p2p: move rlpx into separate package (#21464)
This change moves the RLPx protocol implementation into a separate package, p2p/rlpx. The new package can be used to establish RLPx connections for protocol testing purposes. Co-authored-by: Felix Lange <fjl@twurst.com>
This commit is contained in:
parent
2c097bb7a2
commit
129cf075e9
@ -63,6 +63,7 @@ func init() {
|
||||
discv5Command,
|
||||
dnsCommand,
|
||||
nodesetCommand,
|
||||
rlpxCommand,
|
||||
}
|
||||
}
|
||||
|
||||
|
94
cmd/devp2p/rlpxcmd.go
Normal file
94
cmd/devp2p/rlpxcmd.go
Normal file
@ -0,0 +1,94 @@
|
||||
// Copyright 2020 The go-ethereum Authors
|
||||
// This file is part of go-ethereum.
|
||||
//
|
||||
// go-ethereum is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// go-ethereum is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"net"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common/hexutil"
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/ethereum/go-ethereum/p2p"
|
||||
"github.com/ethereum/go-ethereum/p2p/rlpx"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
"gopkg.in/urfave/cli.v1"
|
||||
)
|
||||
|
||||
var (
|
||||
rlpxCommand = cli.Command{
|
||||
Name: "rlpx",
|
||||
Usage: "RLPx Commands",
|
||||
Subcommands: []cli.Command{
|
||||
rlpxPingCommand,
|
||||
},
|
||||
}
|
||||
rlpxPingCommand = cli.Command{
|
||||
Name: "ping",
|
||||
Usage: "Perform a RLPx handshake",
|
||||
ArgsUsage: "<node>",
|
||||
Action: rlpxPing,
|
||||
}
|
||||
)
|
||||
|
||||
func rlpxPing(ctx *cli.Context) error {
|
||||
n := getNodeArg(ctx)
|
||||
|
||||
fd, err := net.Dial("tcp", fmt.Sprintf("%v:%d", n.IP(), n.TCP()))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
conn := rlpx.NewConn(fd, n.Pubkey())
|
||||
|
||||
ourKey, _ := crypto.GenerateKey()
|
||||
_, err = conn.Handshake(ourKey)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
code, data, _, err := conn.Read()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
switch code {
|
||||
case 0:
|
||||
var h devp2pHandshake
|
||||
if err := rlp.DecodeBytes(data, &h); err != nil {
|
||||
return fmt.Errorf("invalid handshake: %v", err)
|
||||
}
|
||||
fmt.Printf("%+v\n", h)
|
||||
case 1:
|
||||
var msg []p2p.DiscReason
|
||||
if rlp.DecodeBytes(data, &msg); len(msg) == 0 {
|
||||
return fmt.Errorf("invalid disconnect message")
|
||||
}
|
||||
return fmt.Errorf("received disconnect message: %v", msg[0])
|
||||
default:
|
||||
return fmt.Errorf("invalid message code %d, expected handshake (code zero)", code)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// devp2pHandshake is the RLP structure of the devp2p protocol handshake.
|
||||
type devp2pHandshake struct {
|
||||
Version uint64
|
||||
Name string
|
||||
Caps []p2p.Cap
|
||||
ListenPort uint64
|
||||
ID hexutil.Bytes // secp256k1 public key
|
||||
// Ignore additional fields (for forward compatibility).
|
||||
Rest []rlp.RawValue `rlp:"tail"`
|
||||
}
|
@ -18,11 +18,9 @@ package p2p
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"io"
|
||||
"runtime"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
)
|
||||
@ -141,12 +139,3 @@ func TestEOFSignal(t *testing.T) {
|
||||
default:
|
||||
}
|
||||
}
|
||||
|
||||
func unhex(str string) []byte {
|
||||
r := strings.NewReplacer("\t", "", " ", "", "\n", "")
|
||||
b, err := hex.DecodeString(r.Replace(str))
|
||||
if err != nil {
|
||||
panic(fmt.Sprintf("invalid hex string: %q", str))
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
@ -86,9 +86,15 @@ func newNode(id enode.ID, addr string) *enode.Node {
|
||||
}
|
||||
|
||||
func testPeer(protos []Protocol) (func(), *conn, *Peer, <-chan error) {
|
||||
fd1, fd2 := net.Pipe()
|
||||
c1 := &conn{fd: fd1, node: newNode(randomID(), ""), transport: newTestTransport(&newkey().PublicKey, fd1)}
|
||||
c2 := &conn{fd: fd2, node: newNode(randomID(), ""), transport: newTestTransport(&newkey().PublicKey, fd2)}
|
||||
var (
|
||||
fd1, fd2 = net.Pipe()
|
||||
key1, key2 = newkey(), newkey()
|
||||
t1 = newTestTransport(&key2.PublicKey, fd1, nil)
|
||||
t2 = newTestTransport(&key1.PublicKey, fd2, &key1.PublicKey)
|
||||
)
|
||||
|
||||
c1 := &conn{fd: fd1, node: newNode(uintID(1), ""), transport: t1}
|
||||
c2 := &conn{fd: fd2, node: newNode(uintID(2), ""), transport: t2}
|
||||
for _, p := range protos {
|
||||
c1.caps = append(c1.caps, p.cap())
|
||||
c2.caps = append(c2.caps, p.cap())
|
||||
@ -173,9 +179,12 @@ func TestPeerPing(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
// This test checks that a disconnect message sent by a peer is returned
|
||||
// as the error from Peer.run.
|
||||
func TestPeerDisconnect(t *testing.T) {
|
||||
closer, rw, _, disc := testPeer(nil)
|
||||
defer closer()
|
||||
|
||||
if err := SendItems(rw, discMsg, DiscQuitting); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
@ -14,7 +14,8 @@
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package p2p
|
||||
// Package rlpx implements the RLPx transport protocol.
|
||||
package rlpx
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
@ -29,23 +30,280 @@ import (
|
||||
"fmt"
|
||||
"hash"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
mrand "math/rand"
|
||||
"net"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common/bitutil"
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/ethereum/go-ethereum/crypto/ecies"
|
||||
"github.com/ethereum/go-ethereum/metrics"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
"github.com/golang/snappy"
|
||||
"golang.org/x/crypto/sha3"
|
||||
)
|
||||
|
||||
// Conn is an RLPx network connection. It wraps a low-level network connection. The
|
||||
// underlying connection should not be used for other activity when it is wrapped by Conn.
|
||||
//
|
||||
// Before sending messages, a handshake must be performed by calling the Handshake method.
|
||||
// This type is not generally safe for concurrent use, but reading and writing of messages
|
||||
// may happen concurrently after the handshake.
|
||||
type Conn struct {
|
||||
dialDest *ecdsa.PublicKey
|
||||
conn net.Conn
|
||||
handshake *handshakeState
|
||||
snappy bool
|
||||
}
|
||||
|
||||
type handshakeState struct {
|
||||
enc cipher.Stream
|
||||
dec cipher.Stream
|
||||
|
||||
macCipher cipher.Block
|
||||
egressMAC hash.Hash
|
||||
ingressMAC hash.Hash
|
||||
}
|
||||
|
||||
// NewConn wraps the given network connection. If dialDest is non-nil, the connection
|
||||
// behaves as the initiator during the handshake.
|
||||
func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn {
|
||||
return &Conn{
|
||||
dialDest: dialDest,
|
||||
conn: conn,
|
||||
}
|
||||
}
|
||||
|
||||
// SetSnappy enables or disables snappy compression of messages. This is usually called
|
||||
// after the devp2p Hello message exchange when the negotiated version indicates that
|
||||
// compression is available on both ends of the connection.
|
||||
func (c *Conn) SetSnappy(snappy bool) {
|
||||
c.snappy = snappy
|
||||
}
|
||||
|
||||
// SetReadDeadline sets the deadline for all future read operations.
|
||||
func (c *Conn) SetReadDeadline(time time.Time) error {
|
||||
return c.conn.SetReadDeadline(time)
|
||||
}
|
||||
|
||||
// SetWriteDeadline sets the deadline for all future write operations.
|
||||
func (c *Conn) SetWriteDeadline(time time.Time) error {
|
||||
return c.conn.SetWriteDeadline(time)
|
||||
}
|
||||
|
||||
// SetDeadline sets the deadline for all future read and write operations.
|
||||
func (c *Conn) SetDeadline(time time.Time) error {
|
||||
return c.conn.SetDeadline(time)
|
||||
}
|
||||
|
||||
// Read reads a message from the connection.
|
||||
func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
|
||||
if c.handshake == nil {
|
||||
panic("can't ReadMsg before handshake")
|
||||
}
|
||||
|
||||
frame, err := c.handshake.readFrame(c.conn)
|
||||
if err != nil {
|
||||
return 0, nil, 0, err
|
||||
}
|
||||
code, data, err = rlp.SplitUint64(frame)
|
||||
if err != nil {
|
||||
return 0, nil, 0, fmt.Errorf("invalid message code: %v", err)
|
||||
}
|
||||
wireSize = len(data)
|
||||
|
||||
// If snappy is enabled, verify and decompress message.
|
||||
if c.snappy {
|
||||
var actualSize int
|
||||
actualSize, err = snappy.DecodedLen(data)
|
||||
if err != nil {
|
||||
return code, nil, 0, err
|
||||
}
|
||||
if actualSize > maxUint24 {
|
||||
return code, nil, 0, errPlainMessageTooLarge
|
||||
}
|
||||
data, err = snappy.Decode(nil, data)
|
||||
}
|
||||
return code, data, wireSize, err
|
||||
}
|
||||
|
||||
func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) {
|
||||
// read the header
|
||||
headbuf := make([]byte, 32)
|
||||
if _, err := io.ReadFull(conn, headbuf); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// verify header mac
|
||||
shouldMAC := updateMAC(h.ingressMAC, h.macCipher, headbuf[:16])
|
||||
if !hmac.Equal(shouldMAC, headbuf[16:]) {
|
||||
return nil, errors.New("bad header MAC")
|
||||
}
|
||||
h.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
|
||||
fsize := readInt24(headbuf)
|
||||
// ignore protocol type for now
|
||||
|
||||
// read the frame content
|
||||
var rsize = fsize // frame size rounded up to 16 byte boundary
|
||||
if padding := fsize % 16; padding > 0 {
|
||||
rsize += 16 - padding
|
||||
}
|
||||
framebuf := make([]byte, rsize)
|
||||
if _, err := io.ReadFull(conn, framebuf); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// read and validate frame MAC. we can re-use headbuf for that.
|
||||
h.ingressMAC.Write(framebuf)
|
||||
fmacseed := h.ingressMAC.Sum(nil)
|
||||
if _, err := io.ReadFull(conn, headbuf[:16]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
shouldMAC = updateMAC(h.ingressMAC, h.macCipher, fmacseed)
|
||||
if !hmac.Equal(shouldMAC, headbuf[:16]) {
|
||||
return nil, errors.New("bad frame MAC")
|
||||
}
|
||||
|
||||
// decrypt frame content
|
||||
h.dec.XORKeyStream(framebuf, framebuf)
|
||||
return framebuf[:fsize], nil
|
||||
}
|
||||
|
||||
// Write writes a message to the connection.
|
||||
//
|
||||
// Write returns the written size of the message data. This may be less than or equal to
|
||||
// len(data) depending on whether snappy compression is enabled.
|
||||
func (c *Conn) Write(code uint64, data []byte) (uint32, error) {
|
||||
if c.handshake == nil {
|
||||
panic("can't WriteMsg before handshake")
|
||||
}
|
||||
if len(data) > maxUint24 {
|
||||
return 0, errPlainMessageTooLarge
|
||||
}
|
||||
if c.snappy {
|
||||
data = snappy.Encode(nil, data)
|
||||
}
|
||||
|
||||
wireSize := uint32(len(data))
|
||||
err := c.handshake.writeFrame(c.conn, code, data)
|
||||
return wireSize, err
|
||||
}
|
||||
|
||||
func (h *handshakeState) writeFrame(conn io.Writer, code uint64, data []byte) error {
|
||||
ptype, _ := rlp.EncodeToBytes(code)
|
||||
|
||||
// write header
|
||||
headbuf := make([]byte, 32)
|
||||
fsize := len(ptype) + len(data)
|
||||
if fsize > maxUint24 {
|
||||
return errPlainMessageTooLarge
|
||||
}
|
||||
putInt24(uint32(fsize), headbuf)
|
||||
copy(headbuf[3:], zeroHeader)
|
||||
h.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
|
||||
|
||||
// write header MAC
|
||||
copy(headbuf[16:], updateMAC(h.egressMAC, h.macCipher, headbuf[:16]))
|
||||
if _, err := conn.Write(headbuf); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// write encrypted frame, updating the egress MAC hash with
|
||||
// the data written to conn.
|
||||
tee := cipher.StreamWriter{S: h.enc, W: io.MultiWriter(conn, h.egressMAC)}
|
||||
if _, err := tee.Write(ptype); err != nil {
|
||||
return err
|
||||
}
|
||||
if _, err := tee.Write(data); err != nil {
|
||||
return err
|
||||
}
|
||||
if padding := fsize % 16; padding > 0 {
|
||||
if _, err := tee.Write(zero16[:16-padding]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
// write frame MAC. egress MAC hash is up to date because
|
||||
// frame content was written to it as well.
|
||||
fmacseed := h.egressMAC.Sum(nil)
|
||||
mac := updateMAC(h.egressMAC, h.macCipher, fmacseed)
|
||||
_, err := conn.Write(mac)
|
||||
return err
|
||||
}
|
||||
|
||||
func readInt24(b []byte) uint32 {
|
||||
return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
|
||||
}
|
||||
|
||||
func putInt24(v uint32, b []byte) {
|
||||
b[0] = byte(v >> 16)
|
||||
b[1] = byte(v >> 8)
|
||||
b[2] = byte(v)
|
||||
}
|
||||
|
||||
// updateMAC reseeds the given hash with encrypted seed.
|
||||
// it returns the first 16 bytes of the hash sum after seeding.
|
||||
func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
|
||||
aesbuf := make([]byte, aes.BlockSize)
|
||||
block.Encrypt(aesbuf, mac.Sum(nil))
|
||||
for i := range aesbuf {
|
||||
aesbuf[i] ^= seed[i]
|
||||
}
|
||||
mac.Write(aesbuf)
|
||||
return mac.Sum(nil)[:16]
|
||||
}
|
||||
|
||||
// Handshake performs the handshake. This must be called before any data is written
|
||||
// or read from the connection.
|
||||
func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
|
||||
var (
|
||||
sec Secrets
|
||||
err error
|
||||
)
|
||||
if c.dialDest != nil {
|
||||
sec, err = initiatorEncHandshake(c.conn, prv, c.dialDest)
|
||||
} else {
|
||||
sec, err = receiverEncHandshake(c.conn, prv)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
c.InitWithSecrets(sec)
|
||||
return sec.remote, err
|
||||
}
|
||||
|
||||
// InitWithSecrets injects connection secrets as if a handshake had
|
||||
// been performed. This cannot be called after the handshake.
|
||||
func (c *Conn) InitWithSecrets(sec Secrets) {
|
||||
if c.handshake != nil {
|
||||
panic("can't handshake twice")
|
||||
}
|
||||
macc, err := aes.NewCipher(sec.MAC)
|
||||
if err != nil {
|
||||
panic("invalid MAC secret: " + err.Error())
|
||||
}
|
||||
encc, err := aes.NewCipher(sec.AES)
|
||||
if err != nil {
|
||||
panic("invalid AES secret: " + err.Error())
|
||||
}
|
||||
// we use an all-zeroes IV for AES because the key used
|
||||
// for encryption is ephemeral.
|
||||
iv := make([]byte, encc.BlockSize())
|
||||
c.handshake = &handshakeState{
|
||||
enc: cipher.NewCTR(encc, iv),
|
||||
dec: cipher.NewCTR(encc, iv),
|
||||
macCipher: macc,
|
||||
egressMAC: sec.EgressMAC,
|
||||
ingressMAC: sec.IngressMAC,
|
||||
}
|
||||
}
|
||||
|
||||
// Close closes the underlying network connection.
|
||||
func (c *Conn) Close() error {
|
||||
return c.conn.Close()
|
||||
}
|
||||
|
||||
// Constants for the handshake.
|
||||
const (
|
||||
maxUint24 = ^uint32(0) >> 8
|
||||
maxUint24 = int(^uint32(0) >> 8)
|
||||
|
||||
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
|
||||
sigLen = crypto.SignatureLength // elliptic S256
|
||||
@ -59,139 +317,25 @@ const (
|
||||
|
||||
encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake
|
||||
encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
|
||||
|
||||
// total timeout for encryption handshake and protocol
|
||||
// handshake in both directions.
|
||||
handshakeTimeout = 5 * time.Second
|
||||
|
||||
// This is the timeout for sending the disconnect reason.
|
||||
// This is shorter than the usual timeout because we don't want
|
||||
// to wait if the connection is known to be bad anyway.
|
||||
discWriteTimeout = 1 * time.Second
|
||||
)
|
||||
|
||||
var (
|
||||
// this is used in place of actual frame header data.
|
||||
// TODO: replace this when Msg contains the protocol type code.
|
||||
zeroHeader = []byte{0xC2, 0x80, 0x80}
|
||||
// sixteen zero bytes
|
||||
zero16 = make([]byte, 16)
|
||||
|
||||
// errPlainMessageTooLarge is returned if a decompressed message length exceeds
|
||||
// the allowed 24 bits (i.e. length >= 16MB).
|
||||
var errPlainMessageTooLarge = errors.New("message length >= 16MB")
|
||||
|
||||
// rlpx is the transport protocol used by actual (non-test) connections.
|
||||
// It wraps the frame encoder with locks and read/write deadlines.
|
||||
type rlpx struct {
|
||||
fd net.Conn
|
||||
|
||||
rmu, wmu sync.Mutex
|
||||
rw *rlpxFrameRW
|
||||
}
|
||||
|
||||
func newRLPX(fd net.Conn) transport {
|
||||
fd.SetDeadline(time.Now().Add(handshakeTimeout))
|
||||
return &rlpx{fd: fd}
|
||||
}
|
||||
|
||||
func (t *rlpx) ReadMsg() (Msg, error) {
|
||||
t.rmu.Lock()
|
||||
defer t.rmu.Unlock()
|
||||
t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
|
||||
return t.rw.ReadMsg()
|
||||
}
|
||||
|
||||
func (t *rlpx) WriteMsg(msg Msg) error {
|
||||
t.wmu.Lock()
|
||||
defer t.wmu.Unlock()
|
||||
t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
|
||||
return t.rw.WriteMsg(msg)
|
||||
}
|
||||
|
||||
func (t *rlpx) close(err error) {
|
||||
t.wmu.Lock()
|
||||
defer t.wmu.Unlock()
|
||||
// Tell the remote end why we're disconnecting if possible.
|
||||
if t.rw != nil {
|
||||
if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
|
||||
// rlpx tries to send DiscReason to disconnected peer
|
||||
// if the connection is net.Pipe (in-memory simulation)
|
||||
// it hangs forever, since net.Pipe does not implement
|
||||
// a write deadline. Because of this only try to send
|
||||
// the disconnect reason message if there is no error.
|
||||
if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err == nil {
|
||||
SendItems(t.rw, discMsg, r)
|
||||
}
|
||||
}
|
||||
}
|
||||
t.fd.Close()
|
||||
}
|
||||
|
||||
func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
|
||||
// Writing our handshake happens concurrently, we prefer
|
||||
// returning the handshake read error. If the remote side
|
||||
// disconnects us early with a valid reason, we should return it
|
||||
// as the error so it can be tracked elsewhere.
|
||||
werr := make(chan error, 1)
|
||||
go func() { werr <- Send(t.rw, handshakeMsg, our) }()
|
||||
if their, err = readProtocolHandshake(t.rw); err != nil {
|
||||
<-werr // make sure the write terminates too
|
||||
return nil, err
|
||||
}
|
||||
if err := <-werr; err != nil {
|
||||
return nil, fmt.Errorf("write error: %v", err)
|
||||
}
|
||||
// If the protocol version supports Snappy encoding, upgrade immediately
|
||||
t.rw.snappy = their.Version >= snappyProtocolVersion
|
||||
|
||||
return their, nil
|
||||
}
|
||||
|
||||
func readProtocolHandshake(rw MsgReader) (*protoHandshake, error) {
|
||||
msg, err := rw.ReadMsg()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if msg.Size > baseProtocolMaxMsgSize {
|
||||
return nil, fmt.Errorf("message too big")
|
||||
}
|
||||
if msg.Code == discMsg {
|
||||
// Disconnect before protocol handshake is valid according to the
|
||||
// spec and we send it ourself if the post-handshake checks fail.
|
||||
// We can't return the reason directly, though, because it is echoed
|
||||
// back otherwise. Wrap it in a string instead.
|
||||
var reason [1]DiscReason
|
||||
rlp.Decode(msg.Payload, &reason)
|
||||
return nil, reason[0]
|
||||
}
|
||||
if msg.Code != handshakeMsg {
|
||||
return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
|
||||
}
|
||||
var hs protoHandshake
|
||||
if err := msg.Decode(&hs); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(hs.ID) != 64 || !bitutil.TestBytes(hs.ID) {
|
||||
return nil, DiscInvalidIdentity
|
||||
}
|
||||
return &hs, nil
|
||||
}
|
||||
|
||||
// doEncHandshake runs the protocol handshake using authenticated
|
||||
// messages. the protocol handshake is the first authenticated message
|
||||
// and also verifies whether the encryption handshake 'worked' and the
|
||||
// remote side actually provided the right public key.
|
||||
func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *ecdsa.PublicKey) (*ecdsa.PublicKey, error) {
|
||||
var (
|
||||
sec secrets
|
||||
err error
|
||||
errPlainMessageTooLarge = errors.New("message length >= 16MB")
|
||||
)
|
||||
if dial == nil {
|
||||
sec, err = receiverEncHandshake(t.fd, prv)
|
||||
} else {
|
||||
sec, err = initiatorEncHandshake(t.fd, prv, dial)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
t.wmu.Lock()
|
||||
t.rw = newRLPXFrameRW(t.fd, sec)
|
||||
t.wmu.Unlock()
|
||||
return sec.Remote.ExportECDSA(), nil
|
||||
|
||||
// Secrets represents the connection secrets which are negotiated during the handshake.
|
||||
type Secrets struct {
|
||||
AES, MAC []byte
|
||||
EgressMAC, IngressMAC hash.Hash
|
||||
remote *ecdsa.PublicKey
|
||||
}
|
||||
|
||||
// encHandshake contains the state of the encryption handshake.
|
||||
@ -203,15 +347,6 @@ type encHandshake struct {
|
||||
remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
|
||||
}
|
||||
|
||||
// secrets represents the connection secrets
|
||||
// which are negotiated during the encryption handshake.
|
||||
type secrets struct {
|
||||
Remote *ecies.PublicKey
|
||||
AES, MAC []byte
|
||||
EgressMAC, IngressMAC hash.Hash
|
||||
Token []byte
|
||||
}
|
||||
|
||||
// RLPx v4 handshake auth (defined in EIP-8).
|
||||
type authMsgV4 struct {
|
||||
gotPlain bool // whether read packet had plain format.
|
||||
@ -235,118 +370,11 @@ type authRespV4 struct {
|
||||
Rest []rlp.RawValue `rlp:"tail"`
|
||||
}
|
||||
|
||||
// secrets is called after the handshake is completed.
|
||||
// It extracts the connection secrets from the handshake values.
|
||||
func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
|
||||
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
|
||||
if err != nil {
|
||||
return secrets{}, err
|
||||
}
|
||||
|
||||
// derive base secrets from ephemeral key agreement
|
||||
sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
|
||||
aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
|
||||
s := secrets{
|
||||
Remote: h.remote,
|
||||
AES: aesSecret,
|
||||
MAC: crypto.Keccak256(ecdheSecret, aesSecret),
|
||||
}
|
||||
|
||||
// setup sha3 instances for the MACs
|
||||
mac1 := sha3.NewLegacyKeccak256()
|
||||
mac1.Write(xor(s.MAC, h.respNonce))
|
||||
mac1.Write(auth)
|
||||
mac2 := sha3.NewLegacyKeccak256()
|
||||
mac2.Write(xor(s.MAC, h.initNonce))
|
||||
mac2.Write(authResp)
|
||||
if h.initiator {
|
||||
s.EgressMAC, s.IngressMAC = mac1, mac2
|
||||
} else {
|
||||
s.EgressMAC, s.IngressMAC = mac2, mac1
|
||||
}
|
||||
|
||||
return s, nil
|
||||
}
|
||||
|
||||
// staticSharedSecret returns the static shared secret, the result
|
||||
// of key agreement between the local and remote static node key.
|
||||
func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
|
||||
return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen)
|
||||
}
|
||||
|
||||
// initiatorEncHandshake negotiates a session token on conn.
|
||||
// it should be called on the dialing side of the connection.
|
||||
//
|
||||
// prv is the local client's private key.
|
||||
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s secrets, err error) {
|
||||
h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)}
|
||||
authMsg, err := h.makeAuthMsg(prv)
|
||||
if err != nil {
|
||||
return s, err
|
||||
}
|
||||
authPacket, err := sealEIP8(authMsg, h)
|
||||
if err != nil {
|
||||
return s, err
|
||||
}
|
||||
if _, err = conn.Write(authPacket); err != nil {
|
||||
return s, err
|
||||
}
|
||||
|
||||
authRespMsg := new(authRespV4)
|
||||
authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
|
||||
if err != nil {
|
||||
return s, err
|
||||
}
|
||||
if err := h.handleAuthResp(authRespMsg); err != nil {
|
||||
return s, err
|
||||
}
|
||||
return h.secrets(authPacket, authRespPacket)
|
||||
}
|
||||
|
||||
// makeAuthMsg creates the initiator handshake message.
|
||||
func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
|
||||
// Generate random initiator nonce.
|
||||
h.initNonce = make([]byte, shaLen)
|
||||
_, err := rand.Read(h.initNonce)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// Generate random keypair to for ECDH.
|
||||
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Sign known message: static-shared-secret ^ nonce
|
||||
token, err := h.staticSharedSecret(prv)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
signed := xor(token, h.initNonce)
|
||||
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
msg := new(authMsgV4)
|
||||
copy(msg.Signature[:], signature)
|
||||
copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
|
||||
copy(msg.Nonce[:], h.initNonce)
|
||||
msg.Version = 4
|
||||
return msg, nil
|
||||
}
|
||||
|
||||
func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
|
||||
h.respNonce = msg.Nonce[:]
|
||||
h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
|
||||
return err
|
||||
}
|
||||
|
||||
// receiverEncHandshake negotiates a session token on conn.
|
||||
// it should be called on the listening side of the connection.
|
||||
//
|
||||
// prv is the local client's private key.
|
||||
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s secrets, err error) {
|
||||
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) {
|
||||
authMsg := new(authMsgV4)
|
||||
authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
|
||||
if err != nil {
|
||||
@ -408,6 +436,114 @@ func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) erro
|
||||
return nil
|
||||
}
|
||||
|
||||
// secrets is called after the handshake is completed.
|
||||
// It extracts the connection secrets from the handshake values.
|
||||
func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) {
|
||||
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
|
||||
if err != nil {
|
||||
return Secrets{}, err
|
||||
}
|
||||
|
||||
// derive base secrets from ephemeral key agreement
|
||||
sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
|
||||
aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
|
||||
s := Secrets{
|
||||
remote: h.remote.ExportECDSA(),
|
||||
AES: aesSecret,
|
||||
MAC: crypto.Keccak256(ecdheSecret, aesSecret),
|
||||
}
|
||||
|
||||
// setup sha3 instances for the MACs
|
||||
mac1 := sha3.NewLegacyKeccak256()
|
||||
mac1.Write(xor(s.MAC, h.respNonce))
|
||||
mac1.Write(auth)
|
||||
mac2 := sha3.NewLegacyKeccak256()
|
||||
mac2.Write(xor(s.MAC, h.initNonce))
|
||||
mac2.Write(authResp)
|
||||
if h.initiator {
|
||||
s.EgressMAC, s.IngressMAC = mac1, mac2
|
||||
} else {
|
||||
s.EgressMAC, s.IngressMAC = mac2, mac1
|
||||
}
|
||||
|
||||
return s, nil
|
||||
}
|
||||
|
||||
// staticSharedSecret returns the static shared secret, the result
|
||||
// of key agreement between the local and remote static node key.
|
||||
func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
|
||||
return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen)
|
||||
}
|
||||
|
||||
// initiatorEncHandshake negotiates a session token on conn.
|
||||
// it should be called on the dialing side of the connection.
|
||||
//
|
||||
// prv is the local client's private key.
|
||||
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) {
|
||||
h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)}
|
||||
authMsg, err := h.makeAuthMsg(prv)
|
||||
if err != nil {
|
||||
return s, err
|
||||
}
|
||||
authPacket, err := sealEIP8(authMsg, h)
|
||||
if err != nil {
|
||||
return s, err
|
||||
}
|
||||
|
||||
if _, err = conn.Write(authPacket); err != nil {
|
||||
return s, err
|
||||
}
|
||||
|
||||
authRespMsg := new(authRespV4)
|
||||
authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
|
||||
if err != nil {
|
||||
return s, err
|
||||
}
|
||||
if err := h.handleAuthResp(authRespMsg); err != nil {
|
||||
return s, err
|
||||
}
|
||||
return h.secrets(authPacket, authRespPacket)
|
||||
}
|
||||
|
||||
// makeAuthMsg creates the initiator handshake message.
|
||||
func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
|
||||
// Generate random initiator nonce.
|
||||
h.initNonce = make([]byte, shaLen)
|
||||
_, err := rand.Read(h.initNonce)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// Generate random keypair to for ECDH.
|
||||
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Sign known message: static-shared-secret ^ nonce
|
||||
token, err := h.staticSharedSecret(prv)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
signed := xor(token, h.initNonce)
|
||||
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
msg := new(authMsgV4)
|
||||
copy(msg.Signature[:], signature)
|
||||
copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
|
||||
copy(msg.Nonce[:], h.initNonce)
|
||||
msg.Version = 4
|
||||
return msg, nil
|
||||
}
|
||||
|
||||
func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
|
||||
h.respNonce = msg.Nonce[:]
|
||||
h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
|
||||
return err
|
||||
}
|
||||
|
||||
func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
|
||||
// Generate random nonce.
|
||||
h.respNonce = make([]byte, shaLen)
|
||||
@ -531,201 +667,3 @@ func xor(one, other []byte) (xor []byte) {
|
||||
}
|
||||
return xor
|
||||
}
|
||||
|
||||
var (
|
||||
// this is used in place of actual frame header data.
|
||||
// TODO: replace this when Msg contains the protocol type code.
|
||||
zeroHeader = []byte{0xC2, 0x80, 0x80}
|
||||
// sixteen zero bytes
|
||||
zero16 = make([]byte, 16)
|
||||
)
|
||||
|
||||
// rlpxFrameRW implements a simplified version of RLPx framing.
|
||||
// chunked messages are not supported and all headers are equal to
|
||||
// zeroHeader.
|
||||
//
|
||||
// rlpxFrameRW is not safe for concurrent use from multiple goroutines.
|
||||
type rlpxFrameRW struct {
|
||||
conn io.ReadWriter
|
||||
enc cipher.Stream
|
||||
dec cipher.Stream
|
||||
|
||||
macCipher cipher.Block
|
||||
egressMAC hash.Hash
|
||||
ingressMAC hash.Hash
|
||||
|
||||
snappy bool
|
||||
}
|
||||
|
||||
func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
|
||||
macc, err := aes.NewCipher(s.MAC)
|
||||
if err != nil {
|
||||
panic("invalid MAC secret: " + err.Error())
|
||||
}
|
||||
encc, err := aes.NewCipher(s.AES)
|
||||
if err != nil {
|
||||
panic("invalid AES secret: " + err.Error())
|
||||
}
|
||||
// we use an all-zeroes IV for AES because the key used
|
||||
// for encryption is ephemeral.
|
||||
iv := make([]byte, encc.BlockSize())
|
||||
return &rlpxFrameRW{
|
||||
conn: conn,
|
||||
enc: cipher.NewCTR(encc, iv),
|
||||
dec: cipher.NewCTR(encc, iv),
|
||||
macCipher: macc,
|
||||
egressMAC: s.EgressMAC,
|
||||
ingressMAC: s.IngressMAC,
|
||||
}
|
||||
}
|
||||
|
||||
func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
|
||||
ptype, _ := rlp.EncodeToBytes(msg.Code)
|
||||
|
||||
// if snappy is enabled, compress message now
|
||||
if rw.snappy {
|
||||
if msg.Size > maxUint24 {
|
||||
return errPlainMessageTooLarge
|
||||
}
|
||||
payload, _ := ioutil.ReadAll(msg.Payload)
|
||||
payload = snappy.Encode(nil, payload)
|
||||
|
||||
msg.Payload = bytes.NewReader(payload)
|
||||
msg.Size = uint32(len(payload))
|
||||
}
|
||||
msg.meterSize = msg.Size
|
||||
if metrics.Enabled && msg.meterCap.Name != "" { // don't meter non-subprotocol messages
|
||||
m := fmt.Sprintf("%s/%s/%d/%#02x", egressMeterName, msg.meterCap.Name, msg.meterCap.Version, msg.meterCode)
|
||||
metrics.GetOrRegisterMeter(m, nil).Mark(int64(msg.meterSize))
|
||||
metrics.GetOrRegisterMeter(m+"/packets", nil).Mark(1)
|
||||
}
|
||||
// write header
|
||||
headbuf := make([]byte, 32)
|
||||
fsize := uint32(len(ptype)) + msg.Size
|
||||
if fsize > maxUint24 {
|
||||
return errors.New("message size overflows uint24")
|
||||
}
|
||||
putInt24(fsize, headbuf) // TODO: check overflow
|
||||
copy(headbuf[3:], zeroHeader)
|
||||
rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
|
||||
|
||||
// write header MAC
|
||||
copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
|
||||
if _, err := rw.conn.Write(headbuf); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// write encrypted frame, updating the egress MAC hash with
|
||||
// the data written to conn.
|
||||
tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
|
||||
if _, err := tee.Write(ptype); err != nil {
|
||||
return err
|
||||
}
|
||||
if _, err := io.Copy(tee, msg.Payload); err != nil {
|
||||
return err
|
||||
}
|
||||
if padding := fsize % 16; padding > 0 {
|
||||
if _, err := tee.Write(zero16[:16-padding]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
// write frame MAC. egress MAC hash is up to date because
|
||||
// frame content was written to it as well.
|
||||
fmacseed := rw.egressMAC.Sum(nil)
|
||||
mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
|
||||
_, err := rw.conn.Write(mac)
|
||||
return err
|
||||
}
|
||||
|
||||
func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
|
||||
// read the header
|
||||
headbuf := make([]byte, 32)
|
||||
if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
// verify header mac
|
||||
shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
|
||||
if !hmac.Equal(shouldMAC, headbuf[16:]) {
|
||||
return msg, errors.New("bad header MAC")
|
||||
}
|
||||
rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
|
||||
fsize := readInt24(headbuf)
|
||||
// ignore protocol type for now
|
||||
|
||||
// read the frame content
|
||||
var rsize = fsize // frame size rounded up to 16 byte boundary
|
||||
if padding := fsize % 16; padding > 0 {
|
||||
rsize += 16 - padding
|
||||
}
|
||||
framebuf := make([]byte, rsize)
|
||||
if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
|
||||
// read and validate frame MAC. we can re-use headbuf for that.
|
||||
rw.ingressMAC.Write(framebuf)
|
||||
fmacseed := rw.ingressMAC.Sum(nil)
|
||||
if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
|
||||
if !hmac.Equal(shouldMAC, headbuf[:16]) {
|
||||
return msg, errors.New("bad frame MAC")
|
||||
}
|
||||
|
||||
// decrypt frame content
|
||||
rw.dec.XORKeyStream(framebuf, framebuf)
|
||||
|
||||
// decode message code
|
||||
content := bytes.NewReader(framebuf[:fsize])
|
||||
if err := rlp.Decode(content, &msg.Code); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
msg.Size = uint32(content.Len())
|
||||
msg.meterSize = msg.Size
|
||||
msg.Payload = content
|
||||
|
||||
// if snappy is enabled, verify and decompress message
|
||||
if rw.snappy {
|
||||
payload, err := ioutil.ReadAll(msg.Payload)
|
||||
if err != nil {
|
||||
return msg, err
|
||||
}
|
||||
size, err := snappy.DecodedLen(payload)
|
||||
if err != nil {
|
||||
return msg, err
|
||||
}
|
||||
if size > int(maxUint24) {
|
||||
return msg, errPlainMessageTooLarge
|
||||
}
|
||||
payload, err = snappy.Decode(nil, payload)
|
||||
if err != nil {
|
||||
return msg, err
|
||||
}
|
||||
msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload)
|
||||
}
|
||||
return msg, nil
|
||||
}
|
||||
|
||||
// updateMAC reseeds the given hash with encrypted seed.
|
||||
// it returns the first 16 bytes of the hash sum after seeding.
|
||||
func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
|
||||
aesbuf := make([]byte, aes.BlockSize)
|
||||
block.Encrypt(aesbuf, mac.Sum(nil))
|
||||
for i := range aesbuf {
|
||||
aesbuf[i] ^= seed[i]
|
||||
}
|
||||
mac.Write(aesbuf)
|
||||
return mac.Sum(nil)[:16]
|
||||
}
|
||||
|
||||
func readInt24(b []byte) uint32 {
|
||||
return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
|
||||
}
|
||||
|
||||
func putInt24(v uint32, b []byte) {
|
||||
b[0] = byte(v >> 16)
|
||||
b[1] = byte(v >> 8)
|
||||
b[2] = byte(v)
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
// Copyright 2015 The go-ethereum Authors
|
||||
// Copyright 2020 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
@ -14,265 +14,117 @@
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package p2p
|
||||
package rlpx
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/ecdsa"
|
||||
"crypto/rand"
|
||||
"errors"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"net"
|
||||
"reflect"
|
||||
"strings"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/davecgh/go-spew/spew"
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/ethereum/go-ethereum/crypto/ecies"
|
||||
"github.com/ethereum/go-ethereum/p2p/simulations/pipes"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
"golang.org/x/crypto/sha3"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestSharedSecret(t *testing.T) {
|
||||
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
|
||||
pub0 := &prv0.PublicKey
|
||||
prv1, _ := crypto.GenerateKey()
|
||||
pub1 := &prv1.PublicKey
|
||||
|
||||
ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1)
|
||||
if !bytes.Equal(ss0, ss1) {
|
||||
t.Errorf("don't match :(")
|
||||
}
|
||||
}
|
||||
|
||||
func TestEncHandshake(t *testing.T) {
|
||||
for i := 0; i < 10; i++ {
|
||||
start := time.Now()
|
||||
if err := testEncHandshake(nil); err != nil {
|
||||
t.Fatalf("i=%d %v", i, err)
|
||||
}
|
||||
t.Logf("(without token) %d %v\n", i+1, time.Since(start))
|
||||
}
|
||||
for i := 0; i < 10; i++ {
|
||||
tok := make([]byte, shaLen)
|
||||
rand.Reader.Read(tok)
|
||||
start := time.Now()
|
||||
if err := testEncHandshake(tok); err != nil {
|
||||
t.Fatalf("i=%d %v", i, err)
|
||||
}
|
||||
t.Logf("(with token) %d %v\n", i+1, time.Since(start))
|
||||
}
|
||||
}
|
||||
|
||||
func testEncHandshake(token []byte) error {
|
||||
type result struct {
|
||||
side string
|
||||
pubkey *ecdsa.PublicKey
|
||||
type message struct {
|
||||
code uint64
|
||||
data []byte
|
||||
err error
|
||||
}
|
||||
var (
|
||||
prv0, _ = crypto.GenerateKey()
|
||||
prv1, _ = crypto.GenerateKey()
|
||||
fd0, fd1 = net.Pipe()
|
||||
c0, c1 = newRLPX(fd0).(*rlpx), newRLPX(fd1).(*rlpx)
|
||||
output = make(chan result)
|
||||
)
|
||||
|
||||
func TestHandshake(t *testing.T) {
|
||||
p1, p2 := createPeers(t)
|
||||
p1.Close()
|
||||
p2.Close()
|
||||
}
|
||||
|
||||
// This test checks that messages can be sent and received through WriteMsg/ReadMsg.
|
||||
func TestReadWriteMsg(t *testing.T) {
|
||||
peer1, peer2 := createPeers(t)
|
||||
defer peer1.Close()
|
||||
defer peer2.Close()
|
||||
|
||||
testCode := uint64(23)
|
||||
testData := []byte("test")
|
||||
checkMsgReadWrite(t, peer1, peer2, testCode, testData)
|
||||
|
||||
t.Log("enabling snappy")
|
||||
peer1.SetSnappy(true)
|
||||
peer2.SetSnappy(true)
|
||||
checkMsgReadWrite(t, peer1, peer2, testCode, testData)
|
||||
}
|
||||
|
||||
func checkMsgReadWrite(t *testing.T, p1, p2 *Conn, msgCode uint64, msgData []byte) {
|
||||
// Set up the reader.
|
||||
ch := make(chan message, 1)
|
||||
go func() {
|
||||
r := result{side: "initiator"}
|
||||
defer func() { output <- r }()
|
||||
defer fd0.Close()
|
||||
|
||||
r.pubkey, r.err = c0.doEncHandshake(prv0, &prv1.PublicKey)
|
||||
if r.err != nil {
|
||||
return
|
||||
}
|
||||
if !reflect.DeepEqual(r.pubkey, &prv1.PublicKey) {
|
||||
r.err = fmt.Errorf("remote pubkey mismatch: got %v, want: %v", r.pubkey, &prv1.PublicKey)
|
||||
}
|
||||
}()
|
||||
go func() {
|
||||
r := result{side: "receiver"}
|
||||
defer func() { output <- r }()
|
||||
defer fd1.Close()
|
||||
|
||||
r.pubkey, r.err = c1.doEncHandshake(prv1, nil)
|
||||
if r.err != nil {
|
||||
return
|
||||
}
|
||||
if !reflect.DeepEqual(r.pubkey, &prv0.PublicKey) {
|
||||
r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.pubkey, &prv0.PublicKey)
|
||||
}
|
||||
var msg message
|
||||
msg.code, msg.data, _, msg.err = p1.Read()
|
||||
ch <- msg
|
||||
}()
|
||||
|
||||
// wait for results from both sides
|
||||
r1, r2 := <-output, <-output
|
||||
if r1.err != nil {
|
||||
return fmt.Errorf("%s side error: %v", r1.side, r1.err)
|
||||
}
|
||||
if r2.err != nil {
|
||||
return fmt.Errorf("%s side error: %v", r2.side, r2.err)
|
||||
}
|
||||
|
||||
// compare derived secrets
|
||||
if !reflect.DeepEqual(c0.rw.egressMAC, c1.rw.ingressMAC) {
|
||||
return fmt.Errorf("egress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.egressMAC, c1.rw.ingressMAC)
|
||||
}
|
||||
if !reflect.DeepEqual(c0.rw.ingressMAC, c1.rw.egressMAC) {
|
||||
return fmt.Errorf("ingress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.ingressMAC, c1.rw.egressMAC)
|
||||
}
|
||||
if !reflect.DeepEqual(c0.rw.enc, c1.rw.enc) {
|
||||
return fmt.Errorf("enc cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.enc, c1.rw.enc)
|
||||
}
|
||||
if !reflect.DeepEqual(c0.rw.dec, c1.rw.dec) {
|
||||
return fmt.Errorf("dec cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.dec, c1.rw.dec)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func TestProtocolHandshake(t *testing.T) {
|
||||
var (
|
||||
prv0, _ = crypto.GenerateKey()
|
||||
pub0 = crypto.FromECDSAPub(&prv0.PublicKey)[1:]
|
||||
hs0 = &protoHandshake{Version: 3, ID: pub0, Caps: []Cap{{"a", 0}, {"b", 2}}}
|
||||
|
||||
prv1, _ = crypto.GenerateKey()
|
||||
pub1 = crypto.FromECDSAPub(&prv1.PublicKey)[1:]
|
||||
hs1 = &protoHandshake{Version: 3, ID: pub1, Caps: []Cap{{"c", 1}, {"d", 3}}}
|
||||
|
||||
wg sync.WaitGroup
|
||||
)
|
||||
|
||||
fd0, fd1, err := pipes.TCPPipe()
|
||||
// Write the message.
|
||||
_, err := p2.Write(msgCode, msgData)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
wg.Add(2)
|
||||
// Check it was received correctly.
|
||||
msg := <-ch
|
||||
assert.Equal(t, msgCode, msg.code, "wrong message code returned from ReadMsg")
|
||||
assert.Equal(t, msgData, msg.data, "wrong message data returned from ReadMsg")
|
||||
}
|
||||
|
||||
func createPeers(t *testing.T) (peer1, peer2 *Conn) {
|
||||
conn1, conn2 := net.Pipe()
|
||||
key1, key2 := newkey(), newkey()
|
||||
peer1 = NewConn(conn1, &key2.PublicKey) // dialer
|
||||
peer2 = NewConn(conn2, nil) // listener
|
||||
doHandshake(t, peer1, peer2, key1, key2)
|
||||
return peer1, peer2
|
||||
}
|
||||
|
||||
func doHandshake(t *testing.T, peer1, peer2 *Conn, key1, key2 *ecdsa.PrivateKey) {
|
||||
keyChan := make(chan *ecdsa.PublicKey, 1)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
defer fd0.Close()
|
||||
rlpx := newRLPX(fd0)
|
||||
rpubkey, err := rlpx.doEncHandshake(prv0, &prv1.PublicKey)
|
||||
pubKey, err := peer2.Handshake(key2)
|
||||
if err != nil {
|
||||
t.Errorf("dial side enc handshake failed: %v", err)
|
||||
return
|
||||
t.Errorf("peer2 could not do handshake: %v", err)
|
||||
}
|
||||
if !reflect.DeepEqual(rpubkey, &prv1.PublicKey) {
|
||||
t.Errorf("dial side remote pubkey mismatch: got %v, want %v", rpubkey, &prv1.PublicKey)
|
||||
return
|
||||
}
|
||||
|
||||
phs, err := rlpx.doProtoHandshake(hs0)
|
||||
if err != nil {
|
||||
t.Errorf("dial side proto handshake error: %v", err)
|
||||
return
|
||||
}
|
||||
phs.Rest = nil
|
||||
if !reflect.DeepEqual(phs, hs1) {
|
||||
t.Errorf("dial side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs1))
|
||||
return
|
||||
}
|
||||
rlpx.close(DiscQuitting)
|
||||
keyChan <- pubKey
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
defer fd1.Close()
|
||||
rlpx := newRLPX(fd1)
|
||||
rpubkey, err := rlpx.doEncHandshake(prv1, nil)
|
||||
|
||||
pubKey2, err := peer1.Handshake(key1)
|
||||
if err != nil {
|
||||
t.Errorf("listen side enc handshake failed: %v", err)
|
||||
return
|
||||
}
|
||||
if !reflect.DeepEqual(rpubkey, &prv0.PublicKey) {
|
||||
t.Errorf("listen side remote pubkey mismatch: got %v, want %v", rpubkey, &prv0.PublicKey)
|
||||
return
|
||||
t.Errorf("peer1 could not do handshake: %v", err)
|
||||
}
|
||||
pubKey1 := <-keyChan
|
||||
|
||||
phs, err := rlpx.doProtoHandshake(hs1)
|
||||
if err != nil {
|
||||
t.Errorf("listen side proto handshake error: %v", err)
|
||||
return
|
||||
}
|
||||
phs.Rest = nil
|
||||
if !reflect.DeepEqual(phs, hs0) {
|
||||
t.Errorf("listen side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs0))
|
||||
return
|
||||
}
|
||||
|
||||
if err := ExpectMsg(rlpx, discMsg, []DiscReason{DiscQuitting}); err != nil {
|
||||
t.Errorf("error receiving disconnect: %v", err)
|
||||
}
|
||||
}()
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
func TestProtocolHandshakeErrors(t *testing.T) {
|
||||
tests := []struct {
|
||||
code uint64
|
||||
msg interface{}
|
||||
err error
|
||||
}{
|
||||
{
|
||||
code: discMsg,
|
||||
msg: []DiscReason{DiscQuitting},
|
||||
err: DiscQuitting,
|
||||
},
|
||||
{
|
||||
code: 0x989898,
|
||||
msg: []byte{1},
|
||||
err: errors.New("expected handshake, got 989898"),
|
||||
},
|
||||
{
|
||||
code: handshakeMsg,
|
||||
msg: make([]byte, baseProtocolMaxMsgSize+2),
|
||||
err: errors.New("message too big"),
|
||||
},
|
||||
{
|
||||
code: handshakeMsg,
|
||||
msg: []byte{1, 2, 3},
|
||||
err: newPeerError(errInvalidMsg, "(code 0) (size 4) rlp: expected input list for p2p.protoHandshake"),
|
||||
},
|
||||
{
|
||||
code: handshakeMsg,
|
||||
msg: &protoHandshake{Version: 3},
|
||||
err: DiscInvalidIdentity,
|
||||
},
|
||||
}
|
||||
|
||||
for i, test := range tests {
|
||||
p1, p2 := MsgPipe()
|
||||
go Send(p1, test.code, test.msg)
|
||||
_, err := readProtocolHandshake(p2)
|
||||
if !reflect.DeepEqual(err, test.err) {
|
||||
t.Errorf("test %d: error mismatch: got %q, want %q", i, err, test.err)
|
||||
}
|
||||
// Confirm the handshake was successful.
|
||||
if !reflect.DeepEqual(pubKey1, &key1.PublicKey) || !reflect.DeepEqual(pubKey2, &key2.PublicKey) {
|
||||
t.Fatal("unsuccessful handshake")
|
||||
}
|
||||
}
|
||||
|
||||
func TestRLPXFrameFake(t *testing.T) {
|
||||
buf := new(bytes.Buffer)
|
||||
// This test checks the frame data of written messages.
|
||||
func TestFrameReadWrite(t *testing.T) {
|
||||
conn := NewConn(nil, nil)
|
||||
hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})
|
||||
rw := newRLPXFrameRW(buf, secrets{
|
||||
conn.InitWithSecrets(Secrets{
|
||||
AES: crypto.Keccak256(),
|
||||
MAC: crypto.Keccak256(),
|
||||
IngressMAC: hash,
|
||||
EgressMAC: hash,
|
||||
})
|
||||
h := conn.handshake
|
||||
|
||||
golden := unhex(`
|
||||
00828ddae471818bb0bfa6b551d1cb42
|
||||
@ -280,32 +132,27 @@ func TestRLPXFrameFake(t *testing.T) {
|
||||
ba628a4ba590cb43f7848f41c4382885
|
||||
01010101010101010101010101010101
|
||||
`)
|
||||
msgCode := uint64(8)
|
||||
msg := []uint{1, 2, 3, 4}
|
||||
msgEnc, _ := rlp.EncodeToBytes(msg)
|
||||
|
||||
// Check WriteMsg. This puts a message into the buffer.
|
||||
if err := Send(rw, 8, []uint{1, 2, 3, 4}); err != nil {
|
||||
// Check writeFrame. The frame that's written should be equal to the test vector.
|
||||
buf := new(bytes.Buffer)
|
||||
if err := h.writeFrame(buf, msgCode, msgEnc); err != nil {
|
||||
t.Fatalf("WriteMsg error: %v", err)
|
||||
}
|
||||
written := buf.Bytes()
|
||||
if !bytes.Equal(written, golden) {
|
||||
t.Fatalf("output mismatch:\n got: %x\n want: %x", written, golden)
|
||||
if !bytes.Equal(buf.Bytes(), golden) {
|
||||
t.Fatalf("output mismatch:\n got: %x\n want: %x", buf.Bytes(), golden)
|
||||
}
|
||||
|
||||
// Check ReadMsg. It reads the message encoded by WriteMsg, which
|
||||
// is equivalent to the golden message above.
|
||||
msg, err := rw.ReadMsg()
|
||||
// Check readFrame on the test vector.
|
||||
content, err := h.readFrame(bytes.NewReader(golden))
|
||||
if err != nil {
|
||||
t.Fatalf("ReadMsg error: %v", err)
|
||||
}
|
||||
if msg.Size != 5 {
|
||||
t.Errorf("msg size mismatch: got %d, want %d", msg.Size, 5)
|
||||
}
|
||||
if msg.Code != 8 {
|
||||
t.Errorf("msg code mismatch: got %d, want %d", msg.Code, 8)
|
||||
}
|
||||
payload, _ := ioutil.ReadAll(msg.Payload)
|
||||
wantPayload := unhex("C401020304")
|
||||
if !bytes.Equal(payload, wantPayload) {
|
||||
t.Errorf("msg payload mismatch:\ngot %x\nwant %x", payload, wantPayload)
|
||||
wantContent := unhex("08C401020304")
|
||||
if !bytes.Equal(content, wantContent) {
|
||||
t.Errorf("frame content mismatch:\ngot %x\nwant %x", content, wantContent)
|
||||
}
|
||||
}
|
||||
|
||||
@ -314,67 +161,9 @@ type fakeHash []byte
|
||||
func (fakeHash) Write(p []byte) (int, error) { return len(p), nil }
|
||||
func (fakeHash) Reset() {}
|
||||
func (fakeHash) BlockSize() int { return 0 }
|
||||
|
||||
func (h fakeHash) Size() int { return len(h) }
|
||||
func (h fakeHash) Sum(b []byte) []byte { return append(b, h...) }
|
||||
|
||||
func TestRLPXFrameRW(t *testing.T) {
|
||||
var (
|
||||
aesSecret = make([]byte, 16)
|
||||
macSecret = make([]byte, 16)
|
||||
egressMACinit = make([]byte, 32)
|
||||
ingressMACinit = make([]byte, 32)
|
||||
)
|
||||
for _, s := range [][]byte{aesSecret, macSecret, egressMACinit, ingressMACinit} {
|
||||
rand.Read(s)
|
||||
}
|
||||
conn := new(bytes.Buffer)
|
||||
|
||||
s1 := secrets{
|
||||
AES: aesSecret,
|
||||
MAC: macSecret,
|
||||
EgressMAC: sha3.NewLegacyKeccak256(),
|
||||
IngressMAC: sha3.NewLegacyKeccak256(),
|
||||
}
|
||||
s1.EgressMAC.Write(egressMACinit)
|
||||
s1.IngressMAC.Write(ingressMACinit)
|
||||
rw1 := newRLPXFrameRW(conn, s1)
|
||||
|
||||
s2 := secrets{
|
||||
AES: aesSecret,
|
||||
MAC: macSecret,
|
||||
EgressMAC: sha3.NewLegacyKeccak256(),
|
||||
IngressMAC: sha3.NewLegacyKeccak256(),
|
||||
}
|
||||
s2.EgressMAC.Write(ingressMACinit)
|
||||
s2.IngressMAC.Write(egressMACinit)
|
||||
rw2 := newRLPXFrameRW(conn, s2)
|
||||
|
||||
// send some messages
|
||||
for i := 0; i < 10; i++ {
|
||||
// write message into conn buffer
|
||||
wmsg := []interface{}{"foo", "bar", strings.Repeat("test", i)}
|
||||
err := Send(rw1, uint64(i), wmsg)
|
||||
if err != nil {
|
||||
t.Fatalf("WriteMsg error (i=%d): %v", i, err)
|
||||
}
|
||||
|
||||
// read message that rw1 just wrote
|
||||
msg, err := rw2.ReadMsg()
|
||||
if err != nil {
|
||||
t.Fatalf("ReadMsg error (i=%d): %v", i, err)
|
||||
}
|
||||
if msg.Code != uint64(i) {
|
||||
t.Fatalf("msg code mismatch: got %d, want %d", msg.Code, i)
|
||||
}
|
||||
payload, _ := ioutil.ReadAll(msg.Payload)
|
||||
wantPayload, _ := rlp.EncodeToBytes(wmsg)
|
||||
if !bytes.Equal(payload, wantPayload) {
|
||||
t.Fatalf("msg payload mismatch:\ngot %x\nwant %x", payload, wantPayload)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type handshakeAuthTest struct {
|
||||
input string
|
||||
isPlain bool
|
||||
@ -598,3 +387,20 @@ func TestHandshakeForwardCompatibility(t *testing.T) {
|
||||
t.Errorf("ingress-mac('foo') mismatch:\ngot %x\nwant %x", fooIngressHash, wantFooIngressHash)
|
||||
}
|
||||
}
|
||||
|
||||
func unhex(str string) []byte {
|
||||
r := strings.NewReplacer("\t", "", " ", "", "\n", "")
|
||||
b, err := hex.DecodeString(r.Replace(str))
|
||||
if err != nil {
|
||||
panic(fmt.Sprintf("invalid hex string: %q", str))
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func newkey() *ecdsa.PrivateKey {
|
||||
key, err := crypto.GenerateKey()
|
||||
if err != nil {
|
||||
panic("couldn't generate key: " + err.Error())
|
||||
}
|
||||
return key
|
||||
}
|
@ -166,7 +166,7 @@ type Server struct {
|
||||
|
||||
// Hooks for testing. These are useful because we can inhibit
|
||||
// the whole protocol stack.
|
||||
newTransport func(net.Conn) transport
|
||||
newTransport func(net.Conn, *ecdsa.PublicKey) transport
|
||||
newPeerHook func(*Peer)
|
||||
listenFunc func(network, addr string) (net.Listener, error)
|
||||
|
||||
@ -231,7 +231,7 @@ type conn struct {
|
||||
|
||||
type transport interface {
|
||||
// The two handshakes.
|
||||
doEncHandshake(prv *ecdsa.PrivateKey, dialDest *ecdsa.PublicKey) (*ecdsa.PublicKey, error)
|
||||
doEncHandshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error)
|
||||
doProtoHandshake(our *protoHandshake) (*protoHandshake, error)
|
||||
// The MsgReadWriter can only be used after the encryption
|
||||
// handshake has completed. The code uses conn.id to track this
|
||||
@ -914,7 +914,13 @@ func (srv *Server) checkInboundConn(fd net.Conn, remoteIP net.IP) error {
|
||||
// as a peer. It returns when the connection has been added as a peer
|
||||
// or the handshakes have failed.
|
||||
func (srv *Server) SetupConn(fd net.Conn, flags connFlag, dialDest *enode.Node) error {
|
||||
c := &conn{fd: fd, transport: srv.newTransport(fd), flags: flags, cont: make(chan error)}
|
||||
c := &conn{fd: fd, flags: flags, cont: make(chan error)}
|
||||
if dialDest == nil {
|
||||
c.transport = srv.newTransport(fd, nil)
|
||||
} else {
|
||||
c.transport = srv.newTransport(fd, dialDest.Pubkey())
|
||||
}
|
||||
|
||||
err := srv.setupConn(c, flags, dialDest)
|
||||
if err != nil {
|
||||
c.close(err)
|
||||
@ -943,16 +949,12 @@ func (srv *Server) setupConn(c *conn, flags connFlag, dialDest *enode.Node) erro
|
||||
}
|
||||
|
||||
// Run the RLPx handshake.
|
||||
remotePubkey, err := c.doEncHandshake(srv.PrivateKey, dialPubkey)
|
||||
remotePubkey, err := c.doEncHandshake(srv.PrivateKey)
|
||||
if err != nil {
|
||||
srv.log.Trace("Failed RLPx handshake", "addr", c.fd.RemoteAddr(), "conn", c.flags, "err", err)
|
||||
return err
|
||||
}
|
||||
if dialDest != nil {
|
||||
// For dialed connections, check that the remote public key matches.
|
||||
if dialPubkey.X.Cmp(remotePubkey.X) != 0 || dialPubkey.Y.Cmp(remotePubkey.Y) != 0 {
|
||||
return DiscUnexpectedIdentity
|
||||
}
|
||||
c.node = dialDest
|
||||
} else {
|
||||
c.node = nodeFromConn(remotePubkey, c.fd)
|
||||
|
@ -18,6 +18,7 @@ package p2p
|
||||
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"crypto/sha256"
|
||||
"errors"
|
||||
"io"
|
||||
"math/rand"
|
||||
@ -31,28 +32,27 @@ import (
|
||||
"github.com/ethereum/go-ethereum/log"
|
||||
"github.com/ethereum/go-ethereum/p2p/enode"
|
||||
"github.com/ethereum/go-ethereum/p2p/enr"
|
||||
"golang.org/x/crypto/sha3"
|
||||
"github.com/ethereum/go-ethereum/p2p/rlpx"
|
||||
)
|
||||
|
||||
type testTransport struct {
|
||||
*rlpxTransport
|
||||
rpub *ecdsa.PublicKey
|
||||
*rlpx
|
||||
|
||||
closeErr error
|
||||
}
|
||||
|
||||
func newTestTransport(rpub *ecdsa.PublicKey, fd net.Conn) transport {
|
||||
wrapped := newRLPX(fd).(*rlpx)
|
||||
wrapped.rw = newRLPXFrameRW(fd, secrets{
|
||||
MAC: zero16,
|
||||
AES: zero16,
|
||||
IngressMAC: sha3.NewLegacyKeccak256(),
|
||||
EgressMAC: sha3.NewLegacyKeccak256(),
|
||||
func newTestTransport(rpub *ecdsa.PublicKey, fd net.Conn, dialDest *ecdsa.PublicKey) transport {
|
||||
wrapped := newRLPX(fd, dialDest).(*rlpxTransport)
|
||||
wrapped.conn.InitWithSecrets(rlpx.Secrets{
|
||||
AES: make([]byte, 16),
|
||||
MAC: make([]byte, 16),
|
||||
EgressMAC: sha256.New(),
|
||||
IngressMAC: sha256.New(),
|
||||
})
|
||||
return &testTransport{rpub: rpub, rlpx: wrapped}
|
||||
return &testTransport{rpub: rpub, rlpxTransport: wrapped}
|
||||
}
|
||||
|
||||
func (c *testTransport) doEncHandshake(prv *ecdsa.PrivateKey, dialDest *ecdsa.PublicKey) (*ecdsa.PublicKey, error) {
|
||||
func (c *testTransport) doEncHandshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
|
||||
return c.rpub, nil
|
||||
}
|
||||
|
||||
@ -62,7 +62,7 @@ func (c *testTransport) doProtoHandshake(our *protoHandshake) (*protoHandshake,
|
||||
}
|
||||
|
||||
func (c *testTransport) close(err error) {
|
||||
c.rlpx.fd.Close()
|
||||
c.conn.Close()
|
||||
c.closeErr = err
|
||||
}
|
||||
|
||||
@ -78,7 +78,9 @@ func startTestServer(t *testing.T, remoteKey *ecdsa.PublicKey, pf func(*Peer)) *
|
||||
server := &Server{
|
||||
Config: config,
|
||||
newPeerHook: pf,
|
||||
newTransport: func(fd net.Conn) transport { return newTestTransport(remoteKey, fd) },
|
||||
newTransport: func(fd net.Conn, dialDest *ecdsa.PublicKey) transport {
|
||||
return newTestTransport(remoteKey, fd, dialDest)
|
||||
},
|
||||
}
|
||||
if err := server.Start(); err != nil {
|
||||
t.Fatalf("Could not start server: %v", err)
|
||||
@ -253,7 +255,7 @@ func TestServerAtCap(t *testing.T) {
|
||||
|
||||
newconn := func(id enode.ID) *conn {
|
||||
fd, _ := net.Pipe()
|
||||
tx := newTestTransport(&trustedNode.PublicKey, fd)
|
||||
tx := newTestTransport(&trustedNode.PublicKey, fd, nil)
|
||||
node := enode.SignNull(new(enr.Record), id)
|
||||
return &conn{fd: fd, transport: tx, flags: inboundConn, node: node, cont: make(chan error)}
|
||||
}
|
||||
@ -321,7 +323,7 @@ func TestServerPeerLimits(t *testing.T) {
|
||||
Protocols: []Protocol{discard},
|
||||
Logger: testlog.Logger(t, log.LvlTrace),
|
||||
},
|
||||
newTransport: func(fd net.Conn) transport { return tp },
|
||||
newTransport: func(fd net.Conn, dialDest *ecdsa.PublicKey) transport { return tp },
|
||||
}
|
||||
if err := srv.Start(); err != nil {
|
||||
t.Fatalf("couldn't start server: %v", err)
|
||||
@ -390,13 +392,6 @@ func TestServerSetupConn(t *testing.T) {
|
||||
wantCalls: "doEncHandshake,close,",
|
||||
wantCloseErr: errors.New("read error"),
|
||||
},
|
||||
{
|
||||
tt: &setupTransport{pubkey: clientpub},
|
||||
dialDest: enode.NewV4(&newkey().PublicKey, nil, 0, 0),
|
||||
flags: dynDialedConn,
|
||||
wantCalls: "doEncHandshake,close,",
|
||||
wantCloseErr: DiscUnexpectedIdentity,
|
||||
},
|
||||
{
|
||||
tt: &setupTransport{pubkey: clientpub, phs: protoHandshake{ID: randomID().Bytes()}},
|
||||
dialDest: enode.NewV4(clientpub, nil, 0, 0),
|
||||
@ -437,7 +432,7 @@ func TestServerSetupConn(t *testing.T) {
|
||||
}
|
||||
srv := &Server{
|
||||
Config: cfg,
|
||||
newTransport: func(fd net.Conn) transport { return test.tt },
|
||||
newTransport: func(fd net.Conn, dialDest *ecdsa.PublicKey) transport { return test.tt },
|
||||
log: cfg.Logger,
|
||||
}
|
||||
if !test.dontstart {
|
||||
@ -468,7 +463,7 @@ type setupTransport struct {
|
||||
closeErr error
|
||||
}
|
||||
|
||||
func (c *setupTransport) doEncHandshake(prv *ecdsa.PrivateKey, dialDest *ecdsa.PublicKey) (*ecdsa.PublicKey, error) {
|
||||
func (c *setupTransport) doEncHandshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
|
||||
c.calls += "doEncHandshake,"
|
||||
return c.pubkey, c.encHandshakeErr
|
||||
}
|
||||
@ -522,9 +517,9 @@ func TestServerInboundThrottle(t *testing.T) {
|
||||
Protocols: []Protocol{discard},
|
||||
Logger: testlog.Logger(t, log.LvlTrace),
|
||||
},
|
||||
newTransport: func(fd net.Conn) transport {
|
||||
newTransport: func(fd net.Conn, dialDest *ecdsa.PublicKey) transport {
|
||||
newTransportCalled <- struct{}{}
|
||||
return newRLPX(fd)
|
||||
return newRLPX(fd, dialDest)
|
||||
},
|
||||
listenFunc: func(network, laddr string) (net.Listener, error) {
|
||||
fakeAddr := &net.TCPAddr{IP: net.IP{95, 33, 21, 2}, Port: 4444}
|
||||
|
177
p2p/transport.go
Normal file
177
p2p/transport.go
Normal file
@ -0,0 +1,177 @@
|
||||
// Copyright 2015 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package p2p
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/ecdsa"
|
||||
"fmt"
|
||||
"io"
|
||||
"net"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common/bitutil"
|
||||
"github.com/ethereum/go-ethereum/metrics"
|
||||
"github.com/ethereum/go-ethereum/p2p/rlpx"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
)
|
||||
|
||||
const (
|
||||
// total timeout for encryption handshake and protocol
|
||||
// handshake in both directions.
|
||||
handshakeTimeout = 5 * time.Second
|
||||
|
||||
// This is the timeout for sending the disconnect reason.
|
||||
// This is shorter than the usual timeout because we don't want
|
||||
// to wait if the connection is known to be bad anyway.
|
||||
discWriteTimeout = 1 * time.Second
|
||||
)
|
||||
|
||||
// rlpxTransport is the transport used by actual (non-test) connections.
|
||||
// It wraps an RLPx connection with locks and read/write deadlines.
|
||||
type rlpxTransport struct {
|
||||
rmu, wmu sync.Mutex
|
||||
wbuf bytes.Buffer
|
||||
conn *rlpx.Conn
|
||||
}
|
||||
|
||||
func newRLPX(conn net.Conn, dialDest *ecdsa.PublicKey) transport {
|
||||
return &rlpxTransport{conn: rlpx.NewConn(conn, dialDest)}
|
||||
}
|
||||
|
||||
func (t *rlpxTransport) ReadMsg() (Msg, error) {
|
||||
t.rmu.Lock()
|
||||
defer t.rmu.Unlock()
|
||||
|
||||
var msg Msg
|
||||
t.conn.SetReadDeadline(time.Now().Add(frameReadTimeout))
|
||||
code, data, wireSize, err := t.conn.Read()
|
||||
if err == nil {
|
||||
msg = Msg{
|
||||
ReceivedAt: time.Now(),
|
||||
Code: code,
|
||||
Size: uint32(len(data)),
|
||||
meterSize: uint32(wireSize),
|
||||
Payload: bytes.NewReader(data),
|
||||
}
|
||||
}
|
||||
return msg, err
|
||||
}
|
||||
|
||||
func (t *rlpxTransport) WriteMsg(msg Msg) error {
|
||||
t.wmu.Lock()
|
||||
defer t.wmu.Unlock()
|
||||
|
||||
// Copy message data to write buffer.
|
||||
t.wbuf.Reset()
|
||||
if _, err := io.CopyN(&t.wbuf, msg.Payload, int64(msg.Size)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Write the message.
|
||||
t.conn.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
|
||||
size, err := t.conn.Write(msg.Code, t.wbuf.Bytes())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Set metrics.
|
||||
msg.meterSize = size
|
||||
if metrics.Enabled && msg.meterCap.Name != "" { // don't meter non-subprotocol messages
|
||||
m := fmt.Sprintf("%s/%s/%d/%#02x", egressMeterName, msg.meterCap.Name, msg.meterCap.Version, msg.meterCode)
|
||||
metrics.GetOrRegisterMeter(m, nil).Mark(int64(msg.meterSize))
|
||||
metrics.GetOrRegisterMeter(m+"/packets", nil).Mark(1)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (t *rlpxTransport) close(err error) {
|
||||
t.wmu.Lock()
|
||||
defer t.wmu.Unlock()
|
||||
|
||||
// Tell the remote end why we're disconnecting if possible.
|
||||
// We only bother doing this if the underlying connection supports
|
||||
// setting a timeout tough.
|
||||
if t.conn != nil {
|
||||
if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
|
||||
deadline := time.Now().Add(discWriteTimeout)
|
||||
if err := t.conn.SetWriteDeadline(deadline); err == nil {
|
||||
// Connection supports write deadline.
|
||||
t.wbuf.Reset()
|
||||
rlp.Encode(&t.wbuf, []DiscReason{r})
|
||||
t.conn.Write(discMsg, t.wbuf.Bytes())
|
||||
}
|
||||
}
|
||||
}
|
||||
t.conn.Close()
|
||||
}
|
||||
|
||||
func (t *rlpxTransport) doEncHandshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
|
||||
t.conn.SetDeadline(time.Now().Add(handshakeTimeout))
|
||||
return t.conn.Handshake(prv)
|
||||
}
|
||||
|
||||
func (t *rlpxTransport) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
|
||||
// Writing our handshake happens concurrently, we prefer
|
||||
// returning the handshake read error. If the remote side
|
||||
// disconnects us early with a valid reason, we should return it
|
||||
// as the error so it can be tracked elsewhere.
|
||||
werr := make(chan error, 1)
|
||||
go func() { werr <- Send(t, handshakeMsg, our) }()
|
||||
if their, err = readProtocolHandshake(t); err != nil {
|
||||
<-werr // make sure the write terminates too
|
||||
return nil, err
|
||||
}
|
||||
if err := <-werr; err != nil {
|
||||
return nil, fmt.Errorf("write error: %v", err)
|
||||
}
|
||||
// If the protocol version supports Snappy encoding, upgrade immediately
|
||||
t.conn.SetSnappy(their.Version >= snappyProtocolVersion)
|
||||
|
||||
return their, nil
|
||||
}
|
||||
|
||||
func readProtocolHandshake(rw MsgReader) (*protoHandshake, error) {
|
||||
msg, err := rw.ReadMsg()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if msg.Size > baseProtocolMaxMsgSize {
|
||||
return nil, fmt.Errorf("message too big")
|
||||
}
|
||||
if msg.Code == discMsg {
|
||||
// Disconnect before protocol handshake is valid according to the
|
||||
// spec and we send it ourself if the post-handshake checks fail.
|
||||
// We can't return the reason directly, though, because it is echoed
|
||||
// back otherwise. Wrap it in a string instead.
|
||||
var reason [1]DiscReason
|
||||
rlp.Decode(msg.Payload, &reason)
|
||||
return nil, reason[0]
|
||||
}
|
||||
if msg.Code != handshakeMsg {
|
||||
return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
|
||||
}
|
||||
var hs protoHandshake
|
||||
if err := msg.Decode(&hs); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(hs.ID) != 64 || !bitutil.TestBytes(hs.ID) {
|
||||
return nil, DiscInvalidIdentity
|
||||
}
|
||||
return &hs, nil
|
||||
}
|
148
p2p/transport_test.go
Normal file
148
p2p/transport_test.go
Normal file
@ -0,0 +1,148 @@
|
||||
// Copyright 2015 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package p2p
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"reflect"
|
||||
"sync"
|
||||
"testing"
|
||||
|
||||
"github.com/davecgh/go-spew/spew"
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/ethereum/go-ethereum/p2p/simulations/pipes"
|
||||
)
|
||||
|
||||
func TestProtocolHandshake(t *testing.T) {
|
||||
var (
|
||||
prv0, _ = crypto.GenerateKey()
|
||||
pub0 = crypto.FromECDSAPub(&prv0.PublicKey)[1:]
|
||||
hs0 = &protoHandshake{Version: 3, ID: pub0, Caps: []Cap{{"a", 0}, {"b", 2}}}
|
||||
|
||||
prv1, _ = crypto.GenerateKey()
|
||||
pub1 = crypto.FromECDSAPub(&prv1.PublicKey)[1:]
|
||||
hs1 = &protoHandshake{Version: 3, ID: pub1, Caps: []Cap{{"c", 1}, {"d", 3}}}
|
||||
|
||||
wg sync.WaitGroup
|
||||
)
|
||||
|
||||
fd0, fd1, err := pipes.TCPPipe()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
wg.Add(2)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
defer fd0.Close()
|
||||
frame := newRLPX(fd0, &prv1.PublicKey)
|
||||
rpubkey, err := frame.doEncHandshake(prv0)
|
||||
if err != nil {
|
||||
t.Errorf("dial side enc handshake failed: %v", err)
|
||||
return
|
||||
}
|
||||
if !reflect.DeepEqual(rpubkey, &prv1.PublicKey) {
|
||||
t.Errorf("dial side remote pubkey mismatch: got %v, want %v", rpubkey, &prv1.PublicKey)
|
||||
return
|
||||
}
|
||||
|
||||
phs, err := frame.doProtoHandshake(hs0)
|
||||
if err != nil {
|
||||
t.Errorf("dial side proto handshake error: %v", err)
|
||||
return
|
||||
}
|
||||
phs.Rest = nil
|
||||
if !reflect.DeepEqual(phs, hs1) {
|
||||
t.Errorf("dial side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs1))
|
||||
return
|
||||
}
|
||||
frame.close(DiscQuitting)
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
defer fd1.Close()
|
||||
rlpx := newRLPX(fd1, nil)
|
||||
rpubkey, err := rlpx.doEncHandshake(prv1)
|
||||
if err != nil {
|
||||
t.Errorf("listen side enc handshake failed: %v", err)
|
||||
return
|
||||
}
|
||||
if !reflect.DeepEqual(rpubkey, &prv0.PublicKey) {
|
||||
t.Errorf("listen side remote pubkey mismatch: got %v, want %v", rpubkey, &prv0.PublicKey)
|
||||
return
|
||||
}
|
||||
|
||||
phs, err := rlpx.doProtoHandshake(hs1)
|
||||
if err != nil {
|
||||
t.Errorf("listen side proto handshake error: %v", err)
|
||||
return
|
||||
}
|
||||
phs.Rest = nil
|
||||
if !reflect.DeepEqual(phs, hs0) {
|
||||
t.Errorf("listen side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs0))
|
||||
return
|
||||
}
|
||||
|
||||
if err := ExpectMsg(rlpx, discMsg, []DiscReason{DiscQuitting}); err != nil {
|
||||
t.Errorf("error receiving disconnect: %v", err)
|
||||
}
|
||||
}()
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
func TestProtocolHandshakeErrors(t *testing.T) {
|
||||
tests := []struct {
|
||||
code uint64
|
||||
msg interface{}
|
||||
err error
|
||||
}{
|
||||
{
|
||||
code: discMsg,
|
||||
msg: []DiscReason{DiscQuitting},
|
||||
err: DiscQuitting,
|
||||
},
|
||||
{
|
||||
code: 0x989898,
|
||||
msg: []byte{1},
|
||||
err: errors.New("expected handshake, got 989898"),
|
||||
},
|
||||
{
|
||||
code: handshakeMsg,
|
||||
msg: make([]byte, baseProtocolMaxMsgSize+2),
|
||||
err: errors.New("message too big"),
|
||||
},
|
||||
{
|
||||
code: handshakeMsg,
|
||||
msg: []byte{1, 2, 3},
|
||||
err: newPeerError(errInvalidMsg, "(code 0) (size 4) rlp: expected input list for p2p.protoHandshake"),
|
||||
},
|
||||
{
|
||||
code: handshakeMsg,
|
||||
msg: &protoHandshake{Version: 3},
|
||||
err: DiscInvalidIdentity,
|
||||
},
|
||||
}
|
||||
|
||||
for i, test := range tests {
|
||||
p1, p2 := MsgPipe()
|
||||
go Send(p1, test.code, test.msg)
|
||||
_, err := readProtocolHandshake(p2)
|
||||
if !reflect.DeepEqual(err, test.err) {
|
||||
t.Errorf("test %d: error mismatch: got %q, want %q", i, err, test.err)
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user