mismatch: e(a, -b) != e(-a, b)")
|
||||
}
|
||||
if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) {
|
||||
t.Error("MultiAte check gave false negative!")
|
||||
}
|
||||
p0 := new(GT).Add(p1, pn1)
|
||||
p0_2 := Pair(a1, b0)
|
||||
if p0.String() != p0_2.String() {
|
||||
t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1")
|
||||
}
|
||||
p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617"))
|
||||
if p0.String() != p0_3.String() {
|
||||
t.Error("Pairing mismatch: e(a, b) has wrong order")
|
||||
}
|
||||
p2 := Pair(a2, b1)
|
||||
p2_2 := Pair(a1, b2)
|
||||
p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2"))
|
||||
if p2.String() != p2_2.String() {
|
||||
t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)")
|
||||
}
|
||||
if p2.String() != p2_3.String() {
|
||||
t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2")
|
||||
}
|
||||
if p2.String() == p1.String() {
|
||||
t.Error("Pairing is degenerate!")
|
||||
}
|
||||
if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) {
|
||||
t.Error("MultiAte check gave false positive!")
|
||||
}
|
||||
p999 := Pair(a37, b27)
|
||||
p999_2 := Pair(a1, b999)
|
||||
if p999.String() != p999_2.String() {
|
||||
t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)")
|
||||
}
|
||||
}
|
398
crypto/bn256/optate.go
Normal file
398
crypto/bn256/optate.go
Normal file
@ -0,0 +1,398 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
|
||||
// See the mixed addition algorithm from "Faster Computation of the
|
||||
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
|
||||
|
||||
B := newGFp2(pool).Mul(p.x, r.t, pool)
|
||||
|
||||
D := newGFp2(pool).Add(p.y, r.z)
|
||||
D.Square(D, pool)
|
||||
D.Sub(D, r2)
|
||||
D.Sub(D, r.t)
|
||||
D.Mul(D, r.t, pool)
|
||||
|
||||
H := newGFp2(pool).Sub(B, r.x)
|
||||
I := newGFp2(pool).Square(H, pool)
|
||||
|
||||
E := newGFp2(pool).Add(I, I)
|
||||
E.Add(E, E)
|
||||
|
||||
J := newGFp2(pool).Mul(H, E, pool)
|
||||
|
||||
L1 := newGFp2(pool).Sub(D, r.y)
|
||||
L1.Sub(L1, r.y)
|
||||
|
||||
V := newGFp2(pool).Mul(r.x, E, pool)
|
||||
|
||||
rOut = newTwistPoint(pool)
|
||||
rOut.x.Square(L1, pool)
|
||||
rOut.x.Sub(rOut.x, J)
|
||||
rOut.x.Sub(rOut.x, V)
|
||||
rOut.x.Sub(rOut.x, V)
|
||||
|
||||
rOut.z.Add(r.z, H)
|
||||
rOut.z.Square(rOut.z, pool)
|
||||
rOut.z.Sub(rOut.z, r.t)
|
||||
rOut.z.Sub(rOut.z, I)
|
||||
|
||||
t := newGFp2(pool).Sub(V, rOut.x)
|
||||
t.Mul(t, L1, pool)
|
||||
t2 := newGFp2(pool).Mul(r.y, J, pool)
|
||||
t2.Add(t2, t2)
|
||||
rOut.y.Sub(t, t2)
|
||||
|
||||
rOut.t.Square(rOut.z, pool)
|
||||
|
||||
t.Add(p.y, rOut.z)
|
||||
t.Square(t, pool)
|
||||
t.Sub(t, r2)
|
||||
t.Sub(t, rOut.t)
|
||||
|
||||
t2.Mul(L1, p.x, pool)
|
||||
t2.Add(t2, t2)
|
||||
a = newGFp2(pool)
|
||||
a.Sub(t2, t)
|
||||
|
||||
c = newGFp2(pool)
|
||||
c.MulScalar(rOut.z, q.y)
|
||||
c.Add(c, c)
|
||||
|
||||
b = newGFp2(pool)
|
||||
b.SetZero()
|
||||
b.Sub(b, L1)
|
||||
b.MulScalar(b, q.x)
|
||||
b.Add(b, b)
|
||||
|
||||
B.Put(pool)
|
||||
D.Put(pool)
|
||||
H.Put(pool)
|
||||
I.Put(pool)
|
||||
E.Put(pool)
|
||||
J.Put(pool)
|
||||
L1.Put(pool)
|
||||
V.Put(pool)
|
||||
t.Put(pool)
|
||||
t2.Put(pool)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
|
||||
// See the doubling algorithm for a=0 from "Faster Computation of the
|
||||
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
|
||||
|
||||
A := newGFp2(pool).Square(r.x, pool)
|
||||
B := newGFp2(pool).Square(r.y, pool)
|
||||
C := newGFp2(pool).Square(B, pool)
|
||||
|
||||
D := newGFp2(pool).Add(r.x, B)
|
||||
D.Square(D, pool)
|
||||
D.Sub(D, A)
|
||||
D.Sub(D, C)
|
||||
D.Add(D, D)
|
||||
|
||||
E := newGFp2(pool).Add(A, A)
|
||||
E.Add(E, A)
|
||||
|
||||
G := newGFp2(pool).Square(E, pool)
|
||||
|
||||
rOut = newTwistPoint(pool)
|
||||
rOut.x.Sub(G, D)
|
||||
rOut.x.Sub(rOut.x, D)
|
||||
|
||||
rOut.z.Add(r.y, r.z)
|
||||
rOut.z.Square(rOut.z, pool)
|
||||
rOut.z.Sub(rOut.z, B)
|
||||
rOut.z.Sub(rOut.z, r.t)
|
||||
|
||||
rOut.y.Sub(D, rOut.x)
|
||||
rOut.y.Mul(rOut.y, E, pool)
|
||||
t := newGFp2(pool).Add(C, C)
|
||||
t.Add(t, t)
|
||||
t.Add(t, t)
|
||||
rOut.y.Sub(rOut.y, t)
|
||||
|
||||
rOut.t.Square(rOut.z, pool)
|
||||
|
||||
t.Mul(E, r.t, pool)
|
||||
t.Add(t, t)
|
||||
b = newGFp2(pool)
|
||||
b.SetZero()
|
||||
b.Sub(b, t)
|
||||
b.MulScalar(b, q.x)
|
||||
|
||||
a = newGFp2(pool)
|
||||
a.Add(r.x, E)
|
||||
a.Square(a, pool)
|
||||
a.Sub(a, A)
|
||||
a.Sub(a, G)
|
||||
t.Add(B, B)
|
||||
t.Add(t, t)
|
||||
a.Sub(a, t)
|
||||
|
||||
c = newGFp2(pool)
|
||||
c.Mul(rOut.z, r.t, pool)
|
||||
c.Add(c, c)
|
||||
c.MulScalar(c, q.y)
|
||||
|
||||
A.Put(pool)
|
||||
B.Put(pool)
|
||||
C.Put(pool)
|
||||
D.Put(pool)
|
||||
E.Put(pool)
|
||||
G.Put(pool)
|
||||
t.Put(pool)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
|
||||
a2 := newGFp6(pool)
|
||||
a2.x.SetZero()
|
||||
a2.y.Set(a)
|
||||
a2.z.Set(b)
|
||||
a2.Mul(a2, ret.x, pool)
|
||||
t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
|
||||
|
||||
t := newGFp2(pool)
|
||||
t.Add(b, c)
|
||||
t2 := newGFp6(pool)
|
||||
t2.x.SetZero()
|
||||
t2.y.Set(a)
|
||||
t2.z.Set(t)
|
||||
ret.x.Add(ret.x, ret.y)
|
||||
|
||||
ret.y.Set(t3)
|
||||
|
||||
ret.x.Mul(ret.x, t2, pool)
|
||||
ret.x.Sub(ret.x, a2)
|
||||
ret.x.Sub(ret.x, ret.y)
|
||||
a2.MulTau(a2, pool)
|
||||
ret.y.Add(ret.y, a2)
|
||||
|
||||
a2.Put(pool)
|
||||
t3.Put(pool)
|
||||
t2.Put(pool)
|
||||
t.Put(pool)
|
||||
}
|
||||
|
||||
// sixuPlus2NAF is 6u+2 in non-adjacent form.
|
||||
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
|
||||
0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
|
||||
1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
|
||||
1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
|
||||
|
||||
// miller implements the Miller loop for calculating the Optimal Ate pairing.
|
||||
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
|
||||
func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
|
||||
ret := newGFp12(pool)
|
||||
ret.SetOne()
|
||||
|
||||
aAffine := newTwistPoint(pool)
|
||||
aAffine.Set(q)
|
||||
aAffine.MakeAffine(pool)
|
||||
|
||||
bAffine := newCurvePoint(pool)
|
||||
bAffine.Set(p)
|
||||
bAffine.MakeAffine(pool)
|
||||
|
||||
minusA := newTwistPoint(pool)
|
||||
minusA.Negative(aAffine, pool)
|
||||
|
||||
r := newTwistPoint(pool)
|
||||
r.Set(aAffine)
|
||||
|
||||
r2 := newGFp2(pool)
|
||||
r2.Square(aAffine.y, pool)
|
||||
|
||||
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
|
||||
a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
|
||||
if i != len(sixuPlus2NAF)-1 {
|
||||
ret.Square(ret, pool)
|
||||
}
|
||||
|
||||
mulLine(ret, a, b, c, pool)
|
||||
a.Put(pool)
|
||||
b.Put(pool)
|
||||
c.Put(pool)
|
||||
r.Put(pool)
|
||||
r = newR
|
||||
|
||||
switch sixuPlus2NAF[i-1] {
|
||||
case 1:
|
||||
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
|
||||
case -1:
|
||||
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
|
||||
mulLine(ret, a, b, c, pool)
|
||||
a.Put(pool)
|
||||
b.Put(pool)
|
||||
c.Put(pool)
|
||||
r.Put(pool)
|
||||
r = newR
|
||||
}
|
||||
|
||||
// In order to calculate Q1 we have to convert q from the sextic twist
|
||||
// to the full GF(p^12) group, apply the Frobenius there, and convert
|
||||
// back.
|
||||
//
|
||||
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
|
||||
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
|
||||
// where x̄ is the conjugate of x. If we are going to apply the inverse
|
||||
// isomorphism we need a value with a single coefficient of ω² so we
|
||||
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
|
||||
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
|
||||
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
|
||||
// ω².
|
||||
//
|
||||
// A similar argument can be made for the y value.
|
||||
|
||||
q1 := newTwistPoint(pool)
|
||||
q1.x.Conjugate(aAffine.x)
|
||||
q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
|
||||
q1.y.Conjugate(aAffine.y)
|
||||
q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
|
||||
q1.z.SetOne()
|
||||
q1.t.SetOne()
|
||||
|
||||
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
|
||||
// out and we are left only with the factors from the isomorphism. In
|
||||
// the case of x, we end up with a pure number which is why
|
||||
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
|
||||
// ignore this to end up with -Q2.
|
||||
|
||||
minusQ2 := newTwistPoint(pool)
|
||||
minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
|
||||
minusQ2.y.Set(aAffine.y)
|
||||
minusQ2.z.SetOne()
|
||||
minusQ2.t.SetOne()
|
||||
|
||||
r2.Square(q1.y, pool)
|
||||
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
|
||||
mulLine(ret, a, b, c, pool)
|
||||
a.Put(pool)
|
||||
b.Put(pool)
|
||||
c.Put(pool)
|
||||
r.Put(pool)
|
||||
r = newR
|
||||
|
||||
r2.Square(minusQ2.y, pool)
|
||||
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
|
||||
mulLine(ret, a, b, c, pool)
|
||||
a.Put(pool)
|
||||
b.Put(pool)
|
||||
c.Put(pool)
|
||||
r.Put(pool)
|
||||
r = newR
|
||||
|
||||
aAffine.Put(pool)
|
||||
bAffine.Put(pool)
|
||||
minusA.Put(pool)
|
||||
r.Put(pool)
|
||||
r2.Put(pool)
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
|
||||
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
|
||||
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
|
||||
func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
|
||||
t1 := newGFp12(pool)
|
||||
|
||||
// This is the p^6-Frobenius
|
||||
t1.x.Negative(in.x)
|
||||
t1.y.Set(in.y)
|
||||
|
||||
inv := newGFp12(pool)
|
||||
inv.Invert(in, pool)
|
||||
t1.Mul(t1, inv, pool)
|
||||
|
||||
t2 := newGFp12(pool).FrobeniusP2(t1, pool)
|
||||
t1.Mul(t1, t2, pool)
|
||||
|
||||
fp := newGFp12(pool).Frobenius(t1, pool)
|
||||
fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
|
||||
fp3 := newGFp12(pool).Frobenius(fp2, pool)
|
||||
|
||||
fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
|
||||
fu.Exp(t1, u, pool)
|
||||
fu2.Exp(fu, u, pool)
|
||||
fu3.Exp(fu2, u, pool)
|
||||
|
||||
y3 := newGFp12(pool).Frobenius(fu, pool)
|
||||
fu2p := newGFp12(pool).Frobenius(fu2, pool)
|
||||
fu3p := newGFp12(pool).Frobenius(fu3, pool)
|
||||
y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
|
||||
|
||||
y0 := newGFp12(pool)
|
||||
y0.Mul(fp, fp2, pool)
|
||||
y0.Mul(y0, fp3, pool)
|
||||
|
||||
y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
|
||||
y1.Conjugate(t1)
|
||||
y5.Conjugate(fu2)
|
||||
y3.Conjugate(y3)
|
||||
y4.Mul(fu, fu2p, pool)
|
||||
y4.Conjugate(y4)
|
||||
|
||||
y6 := newGFp12(pool)
|
||||
y6.Mul(fu3, fu3p, pool)
|
||||
y6.Conjugate(y6)
|
||||
|
||||
t0 := newGFp12(pool)
|
||||
t0.Square(y6, pool)
|
||||
t0.Mul(t0, y4, pool)
|
||||
t0.Mul(t0, y5, pool)
|
||||
t1.Mul(y3, y5, pool)
|
||||
t1.Mul(t1, t0, pool)
|
||||
t0.Mul(t0, y2, pool)
|
||||
t1.Square(t1, pool)
|
||||
t1.Mul(t1, t0, pool)
|
||||
t1.Square(t1, pool)
|
||||
t0.Mul(t1, y1, pool)
|
||||
t1.Mul(t1, y0, pool)
|
||||
t0.Square(t0, pool)
|
||||
t0.Mul(t0, t1, pool)
|
||||
|
||||
inv.Put(pool)
|
||||
t1.Put(pool)
|
||||
t2.Put(pool)
|
||||
fp.Put(pool)
|
||||
fp2.Put(pool)
|
||||
fp3.Put(pool)
|
||||
fu.Put(pool)
|
||||
fu2.Put(pool)
|
||||
fu3.Put(pool)
|
||||
fu2p.Put(pool)
|
||||
fu3p.Put(pool)
|
||||
y0.Put(pool)
|
||||
y1.Put(pool)
|
||||
y2.Put(pool)
|
||||
y3.Put(pool)
|
||||
y4.Put(pool)
|
||||
y5.Put(pool)
|
||||
y6.Put(pool)
|
||||
|
||||
return t0
|
||||
}
|
||||
|
||||
func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
|
||||
e := miller(a, b, pool)
|
||||
ret := finalExponentiation(e, pool)
|
||||
e.Put(pool)
|
||||
|
||||
if a.IsInfinity() || b.IsInfinity() {
|
||||
ret.SetOne()
|
||||
}
|
||||
|
||||
return ret
|
||||
}
|
249
crypto/bn256/twist.go
Normal file
249
crypto/bn256/twist.go
Normal file
@ -0,0 +1,249 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
|
||||
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
|
||||
// n-torsion points of this curve over GF(p²) (where n = Order)
|
||||
type twistPoint struct {
|
||||
x, y, z, t *gfP2
|
||||
}
|
||||
|
||||
var twistB = &gfP2{
|
||||
bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
|
||||
bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
|
||||
}
|
||||
|
||||
// twistGen is the generator of group G₂.
|
||||
var twistGen = &twistPoint{
|
||||
&gfP2{
|
||||
bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
|
||||
bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
|
||||
},
|
||||
&gfP2{
|
||||
bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
|
||||
bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
|
||||
},
|
||||
&gfP2{
|
||||
bigFromBase10("0"),
|
||||
bigFromBase10("1"),
|
||||
},
|
||||
&gfP2{
|
||||
bigFromBase10("0"),
|
||||
bigFromBase10("1"),
|
||||
},
|
||||
}
|
||||
|
||||
func newTwistPoint(pool *bnPool) *twistPoint {
|
||||
return &twistPoint{
|
||||
newGFp2(pool),
|
||||
newGFp2(pool),
|
||||
newGFp2(pool),
|
||||
newGFp2(pool),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *twistPoint) String() string {
|
||||
return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
|
||||
}
|
||||
|
||||
func (c *twistPoint) Put(pool *bnPool) {
|
||||
c.x.Put(pool)
|
||||
c.y.Put(pool)
|
||||
c.z.Put(pool)
|
||||
c.t.Put(pool)
|
||||
}
|
||||
|
||||
func (c *twistPoint) Set(a *twistPoint) {
|
||||
c.x.Set(a.x)
|
||||
c.y.Set(a.y)
|
||||
c.z.Set(a.z)
|
||||
c.t.Set(a.t)
|
||||
}
|
||||
|
||||
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
|
||||
func (c *twistPoint) IsOnCurve() bool {
|
||||
pool := new(bnPool)
|
||||
yy := newGFp2(pool).Square(c.y, pool)
|
||||
xxx := newGFp2(pool).Square(c.x, pool)
|
||||
xxx.Mul(xxx, c.x, pool)
|
||||
yy.Sub(yy, xxx)
|
||||
yy.Sub(yy, twistB)
|
||||
yy.Minimal()
|
||||
return yy.x.Sign() == 0 && yy.y.Sign() == 0
|
||||
}
|
||||
|
||||
func (c *twistPoint) SetInfinity() {
|
||||
c.z.SetZero()
|
||||
}
|
||||
|
||||
func (c *twistPoint) IsInfinity() bool {
|
||||
return c.z.IsZero()
|
||||
}
|
||||
|
||||
func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
|
||||
// For additional comments, see the same function in curve.go.
|
||||
|
||||
if a.IsInfinity() {
|
||||
c.Set(b)
|
||||
return
|
||||
}
|
||||
if b.IsInfinity() {
|
||||
c.Set(a)
|
||||
return
|
||||
}
|
||||
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
||||
z1z1 := newGFp2(pool).Square(a.z, pool)
|
||||
z2z2 := newGFp2(pool).Square(b.z, pool)
|
||||
u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
|
||||
u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
|
||||
|
||||
t := newGFp2(pool).Mul(b.z, z2z2, pool)
|
||||
s1 := newGFp2(pool).Mul(a.y, t, pool)
|
||||
|
||||
t.Mul(a.z, z1z1, pool)
|
||||
s2 := newGFp2(pool).Mul(b.y, t, pool)
|
||||
|
||||
h := newGFp2(pool).Sub(u2, u1)
|
||||
xEqual := h.IsZero()
|
||||
|
||||
t.Add(h, h)
|
||||
i := newGFp2(pool).Square(t, pool)
|
||||
j := newGFp2(pool).Mul(h, i, pool)
|
||||
|
||||
t.Sub(s2, s1)
|
||||
yEqual := t.IsZero()
|
||||
if xEqual && yEqual {
|
||||
c.Double(a, pool)
|
||||
return
|
||||
}
|
||||
r := newGFp2(pool).Add(t, t)
|
||||
|
||||
v := newGFp2(pool).Mul(u1, i, pool)
|
||||
|
||||
t4 := newGFp2(pool).Square(r, pool)
|
||||
t.Add(v, v)
|
||||
t6 := newGFp2(pool).Sub(t4, j)
|
||||
c.x.Sub(t6, t)
|
||||
|
||||
t.Sub(v, c.x) // t7
|
||||
t4.Mul(s1, j, pool) // t8
|
||||
t6.Add(t4, t4) // t9
|
||||
t4.Mul(r, t, pool) // t10
|
||||
c.y.Sub(t4, t6)
|
||||
|
||||
t.Add(a.z, b.z) // t11
|
||||
t4.Square(t, pool) // t12
|
||||
t.Sub(t4, z1z1) // t13
|
||||
t4.Sub(t, z2z2) // t14
|
||||
c.z.Mul(t4, h, pool)
|
||||
|
||||
z1z1.Put(pool)
|
||||
z2z2.Put(pool)
|
||||
u1.Put(pool)
|
||||
u2.Put(pool)
|
||||
t.Put(pool)
|
||||
s1.Put(pool)
|
||||
s2.Put(pool)
|
||||
h.Put(pool)
|
||||
i.Put(pool)
|
||||
j.Put(pool)
|
||||
r.Put(pool)
|
||||
v.Put(pool)
|
||||
t4.Put(pool)
|
||||
t6.Put(pool)
|
||||
}
|
||||
|
||||
func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
||||
A := newGFp2(pool).Square(a.x, pool)
|
||||
B := newGFp2(pool).Square(a.y, pool)
|
||||
C := newGFp2(pool).Square(B, pool)
|
||||
|
||||
t := newGFp2(pool).Add(a.x, B)
|
||||
t2 := newGFp2(pool).Square(t, pool)
|
||||
t.Sub(t2, A)
|
||||
t2.Sub(t, C)
|
||||
d := newGFp2(pool).Add(t2, t2)
|
||||
t.Add(A, A)
|
||||
e := newGFp2(pool).Add(t, A)
|
||||
f := newGFp2(pool).Square(e, pool)
|
||||
|
||||
t.Add(d, d)
|
||||
c.x.Sub(f, t)
|
||||
|
||||
t.Add(C, C)
|
||||
t2.Add(t, t)
|
||||
t.Add(t2, t2)
|
||||
c.y.Sub(d, c.x)
|
||||
t2.Mul(e, c.y, pool)
|
||||
c.y.Sub(t2, t)
|
||||
|
||||
t.Mul(a.y, a.z, pool)
|
||||
c.z.Add(t, t)
|
||||
|
||||
A.Put(pool)
|
||||
B.Put(pool)
|
||||
C.Put(pool)
|
||||
t.Put(pool)
|
||||
t2.Put(pool)
|
||||
d.Put(pool)
|
||||
e.Put(pool)
|
||||
f.Put(pool)
|
||||
}
|
||||
|
||||
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
|
||||
sum := newTwistPoint(pool)
|
||||
sum.SetInfinity()
|
||||
t := newTwistPoint(pool)
|
||||
|
||||
for i := scalar.BitLen(); i >= 0; i-- {
|
||||
t.Double(sum, pool)
|
||||
if scalar.Bit(i) != 0 {
|
||||
sum.Add(t, a, pool)
|
||||
} else {
|
||||
sum.Set(t)
|
||||
}
|
||||
}
|
||||
|
||||
c.Set(sum)
|
||||
sum.Put(pool)
|
||||
t.Put(pool)
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
|
||||
if c.z.IsOne() {
|
||||
return c
|
||||
}
|
||||
|
||||
zInv := newGFp2(pool).Invert(c.z, pool)
|
||||
t := newGFp2(pool).Mul(c.y, zInv, pool)
|
||||
zInv2 := newGFp2(pool).Square(zInv, pool)
|
||||
c.y.Mul(t, zInv2, pool)
|
||||
t.Mul(c.x, zInv2, pool)
|
||||
c.x.Set(t)
|
||||
c.z.SetOne()
|
||||
c.t.SetOne()
|
||||
|
||||
zInv.Put(pool)
|
||||
t.Put(pool)
|
||||
zInv2.Put(pool)
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
|
||||
c.x.Set(a.x)
|
||||
c.y.SetZero()
|
||||
c.y.Sub(c.y, a.y)
|
||||
c.z.Set(a.z)
|
||||
c.t.SetZero()
|
||||
}
|
@ -48,7 +48,7 @@ func runTrace(tracer *JavascriptTracer) (interface{}, error) {
|
||||
contract := vm.NewContract(account{}, account{}, big.NewInt(0), 10000)
|
||||
contract.Code = []byte{byte(vm.PUSH1), 0x1, byte(vm.PUSH1), 0x1, 0x0}
|
||||
|
||||
_, err := env.Interpreter().Run(contract, []byte{})
|
||||
_, err := env.Interpreter().Run(0, contract, []byte{})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
@ -523,7 +523,7 @@ func (env *Work) commitTransactions(mux *event.TypeMux, txs *types.TransactionsB
|
||||
continue
|
||||
}
|
||||
// Start executing the transaction
|
||||
env.state.StartRecord(tx.Hash(), common.Hash{}, env.tcount)
|
||||
env.state.Prepare(tx.Hash(), common.Hash{}, env.tcount)
|
||||
|
||||
err, logs := env.commitTransaction(tx, bc, coinbase, gp)
|
||||
switch err {
|
||||
|
@ -34,6 +34,8 @@ var (
|
||||
EIP150Hash: MainNetHomesteadGasRepriceHash,
|
||||
EIP155Block: MainNetSpuriousDragon,
|
||||
EIP158Block: MainNetSpuriousDragon,
|
||||
MetropolisBlock: MainNetMetropolisBlock,
|
||||
|
||||
Ethash: new(EthashConfig),
|
||||
}
|
||||
|
||||
@ -47,6 +49,8 @@ var (
|
||||
EIP150Hash: common.HexToHash("0x41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d"),
|
||||
EIP155Block: big.NewInt(10),
|
||||
EIP158Block: big.NewInt(10),
|
||||
MetropolisBlock: TestNetMetropolisBlock,
|
||||
|
||||
Ethash: new(EthashConfig),
|
||||
}
|
||||
|
||||
@ -68,15 +72,15 @@ var (
|
||||
|
||||
// AllProtocolChanges contains every protocol change (EIPs)
|
||||
// introduced and accepted by the Ethereum core developers.
|
||||
// TestChainConfig is like AllProtocolChanges but has chain ID 1.
|
||||
//
|
||||
// This configuration is intentionally not using keyed fields.
|
||||
// This configuration must *always* have all forks enabled, which
|
||||
// means that all fields must be set at all times. This forces
|
||||
// anyone adding flags to the config to also have to set these
|
||||
// fields.
|
||||
AllProtocolChanges = &ChainConfig{big.NewInt(1337), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), new(EthashConfig), nil}
|
||||
TestChainConfig = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), new(EthashConfig), nil}
|
||||
AllProtocolChanges = &ChainConfig{big.NewInt(1337), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), new(EthashConfig), nil}
|
||||
TestChainConfig = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), nil, new(EthashConfig), nil}
|
||||
TestRules = TestChainConfig.Rules(new(big.Int))
|
||||
)
|
||||
|
||||
// ChainConfig is the core config which determines the blockchain settings.
|
||||
@ -95,8 +99,10 @@ type ChainConfig struct {
|
||||
EIP150Block *big.Int `json:"eip150Block,omitempty"` // EIP150 HF block (nil = no fork)
|
||||
EIP150Hash common.Hash `json:"eip150Hash,omitempty"` // EIP150 HF hash (fast sync aid)
|
||||
|
||||
EIP155Block *big.Int `json:"eip155Block,omitempty"` // EIP155 HF block
|
||||
EIP158Block *big.Int `json:"eip158Block,omitempty"` // EIP158 HF block
|
||||
EIP155Block *big.Int `json:"eip155Block"` // EIP155 HF block
|
||||
EIP158Block *big.Int `json:"eip158Block"` // EIP158 HF block
|
||||
|
||||
MetropolisBlock *big.Int `json:"metropolisBlock"` // Metropolis switch block (nil = no fork, 0 = alraedy on homestead)
|
||||
|
||||
// Various consensus engines
|
||||
Ethash *EthashConfig `json:"ethash,omitempty"`
|
||||
@ -141,6 +147,7 @@ func (c *ChainConfig) String() string {
|
||||
c.EIP150Block,
|
||||
c.EIP155Block,
|
||||
c.EIP158Block,
|
||||
c.MetropolisBlock,
|
||||
engine,
|
||||
)
|
||||
}
|
||||
@ -251,6 +258,13 @@ func configNumEqual(x, y *big.Int) bool {
|
||||
return x.Cmp(y) == 0
|
||||
}
|
||||
|
||||
func (c *ChainConfig) IsMetropolis(num *big.Int) bool {
|
||||
if c.MetropolisBlock == nil || num == nil {
|
||||
return false
|
||||
}
|
||||
return num.Cmp(c.MetropolisBlock) >= 0
|
||||
}
|
||||
|
||||
// ConfigCompatError is raised if the locally-stored blockchain is initialised with a
|
||||
// ChainConfig that would alter the past.
|
||||
type ConfigCompatError struct {
|
||||
@ -281,3 +295,22 @@ func newCompatError(what string, storedblock, newblock *big.Int) *ConfigCompatEr
|
||||
func (err *ConfigCompatError) Error() string {
|
||||
return fmt.Sprintf("mismatching %s in database (have %d, want %d, rewindto %d)", err.What, err.StoredConfig, err.NewConfig, err.RewindTo)
|
||||
}
|
||||
|
||||
// Rules wraps ChainConfig and is merely syntatic sugar or can be used for functions
|
||||
// that do not have or require information about the block.
|
||||
//
|
||||
// Rules is a one time interface meaning that it shouldn't be used in between transition
|
||||
// phases.
|
||||
type Rules struct {
|
||||
ChainId *big.Int
|
||||
IsHomestead, IsEIP150, IsEIP155, IsEIP158 bool
|
||||
IsMetropolis bool
|
||||
}
|
||||
|
||||
func (c *ChainConfig) Rules(num *big.Int) Rules {
|
||||
chainId := c.ChainId
|
||||
if chainId == nil {
|
||||
chainId = new(big.Int)
|
||||
}
|
||||
return Rules{ChainId: new(big.Int).Set(chainId), IsHomestead: c.IsHomestead(num), IsEIP150: c.IsEIP150(num), IsEIP155: c.IsEIP155(num), IsEIP158: c.IsEIP158(num), IsMetropolis: c.IsMetropolis(num)}
|
||||
}
|
||||
|
@ -17,6 +17,7 @@
|
||||
package params
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/big"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
@ -38,6 +39,9 @@ var (
|
||||
TestNetSpuriousDragon = big.NewInt(10)
|
||||
MainNetSpuriousDragon = big.NewInt(2675000)
|
||||
|
||||
TestNetChainID = big.NewInt(3) // Testnet default chain ID
|
||||
MainNetChainID = big.NewInt(1) // Mainnet default chain ID
|
||||
TestNetMetropolisBlock = big.NewInt(math.MaxInt64)
|
||||
MainNetMetropolisBlock = big.NewInt(math.MaxInt64)
|
||||
|
||||
TestNetChainID = big.NewInt(3) // Test net default chain ID
|
||||
MainNetChainID = big.NewInt(1) // main net default chain ID
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user