crypto/secp256k1: change receiver variable name to lowercase (#29889)

This commit is contained in:
SuiYuan 2024-05-30 22:24:16 +08:00 committed by GitHub
parent e015c1116f
commit 2262bf3415
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 46 additions and 46 deletions

@ -79,52 +79,52 @@ type BitCurve struct {
BitSize int // the size of the underlying field BitSize int // the size of the underlying field
} }
func (BitCurve *BitCurve) Params() *elliptic.CurveParams { func (bitCurve *BitCurve) Params() *elliptic.CurveParams {
return &elliptic.CurveParams{ return &elliptic.CurveParams{
P: BitCurve.P, P: bitCurve.P,
N: BitCurve.N, N: bitCurve.N,
B: BitCurve.B, B: bitCurve.B,
Gx: BitCurve.Gx, Gx: bitCurve.Gx,
Gy: BitCurve.Gy, Gy: bitCurve.Gy,
BitSize: BitCurve.BitSize, BitSize: bitCurve.BitSize,
} }
} }
// IsOnCurve returns true if the given (x,y) lies on the BitCurve. // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { func (bitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
// y² = x³ + b // y² = x³ + b
y2 := new(big.Int).Mul(y, y) //y² y2 := new(big.Int).Mul(y, y) //y²
y2.Mod(y2, BitCurve.P) //y²%P y2.Mod(y2, bitCurve.P) //y²%P
x3 := new(big.Int).Mul(x, x) //x² x3 := new(big.Int).Mul(x, x) //x²
x3.Mul(x3, x) //x³ x3.Mul(x3, x) //x³
x3.Add(x3, BitCurve.B) //x³+B x3.Add(x3, bitCurve.B) //x³+B
x3.Mod(x3, BitCurve.P) //(x³+B)%P x3.Mod(x3, bitCurve.P) //(x³+B)%P
return x3.Cmp(y2) == 0 return x3.Cmp(y2) == 0
} }
// affineFromJacobian reverses the Jacobian transform. See the comment at the // affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file. // top of the file.
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { func (bitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 { if z.Sign() == 0 {
return new(big.Int), new(big.Int) return new(big.Int), new(big.Int)
} }
zinv := new(big.Int).ModInverse(z, BitCurve.P) zinv := new(big.Int).ModInverse(z, bitCurve.P)
zinvsq := new(big.Int).Mul(zinv, zinv) zinvsq := new(big.Int).Mul(zinv, zinv)
xOut = new(big.Int).Mul(x, zinvsq) xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, BitCurve.P) xOut.Mod(xOut, bitCurve.P)
zinvsq.Mul(zinvsq, zinv) zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq) yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, BitCurve.P) yOut.Mod(yOut, bitCurve.P)
return return
} }
// Add returns the sum of (x1,y1) and (x2,y2) // Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { func (bitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
// If one point is at infinity, return the other point. // If one point is at infinity, return the other point.
// Adding the point at infinity to any point will preserve the other point. // Adding the point at infinity to any point will preserve the other point.
if x1.Sign() == 0 && y1.Sign() == 0 { if x1.Sign() == 0 && y1.Sign() == 0 {
@ -135,27 +135,27 @@ func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
} }
z := new(big.Int).SetInt64(1) z := new(big.Int).SetInt64(1)
if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 { if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z)) return bitCurve.affineFromJacobian(bitCurve.doubleJacobian(x1, y1, z))
} }
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) return bitCurve.affineFromJacobian(bitCurve.addJacobian(x1, y1, z, x2, y2, z))
} }
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form. // (x2, y2, z2) and returns their sum, also in Jacobian form.
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { func (bitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
z1z1 := new(big.Int).Mul(z1, z1) z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, BitCurve.P) z1z1.Mod(z1z1, bitCurve.P)
z2z2 := new(big.Int).Mul(z2, z2) z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, BitCurve.P) z2z2.Mod(z2z2, bitCurve.P)
u1 := new(big.Int).Mul(x1, z2z2) u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, BitCurve.P) u1.Mod(u1, bitCurve.P)
u2 := new(big.Int).Mul(x2, z1z1) u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, BitCurve.P) u2.Mod(u2, bitCurve.P)
h := new(big.Int).Sub(u2, u1) h := new(big.Int).Sub(u2, u1)
if h.Sign() == -1 { if h.Sign() == -1 {
h.Add(h, BitCurve.P) h.Add(h, bitCurve.P)
} }
i := new(big.Int).Lsh(h, 1) i := new(big.Int).Lsh(h, 1)
i.Mul(i, i) i.Mul(i, i)
@ -163,13 +163,13 @@ func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int
s1 := new(big.Int).Mul(y1, z2) s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2) s1.Mul(s1, z2z2)
s1.Mod(s1, BitCurve.P) s1.Mod(s1, bitCurve.P)
s2 := new(big.Int).Mul(y2, z1) s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1) s2.Mul(s2, z1z1)
s2.Mod(s2, BitCurve.P) s2.Mod(s2, bitCurve.P)
r := new(big.Int).Sub(s2, s1) r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 { if r.Sign() == -1 {
r.Add(r, BitCurve.P) r.Add(r, bitCurve.P)
} }
r.Lsh(r, 1) r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i) v := new(big.Int).Mul(u1, i)
@ -179,7 +179,7 @@ func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int
x3.Sub(x3, j) x3.Sub(x3, j)
x3.Sub(x3, v) x3.Sub(x3, v)
x3.Sub(x3, v) x3.Sub(x3, v)
x3.Mod(x3, BitCurve.P) x3.Mod(x3, bitCurve.P)
y3 := new(big.Int).Set(r) y3 := new(big.Int).Set(r)
v.Sub(v, x3) v.Sub(v, x3)
@ -187,33 +187,33 @@ func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int
s1.Mul(s1, j) s1.Mul(s1, j)
s1.Lsh(s1, 1) s1.Lsh(s1, 1)
y3.Sub(y3, s1) y3.Sub(y3, s1)
y3.Mod(y3, BitCurve.P) y3.Mod(y3, bitCurve.P)
z3 := new(big.Int).Add(z1, z2) z3 := new(big.Int).Add(z1, z2)
z3.Mul(z3, z3) z3.Mul(z3, z3)
z3.Sub(z3, z1z1) z3.Sub(z3, z1z1)
if z3.Sign() == -1 { if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P) z3.Add(z3, bitCurve.P)
} }
z3.Sub(z3, z2z2) z3.Sub(z3, z2z2)
if z3.Sign() == -1 { if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P) z3.Add(z3, bitCurve.P)
} }
z3.Mul(z3, h) z3.Mul(z3, h)
z3.Mod(z3, BitCurve.P) z3.Mod(z3, bitCurve.P)
return x3, y3, z3 return x3, y3, z3
} }
// Double returns 2*(x,y) // Double returns 2*(x,y)
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { func (bitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := new(big.Int).SetInt64(1) z1 := new(big.Int).SetInt64(1)
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) return bitCurve.affineFromJacobian(bitCurve.doubleJacobian(x1, y1, z1))
} }
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form. // returns its double, also in Jacobian form.
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { func (bitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
a := new(big.Int).Mul(x, x) //X1² a := new(big.Int).Mul(x, x) //X1²
@ -231,30 +231,30 @@ func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int,
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
x3.Sub(f, x3) //F-2*D x3.Sub(f, x3) //F-2*D
x3.Mod(x3, BitCurve.P) x3.Mod(x3, bitCurve.P)
y3 := new(big.Int).Sub(d, x3) //D-X3 y3 := new(big.Int).Sub(d, x3) //D-X3
y3.Mul(e, y3) //E*(D-X3) y3.Mul(e, y3) //E*(D-X3)
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
y3.Mod(y3, BitCurve.P) y3.Mod(y3, bitCurve.P)
z3 := new(big.Int).Mul(y, z) //Y1*Z1 z3 := new(big.Int).Mul(y, z) //Y1*Z1
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
z3.Mod(z3, BitCurve.P) z3.Mod(z3, bitCurve.P)
return x3, y3, z3 return x3, y3, z3
} }
// ScalarBaseMult returns k*G, where G is the base point of the group and k is // ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form. // an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { func (bitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) return bitCurve.ScalarMult(bitCurve.Gx, bitCurve.Gy, k)
} }
// Marshal converts a point into the form specified in section 4.3.6 of ANSI // Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62. // X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { func (bitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
byteLen := (BitCurve.BitSize + 7) >> 3 byteLen := (bitCurve.BitSize + 7) >> 3
ret := make([]byte, 1+2*byteLen) ret := make([]byte, 1+2*byteLen)
ret[0] = 4 // uncompressed point flag ret[0] = 4 // uncompressed point flag
readBits(x, ret[1:1+byteLen]) readBits(x, ret[1:1+byteLen])
@ -264,8 +264,8 @@ func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil. // error, x = nil.
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { func (bitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
byteLen := (BitCurve.BitSize + 7) >> 3 byteLen := (bitCurve.BitSize + 7) >> 3
if len(data) != 1+2*byteLen { if len(data) != 1+2*byteLen {
return return
} }

@ -21,7 +21,7 @@ extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned
*/ */
import "C" import "C"
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { func (bitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
// Ensure scalar is exactly 32 bytes. We pad always, even if // Ensure scalar is exactly 32 bytes. We pad always, even if
// scalar is 32 bytes long, to avoid a timing side channel. // scalar is 32 bytes long, to avoid a timing side channel.
if len(scalar) > 32 { if len(scalar) > 32 {

@ -9,6 +9,6 @@ package secp256k1
import "math/big" import "math/big"
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { func (bitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
panic("ScalarMult is not available when secp256k1 is built without cgo") panic("ScalarMult is not available when secp256k1 is built without cgo")
} }