eth/downloader: purge pre-merge sync code (#29281)

This PR removes pre-merge sync logic from the downloader. Now-irrelevant tests are removed and others have been updated.
This commit is contained in:
jwasinger 2024-04-30 06:46:53 -07:00 committed by GitHub
parent 2e8e35f2ad
commit 45baf21111
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 182 additions and 1710 deletions

@ -106,7 +106,7 @@ func (b *beaconBackfiller) resume() {
}() }()
// If the downloader fails, report an error as in beacon chain mode there // If the downloader fails, report an error as in beacon chain mode there
// should be no errors as long as the chain we're syncing to is valid. // should be no errors as long as the chain we're syncing to is valid.
if err := b.downloader.synchronise("", common.Hash{}, nil, nil, mode, true, b.started); err != nil { if err := b.downloader.synchronise(mode, b.started); err != nil {
log.Error("Beacon backfilling failed", "err", err) log.Error("Beacon backfilling failed", "err", err)
return return
} }
@ -268,9 +268,9 @@ func (d *Downloader) findBeaconAncestor() (uint64, error) {
return start, nil return start, nil
} }
// fetchBeaconHeaders feeds skeleton headers to the downloader queue for scheduling // fetchHeaders feeds skeleton headers to the downloader queue for scheduling
// until sync errors or is finished. // until sync errors or is finished.
func (d *Downloader) fetchBeaconHeaders(from uint64) error { func (d *Downloader) fetchHeaders(from uint64) error {
var head *types.Header var head *types.Header
_, tail, _, err := d.skeleton.Bounds() _, tail, _, err := d.skeleton.Bounds()
if err != nil { if err != nil {

@ -41,16 +41,13 @@ import (
var ( var (
MaxBlockFetch = 128 // Number of blocks to be fetched per retrieval request MaxBlockFetch = 128 // Number of blocks to be fetched per retrieval request
MaxHeaderFetch = 192 // Number of block headers to be fetched per retrieval request MaxHeaderFetch = 192 // Number of block headers to be fetched per retrieval request
MaxSkeletonSize = 128 // Number of header fetches needed for a skeleton assembly
MaxReceiptFetch = 256 // Number of transaction receipts to allow fetching per request MaxReceiptFetch = 256 // Number of transaction receipts to allow fetching per request
maxQueuedHeaders = 32 * 1024 // [eth/62] Maximum number of headers to queue for import (DOS protection) maxQueuedHeaders = 32 * 1024 // [eth/62] Maximum number of headers to queue for import (DOS protection)
maxHeadersProcess = 2048 // Number of header download results to import at once into the chain maxHeadersProcess = 2048 // Number of header download results to import at once into the chain
maxResultsProcess = 2048 // Number of content download results to import at once into the chain maxResultsProcess = 2048 // Number of content download results to import at once into the chain
fullMaxForkAncestry uint64 = params.FullImmutabilityThreshold // Maximum chain reorganisation (locally redeclared so tests can reduce it) fullMaxForkAncestry uint64 = params.FullImmutabilityThreshold // Maximum chain reorganisation (locally redeclared so tests can reduce it)
lightMaxForkAncestry uint64 = params.LightImmutabilityThreshold // Maximum chain reorganisation (locally redeclared so tests can reduce it)
reorgProtThreshold = 48 // Threshold number of recent blocks to disable mini reorg protection
reorgProtHeaderDelay = 2 // Number of headers to delay delivering to cover mini reorgs reorgProtHeaderDelay = 2 // Number of headers to delay delivering to cover mini reorgs
fsHeaderSafetyNet = 2048 // Number of headers to discard in case a chain violation is detected fsHeaderSafetyNet = 2048 // Number of headers to discard in case a chain violation is detected
@ -60,23 +57,15 @@ var (
var ( var (
errBusy = errors.New("busy") errBusy = errors.New("busy")
errUnknownPeer = errors.New("peer is unknown or unhealthy")
errBadPeer = errors.New("action from bad peer ignored") errBadPeer = errors.New("action from bad peer ignored")
errStallingPeer = errors.New("peer is stalling")
errUnsyncedPeer = errors.New("unsynced peer")
errNoPeers = errors.New("no peers to keep download active")
errTimeout = errors.New("timeout") errTimeout = errors.New("timeout")
errEmptyHeaderSet = errors.New("empty header set by peer")
errPeersUnavailable = errors.New("no peers available or all tried for download")
errInvalidAncestor = errors.New("retrieved ancestor is invalid")
errInvalidChain = errors.New("retrieved hash chain is invalid") errInvalidChain = errors.New("retrieved hash chain is invalid")
errInvalidBody = errors.New("retrieved block body is invalid") errInvalidBody = errors.New("retrieved block body is invalid")
errInvalidReceipt = errors.New("retrieved receipt is invalid") errInvalidReceipt = errors.New("retrieved receipt is invalid")
errCancelStateFetch = errors.New("state data download canceled (requested)") errCancelStateFetch = errors.New("state data download canceled (requested)")
errCancelContentProcessing = errors.New("content processing canceled (requested)") errCancelContentProcessing = errors.New("content processing canceled (requested)")
errCanceled = errors.New("syncing canceled (requested)") errCanceled = errors.New("syncing canceled (requested)")
errTooOld = errors.New("peer's protocol version too old")
errNoAncestorFound = errors.New("no common ancestor found")
errNoPivotHeader = errors.New("pivot header is not found") errNoPivotHeader = errors.New("pivot header is not found")
ErrMergeTransition = errors.New("legacy sync reached the merge") ErrMergeTransition = errors.New("legacy sync reached the merge")
) )
@ -99,7 +88,6 @@ type Downloader struct {
mode atomic.Uint32 // Synchronisation mode defining the strategy used (per sync cycle), use d.getMode() to get the SyncMode mode atomic.Uint32 // Synchronisation mode defining the strategy used (per sync cycle), use d.getMode() to get the SyncMode
mux *event.TypeMux // Event multiplexer to announce sync operation events mux *event.TypeMux // Event multiplexer to announce sync operation events
genesis uint64 // Genesis block number to limit sync to (e.g. light client CHT)
queue *queue // Scheduler for selecting the hashes to download queue *queue // Scheduler for selecting the hashes to download
peers *peerSet // Set of active peers from which download can proceed peers *peerSet // Set of active peers from which download can proceed
@ -118,7 +106,6 @@ type Downloader struct {
badBlock badBlockFn // Reports a block as rejected by the chain badBlock badBlockFn // Reports a block as rejected by the chain
// Status // Status
synchroniseMock func(id string, hash common.Hash) error // Replacement for synchronise during testing
synchronising atomic.Bool synchronising atomic.Bool
notified atomic.Bool notified atomic.Bool
committed atomic.Bool committed atomic.Bool
@ -138,7 +125,6 @@ type Downloader struct {
stateSyncStart chan *stateSync stateSyncStart chan *stateSync
// Cancellation and termination // Cancellation and termination
cancelPeer string // Identifier of the peer currently being used as the master (cancel on drop)
cancelCh chan struct{} // Channel to cancel mid-flight syncs cancelCh chan struct{} // Channel to cancel mid-flight syncs
cancelLock sync.RWMutex // Lock to protect the cancel channel and peer in delivers cancelLock sync.RWMutex // Lock to protect the cancel channel and peer in delivers
cancelWg sync.WaitGroup // Make sure all fetcher goroutines have exited. cancelWg sync.WaitGroup // Make sure all fetcher goroutines have exited.
@ -147,7 +133,6 @@ type Downloader struct {
quitLock sync.Mutex // Lock to prevent double closes quitLock sync.Mutex // Lock to prevent double closes
// Testing hooks // Testing hooks
syncInitHook func(uint64, uint64) // Method to call upon initiating a new sync run
bodyFetchHook func([]*types.Header) // Method to call upon starting a block body fetch bodyFetchHook func([]*types.Header) // Method to call upon starting a block body fetch
receiptFetchHook func([]*types.Header) // Method to call upon starting a receipt fetch receiptFetchHook func([]*types.Header) // Method to call upon starting a receipt fetch
chainInsertHook func([]*fetchResult) // Method to call upon inserting a chain of blocks (possibly in multiple invocations) chainInsertHook func([]*fetchResult) // Method to call upon inserting a chain of blocks (possibly in multiple invocations)
@ -326,39 +311,10 @@ func (d *Downloader) UnregisterPeer(id string) error {
return nil return nil
} }
// LegacySync tries to sync up our local block chain with a remote peer, both
// adding various sanity checks as well as wrapping it with various log entries.
func (d *Downloader) LegacySync(id string, head common.Hash, td, ttd *big.Int, mode SyncMode) error {
err := d.synchronise(id, head, td, ttd, mode, false, nil)
switch err {
case nil, errBusy, errCanceled:
return err
}
if errors.Is(err, errInvalidChain) || errors.Is(err, errBadPeer) || errors.Is(err, errTimeout) ||
errors.Is(err, errStallingPeer) || errors.Is(err, errUnsyncedPeer) || errors.Is(err, errEmptyHeaderSet) ||
errors.Is(err, errPeersUnavailable) || errors.Is(err, errTooOld) || errors.Is(err, errInvalidAncestor) {
log.Warn("Synchronisation failed, dropping peer", "peer", id, "err", err)
if d.dropPeer == nil {
// The dropPeer method is nil when `--copydb` is used for a local copy.
// Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored
log.Warn("Downloader wants to drop peer, but peerdrop-function is not set", "peer", id)
} else {
d.dropPeer(id)
}
return err
}
if errors.Is(err, ErrMergeTransition) {
return err // This is an expected fault, don't keep printing it in a spin-loop
}
log.Warn("Synchronisation failed, retrying", "err", err)
return err
}
// synchronise will select the peer and use it for synchronising. If an empty string is given // synchronise will select the peer and use it for synchronising. If an empty string is given
// it will use the best peer possible and synchronize if its TD is higher than our own. If any of the // it will use the best peer possible and synchronize if its TD is higher than our own. If any of the
// checks fail an error will be returned. This method is synchronous // checks fail an error will be returned. This method is synchronous
func (d *Downloader) synchronise(id string, hash common.Hash, td, ttd *big.Int, mode SyncMode, beaconMode bool, beaconPing chan struct{}) error { func (d *Downloader) synchronise(mode SyncMode, beaconPing chan struct{}) error {
// The beacon header syncer is async. It will start this synchronization and // The beacon header syncer is async. It will start this synchronization and
// will continue doing other tasks. However, if synchronization needs to be // will continue doing other tasks. However, if synchronization needs to be
// cancelled, the syncer needs to know if we reached the startup point (and // cancelled, the syncer needs to know if we reached the startup point (and
@ -373,10 +329,6 @@ func (d *Downloader) synchronise(id string, hash common.Hash, td, ttd *big.Int,
} }
}() }()
} }
// Mock out the synchronisation if testing
if d.synchroniseMock != nil {
return d.synchroniseMock(id, hash)
}
// Make sure only one goroutine is ever allowed past this point at once // Make sure only one goroutine is ever allowed past this point at once
if !d.synchronising.CompareAndSwap(false, true) { if !d.synchronising.CompareAndSwap(false, true) {
return errBusy return errBusy
@ -424,7 +376,6 @@ func (d *Downloader) synchronise(id string, hash common.Hash, td, ttd *big.Int,
// Create cancel channel for aborting mid-flight and mark the master peer // Create cancel channel for aborting mid-flight and mark the master peer
d.cancelLock.Lock() d.cancelLock.Lock()
d.cancelCh = make(chan struct{}) d.cancelCh = make(chan struct{})
d.cancelPeer = id
d.cancelLock.Unlock() d.cancelLock.Unlock()
defer d.Cancel() // No matter what, we can't leave the cancel channel open defer d.Cancel() // No matter what, we can't leave the cancel channel open
@ -432,27 +383,19 @@ func (d *Downloader) synchronise(id string, hash common.Hash, td, ttd *big.Int,
// Atomically set the requested sync mode // Atomically set the requested sync mode
d.mode.Store(uint32(mode)) d.mode.Store(uint32(mode))
// Retrieve the origin peer and initiate the downloading process
var p *peerConnection
if !beaconMode { // Beacon mode doesn't need a peer to sync from
p = d.peers.Peer(id)
if p == nil {
return errUnknownPeer
}
}
if beaconPing != nil { if beaconPing != nil {
close(beaconPing) close(beaconPing)
} }
return d.syncWithPeer(p, hash, td, ttd, beaconMode) return d.syncToHead()
} }
func (d *Downloader) getMode() SyncMode { func (d *Downloader) getMode() SyncMode {
return SyncMode(d.mode.Load()) return SyncMode(d.mode.Load())
} }
// syncWithPeer starts a block synchronization based on the hash chain from the // syncToHead starts a block synchronization based on the hash chain from
// specified peer and head hash. // the specified head hash.
func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *big.Int, beaconMode bool) (err error) { func (d *Downloader) syncToHead() (err error) {
d.mux.Post(StartEvent{}) d.mux.Post(StartEvent{})
defer func() { defer func() {
// reset on error // reset on error
@ -465,25 +408,13 @@ func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *
}() }()
mode := d.getMode() mode := d.getMode()
if !beaconMode {
log.Debug("Synchronising with the network", "peer", p.id, "eth", p.version, "head", hash, "td", td, "mode", mode)
} else {
log.Debug("Backfilling with the network", "mode", mode) log.Debug("Backfilling with the network", "mode", mode)
}
defer func(start time.Time) { defer func(start time.Time) {
log.Debug("Synchronisation terminated", "elapsed", common.PrettyDuration(time.Since(start))) log.Debug("Synchronisation terminated", "elapsed", common.PrettyDuration(time.Since(start)))
}(time.Now()) }(time.Now())
// Look up the sync boundaries: the common ancestor and the target block // Look up the sync boundaries: the common ancestor and the target block
var latest, pivot, final *types.Header var latest, pivot, final *types.Header
if !beaconMode {
// In legacy mode, use the master peer to retrieve the headers from
latest, pivot, err = d.fetchHead(p)
if err != nil {
return err
}
} else {
// In beacon mode, use the skeleton chain to retrieve the headers from
latest, _, final, err = d.skeleton.Bounds() latest, _, final, err = d.skeleton.Bounds()
if err != nil { if err != nil {
return err return err
@ -512,7 +443,6 @@ func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *
return errNoPivotHeader return errNoPivotHeader
} }
} }
}
// If no pivot block was returned, the head is below the min full block // If no pivot block was returned, the head is below the min full block
// threshold (i.e. new chain). In that case we won't really snap sync // threshold (i.e. new chain). In that case we won't really snap sync
// anyway, but still need a valid pivot block to avoid some code hitting // anyway, but still need a valid pivot block to avoid some code hitting
@ -522,20 +452,11 @@ func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *
} }
height := latest.Number.Uint64() height := latest.Number.Uint64()
var origin uint64
if !beaconMode {
// In legacy mode, reach out to the network and find the ancestor
origin, err = d.findAncestor(p, latest)
if err != nil {
return err
}
} else {
// In beacon mode, use the skeleton chain for the ancestor lookup // In beacon mode, use the skeleton chain for the ancestor lookup
origin, err = d.findBeaconAncestor() origin, err := d.findBeaconAncestor()
if err != nil { if err != nil {
return err return err
} }
}
d.syncStatsLock.Lock() d.syncStatsLock.Lock()
if d.syncStatsChainHeight <= origin || d.syncStatsChainOrigin > origin { if d.syncStatsChainHeight <= origin || d.syncStatsChainOrigin > origin {
d.syncStatsChainOrigin = origin d.syncStatsChainOrigin = origin
@ -577,7 +498,7 @@ func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *
// the ancientLimit through that. Otherwise calculate the ancient limit through // the ancientLimit through that. Otherwise calculate the ancient limit through
// the advertised height of the remote peer. This most is mostly a fallback for // the advertised height of the remote peer. This most is mostly a fallback for
// legacy networks, but should eventually be dropped. TODO(karalabe). // legacy networks, but should eventually be dropped. TODO(karalabe).
if beaconMode { //
// Beacon sync, use the latest finalized block as the ancient limit // Beacon sync, use the latest finalized block as the ancient limit
// or a reasonable height if no finalized block is yet announced. // or a reasonable height if no finalized block is yet announced.
if final != nil { if final != nil {
@ -587,15 +508,6 @@ func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *
} else { } else {
d.ancientLimit = 0 d.ancientLimit = 0
} }
} else {
// Legacy sync, use the best announcement we have from the remote peer.
// TODO(karalabe): Drop this pathway.
if height > fullMaxForkAncestry+1 {
d.ancientLimit = height - fullMaxForkAncestry - 1
} else {
d.ancientLimit = 0
}
}
frozen, _ := d.stateDB.Ancients() // Ignore the error here since light client can also hit here. frozen, _ := d.stateDB.Ancients() // Ignore the error here since light client can also hit here.
// If a part of blockchain data has already been written into active store, // If a part of blockchain data has already been written into active store,
@ -616,22 +528,13 @@ func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *
} }
// Initiate the sync using a concurrent header and content retrieval algorithm // Initiate the sync using a concurrent header and content retrieval algorithm
d.queue.Prepare(origin+1, mode) d.queue.Prepare(origin+1, mode)
if d.syncInitHook != nil {
d.syncInitHook(origin, height)
}
var headerFetcher func() error
if !beaconMode {
// In legacy mode, headers are retrieved from the network
headerFetcher = func() error { return d.fetchHeaders(p, origin+1, latest.Number.Uint64()) }
} else {
// In beacon mode, headers are served by the skeleton syncer // In beacon mode, headers are served by the skeleton syncer
headerFetcher = func() error { return d.fetchBeaconHeaders(origin + 1) }
}
fetchers := []func() error{ fetchers := []func() error{
headerFetcher, // Headers are always retrieved func() error { return d.fetchHeaders(origin + 1) }, // Headers are always retrieved
func() error { return d.fetchBodies(origin+1, beaconMode) }, // Bodies are retrieved during normal and snap sync func() error { return d.fetchBodies(origin + 1) }, // Bodies are retrieved during normal and snap sync
func() error { return d.fetchReceipts(origin+1, beaconMode) }, // Receipts are retrieved during snap sync func() error { return d.fetchReceipts(origin + 1) }, // Receipts are retrieved during snap sync
func() error { return d.processHeaders(origin+1, td, ttd, beaconMode) }, func() error { return d.processHeaders(origin + 1) },
} }
if mode == SnapSync { if mode == SnapSync {
d.pivotLock.Lock() d.pivotLock.Lock()
@ -640,7 +543,7 @@ func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *
fetchers = append(fetchers, func() error { return d.processSnapSyncContent() }) fetchers = append(fetchers, func() error { return d.processSnapSyncContent() })
} else if mode == FullSync { } else if mode == FullSync {
fetchers = append(fetchers, func() error { return d.processFullSyncContent(ttd, beaconMode) }) fetchers = append(fetchers, func() error { return d.processFullSyncContent() })
} }
return d.spawnSync(fetchers) return d.spawnSync(fetchers)
} }
@ -719,540 +622,12 @@ func (d *Downloader) Terminate() {
d.Cancel() d.Cancel()
} }
// fetchHead retrieves the head header and prior pivot block (if available) from
// a remote peer.
func (d *Downloader) fetchHead(p *peerConnection) (head *types.Header, pivot *types.Header, err error) {
p.log.Debug("Retrieving remote chain head")
mode := d.getMode()
// Request the advertised remote head block and wait for the response
latest, _ := p.peer.Head()
fetch := 1
if mode == SnapSync {
fetch = 2 // head + pivot headers
}
headers, hashes, err := d.fetchHeadersByHash(p, latest, fetch, fsMinFullBlocks-1, true)
if err != nil {
return nil, nil, err
}
// Make sure the peer gave us at least one and at most the requested headers
if len(headers) == 0 || len(headers) > fetch {
return nil, nil, fmt.Errorf("%w: returned headers %d != requested %d", errBadPeer, len(headers), fetch)
}
// The first header needs to be the head, validate against the request. If
// only 1 header was returned, make sure there's no pivot or there was not
// one requested.
head = headers[0]
if len(headers) == 1 {
if mode == SnapSync && head.Number.Uint64() > uint64(fsMinFullBlocks) {
return nil, nil, fmt.Errorf("%w: no pivot included along head header", errBadPeer)
}
p.log.Debug("Remote head identified, no pivot", "number", head.Number, "hash", hashes[0])
return head, nil, nil
}
// At this point we have 2 headers in total and the first is the
// validated head of the chain. Check the pivot number and return,
pivot = headers[1]
if pivot.Number.Uint64() != head.Number.Uint64()-uint64(fsMinFullBlocks) {
return nil, nil, fmt.Errorf("%w: remote pivot %d != requested %d", errInvalidChain, pivot.Number, head.Number.Uint64()-uint64(fsMinFullBlocks))
}
return head, pivot, nil
}
// calculateRequestSpan calculates what headers to request from a peer when trying to determine the
// common ancestor.
// It returns parameters to be used for peer.RequestHeadersByNumber:
//
// from - starting block number
// count - number of headers to request
// skip - number of headers to skip
//
// and also returns 'max', the last block which is expected to be returned by the remote peers,
// given the (from,count,skip)
func calculateRequestSpan(remoteHeight, localHeight uint64) (int64, int, int, uint64) {
var (
from int
count int
MaxCount = MaxHeaderFetch / 16
)
// requestHead is the highest block that we will ask for. If requestHead is not offset,
// the highest block that we will get is 16 blocks back from head, which means we
// will fetch 14 or 15 blocks unnecessarily in the case the height difference
// between us and the peer is 1-2 blocks, which is most common
requestHead := int(remoteHeight) - 1
if requestHead < 0 {
requestHead = 0
}
// requestBottom is the lowest block we want included in the query
// Ideally, we want to include the one just below our own head
requestBottom := int(localHeight - 1)
if requestBottom < 0 {
requestBottom = 0
}
totalSpan := requestHead - requestBottom
span := 1 + totalSpan/MaxCount
if span < 2 {
span = 2
}
if span > 16 {
span = 16
}
count = 1 + totalSpan/span
if count > MaxCount {
count = MaxCount
}
if count < 2 {
count = 2
}
from = requestHead - (count-1)*span
if from < 0 {
from = 0
}
max := from + (count-1)*span
return int64(from), count, span - 1, uint64(max)
}
// findAncestor tries to locate the common ancestor link of the local chain and
// a remote peers blockchain. In the general case when our node was in sync and
// on the correct chain, checking the top N links should already get us a match.
// In the rare scenario when we ended up on a long reorganisation (i.e. none of
// the head links match), we do a binary search to find the common ancestor.
func (d *Downloader) findAncestor(p *peerConnection, remoteHeader *types.Header) (uint64, error) {
// Figure out the valid ancestor range to prevent rewrite attacks
var (
floor = int64(-1)
localHeight uint64
remoteHeight = remoteHeader.Number.Uint64()
)
mode := d.getMode()
switch mode {
case FullSync:
localHeight = d.blockchain.CurrentBlock().Number.Uint64()
case SnapSync:
localHeight = d.blockchain.CurrentSnapBlock().Number.Uint64()
default:
localHeight = d.lightchain.CurrentHeader().Number.Uint64()
}
p.log.Debug("Looking for common ancestor", "local", localHeight, "remote", remoteHeight)
// Recap floor value for binary search
maxForkAncestry := fullMaxForkAncestry
if d.getMode() == LightSync {
maxForkAncestry = lightMaxForkAncestry
}
if localHeight >= maxForkAncestry {
// We're above the max reorg threshold, find the earliest fork point
floor = int64(localHeight - maxForkAncestry)
}
// If we're doing a light sync, ensure the floor doesn't go below the CHT, as
// all headers before that point will be missing.
if mode == LightSync {
// If we don't know the current CHT position, find it
if d.genesis == 0 {
header := d.lightchain.CurrentHeader()
for header != nil {
d.genesis = header.Number.Uint64()
if floor >= int64(d.genesis)-1 {
break
}
header = d.lightchain.GetHeaderByHash(header.ParentHash)
}
}
// We already know the "genesis" block number, cap floor to that
if floor < int64(d.genesis)-1 {
floor = int64(d.genesis) - 1
}
}
ancestor, err := d.findAncestorSpanSearch(p, mode, remoteHeight, localHeight, floor)
if err == nil {
return ancestor, nil
}
// The returned error was not nil.
// If the error returned does not reflect that a common ancestor was not found, return it.
// If the error reflects that a common ancestor was not found, continue to binary search,
// where the error value will be reassigned.
if !errors.Is(err, errNoAncestorFound) {
return 0, err
}
ancestor, err = d.findAncestorBinarySearch(p, mode, remoteHeight, floor)
if err != nil {
return 0, err
}
return ancestor, nil
}
func (d *Downloader) findAncestorSpanSearch(p *peerConnection, mode SyncMode, remoteHeight, localHeight uint64, floor int64) (uint64, error) {
from, count, skip, max := calculateRequestSpan(remoteHeight, localHeight)
p.log.Trace("Span searching for common ancestor", "count", count, "from", from, "skip", skip)
headers, hashes, err := d.fetchHeadersByNumber(p, uint64(from), count, skip, false)
if err != nil {
return 0, err
}
// Wait for the remote response to the head fetch
number, hash := uint64(0), common.Hash{}
// Make sure the peer actually gave something valid
if len(headers) == 0 {
p.log.Warn("Empty head header set")
return 0, errEmptyHeaderSet
}
// Make sure the peer's reply conforms to the request
for i, header := range headers {
expectNumber := from + int64(i)*int64(skip+1)
if number := header.Number.Int64(); number != expectNumber {
p.log.Warn("Head headers broke chain ordering", "index", i, "requested", expectNumber, "received", number)
return 0, fmt.Errorf("%w: %v", errInvalidChain, errors.New("head headers broke chain ordering"))
}
}
// Check if a common ancestor was found
for i := len(headers) - 1; i >= 0; i-- {
// Skip any headers that underflow/overflow our requested set
if headers[i].Number.Int64() < from || headers[i].Number.Uint64() > max {
continue
}
// Otherwise check if we already know the header or not
h := hashes[i]
n := headers[i].Number.Uint64()
var known bool
switch mode {
case FullSync:
known = d.blockchain.HasBlock(h, n)
case SnapSync:
known = d.blockchain.HasFastBlock(h, n)
default:
known = d.lightchain.HasHeader(h, n)
}
if known {
number, hash = n, h
break
}
}
// If the head fetch already found an ancestor, return
if hash != (common.Hash{}) {
if int64(number) <= floor {
p.log.Warn("Ancestor below allowance", "number", number, "hash", hash, "allowance", floor)
return 0, errInvalidAncestor
}
p.log.Debug("Found common ancestor", "number", number, "hash", hash)
return number, nil
}
return 0, errNoAncestorFound
}
func (d *Downloader) findAncestorBinarySearch(p *peerConnection, mode SyncMode, remoteHeight uint64, floor int64) (uint64, error) {
hash := common.Hash{}
// Ancestor not found, we need to binary search over our chain
start, end := uint64(0), remoteHeight
if floor > 0 {
start = uint64(floor)
}
p.log.Trace("Binary searching for common ancestor", "start", start, "end", end)
for start+1 < end {
// Split our chain interval in two, and request the hash to cross check
check := (start + end) / 2
headers, hashes, err := d.fetchHeadersByNumber(p, check, 1, 0, false)
if err != nil {
return 0, err
}
// Make sure the peer actually gave something valid
if len(headers) != 1 {
p.log.Warn("Multiple headers for single request", "headers", len(headers))
return 0, fmt.Errorf("%w: multiple headers (%d) for single request", errBadPeer, len(headers))
}
// Modify the search interval based on the response
h := hashes[0]
n := headers[0].Number.Uint64()
var known bool
switch mode {
case FullSync:
known = d.blockchain.HasBlock(h, n)
case SnapSync:
known = d.blockchain.HasFastBlock(h, n)
default:
known = d.lightchain.HasHeader(h, n)
}
if !known {
end = check
continue
}
header := d.lightchain.GetHeaderByHash(h) // Independent of sync mode, header surely exists
if header.Number.Uint64() != check {
p.log.Warn("Received non requested header", "number", header.Number, "hash", header.Hash(), "request", check)
return 0, fmt.Errorf("%w: non-requested header (%d)", errBadPeer, header.Number)
}
start = check
hash = h
}
// Ensure valid ancestry and return
if int64(start) <= floor {
p.log.Warn("Ancestor below allowance", "number", start, "hash", hash, "allowance", floor)
return 0, errInvalidAncestor
}
p.log.Debug("Found common ancestor", "number", start, "hash", hash)
return start, nil
}
// fetchHeaders keeps retrieving headers concurrently from the number
// requested, until no more are returned, potentially throttling on the way. To
// facilitate concurrency but still protect against malicious nodes sending bad
// headers, we construct a header chain skeleton using the "origin" peer we are
// syncing with, and fill in the missing headers using anyone else. Headers from
// other peers are only accepted if they map cleanly to the skeleton. If no one
// can fill in the skeleton - not even the origin peer - it's assumed invalid and
// the origin is dropped.
func (d *Downloader) fetchHeaders(p *peerConnection, from uint64, head uint64) error {
p.log.Debug("Directing header downloads", "origin", from)
defer p.log.Debug("Header download terminated")
// Start pulling the header chain skeleton until all is done
var (
skeleton = true // Skeleton assembly phase or finishing up
pivoting = false // Whether the next request is pivot verification
ancestor = from
mode = d.getMode()
)
for {
// Pull the next batch of headers, it either:
// - Pivot check to see if the chain moved too far
// - Skeleton retrieval to permit concurrent header fetches
// - Full header retrieval if we're near the chain head
var (
headers []*types.Header
hashes []common.Hash
err error
)
switch {
case pivoting:
d.pivotLock.RLock()
pivot := d.pivotHeader.Number.Uint64()
d.pivotLock.RUnlock()
p.log.Trace("Fetching next pivot header", "number", pivot+uint64(fsMinFullBlocks))
headers, hashes, err = d.fetchHeadersByNumber(p, pivot+uint64(fsMinFullBlocks), 2, fsMinFullBlocks-9, false) // move +64 when it's 2x64-8 deep
case skeleton:
p.log.Trace("Fetching skeleton headers", "count", MaxHeaderFetch, "from", from)
headers, hashes, err = d.fetchHeadersByNumber(p, from+uint64(MaxHeaderFetch)-1, MaxSkeletonSize, MaxHeaderFetch-1, false)
default:
p.log.Trace("Fetching full headers", "count", MaxHeaderFetch, "from", from)
headers, hashes, err = d.fetchHeadersByNumber(p, from, MaxHeaderFetch, 0, false)
}
switch err {
case nil:
// Headers retrieved, continue with processing
case errCanceled:
// Sync cancelled, no issue, propagate up
return err
default:
// Header retrieval either timed out, or the peer failed in some strange way
// (e.g. disconnect). Consider the master peer bad and drop
d.dropPeer(p.id)
// Finish the sync gracefully instead of dumping the gathered data though
for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} {
select {
case ch <- false:
case <-d.cancelCh:
}
}
select {
case d.headerProcCh <- nil:
case <-d.cancelCh:
}
return fmt.Errorf("%w: header request failed: %v", errBadPeer, err)
}
// If the pivot is being checked, move if it became stale and run the real retrieval
var pivot uint64
d.pivotLock.RLock()
if d.pivotHeader != nil {
pivot = d.pivotHeader.Number.Uint64()
}
d.pivotLock.RUnlock()
if pivoting {
if len(headers) == 2 {
if have, want := headers[0].Number.Uint64(), pivot+uint64(fsMinFullBlocks); have != want {
log.Warn("Peer sent invalid next pivot", "have", have, "want", want)
return fmt.Errorf("%w: next pivot number %d != requested %d", errInvalidChain, have, want)
}
if have, want := headers[1].Number.Uint64(), pivot+2*uint64(fsMinFullBlocks)-8; have != want {
log.Warn("Peer sent invalid pivot confirmer", "have", have, "want", want)
return fmt.Errorf("%w: next pivot confirmer number %d != requested %d", errInvalidChain, have, want)
}
log.Warn("Pivot seemingly stale, moving", "old", pivot, "new", headers[0].Number)
pivot = headers[0].Number.Uint64()
d.pivotLock.Lock()
d.pivotHeader = headers[0]
d.pivotLock.Unlock()
// Write out the pivot into the database so a rollback beyond
// it will reenable snap sync and update the state root that
// the state syncer will be downloading.
rawdb.WriteLastPivotNumber(d.stateDB, pivot)
}
// Disable the pivot check and fetch the next batch of headers
pivoting = false
continue
}
// If the skeleton's finished, pull any remaining head headers directly from the origin
if skeleton && len(headers) == 0 {
// A malicious node might withhold advertised headers indefinitely
if from+uint64(MaxHeaderFetch)-1 <= head {
p.log.Warn("Peer withheld skeleton headers", "advertised", head, "withheld", from+uint64(MaxHeaderFetch)-1)
return fmt.Errorf("%w: withheld skeleton headers: advertised %d, withheld #%d", errStallingPeer, head, from+uint64(MaxHeaderFetch)-1)
}
p.log.Debug("No skeleton, fetching headers directly")
skeleton = false
continue
}
// If no more headers are inbound, notify the content fetchers and return
if len(headers) == 0 {
// Don't abort header fetches while the pivot is downloading
if !d.committed.Load() && pivot <= from {
p.log.Debug("No headers, waiting for pivot commit")
select {
case <-time.After(fsHeaderContCheck):
continue
case <-d.cancelCh:
return errCanceled
}
}
// Pivot done (or not in snap sync) and no more headers, terminate the process
p.log.Debug("No more headers available")
select {
case d.headerProcCh <- nil:
return nil
case <-d.cancelCh:
return errCanceled
}
}
// If we received a skeleton batch, resolve internals concurrently
var progressed bool
if skeleton {
filled, hashset, proced, err := d.fillHeaderSkeleton(from, headers)
if err != nil {
p.log.Debug("Skeleton chain invalid", "err", err)
return fmt.Errorf("%w: %v", errInvalidChain, err)
}
headers = filled[proced:]
hashes = hashset[proced:]
progressed = proced > 0
from += uint64(proced)
} else {
// A malicious node might withhold advertised headers indefinitely
if n := len(headers); n < MaxHeaderFetch && headers[n-1].Number.Uint64() < head {
p.log.Warn("Peer withheld headers", "advertised", head, "delivered", headers[n-1].Number.Uint64())
return fmt.Errorf("%w: withheld headers: advertised %d, delivered %d", errStallingPeer, head, headers[n-1].Number.Uint64())
}
// If we're closing in on the chain head, but haven't yet reached it, delay
// the last few headers so mini reorgs on the head don't cause invalid hash
// chain errors.
if n := len(headers); n > 0 {
// Retrieve the current head we're at
var head uint64
if mode == LightSync {
head = d.lightchain.CurrentHeader().Number.Uint64()
} else {
head = d.blockchain.CurrentSnapBlock().Number.Uint64()
if full := d.blockchain.CurrentBlock().Number.Uint64(); head < full {
head = full
}
}
// If the head is below the common ancestor, we're actually deduplicating
// already existing chain segments, so use the ancestor as the fake head.
// Otherwise, we might end up delaying header deliveries pointlessly.
if head < ancestor {
head = ancestor
}
// If the head is way older than this batch, delay the last few headers
if head+uint64(reorgProtThreshold) < headers[n-1].Number.Uint64() {
delay := reorgProtHeaderDelay
if delay > n {
delay = n
}
headers = headers[:n-delay]
hashes = hashes[:n-delay]
}
}
}
// If no headers have been delivered, or all of them have been delayed,
// sleep a bit and retry. Take care with headers already consumed during
// skeleton filling
if len(headers) == 0 && !progressed {
p.log.Trace("All headers delayed, waiting")
select {
case <-time.After(fsHeaderContCheck):
continue
case <-d.cancelCh:
return errCanceled
}
}
// Insert any remaining new headers and fetch the next batch
if len(headers) > 0 {
p.log.Trace("Scheduling new headers", "count", len(headers), "from", from)
select {
case d.headerProcCh <- &headerTask{
headers: headers,
hashes: hashes,
}:
case <-d.cancelCh:
return errCanceled
}
from += uint64(len(headers))
}
// If we're still skeleton filling snap sync, check pivot staleness
// before continuing to the next skeleton filling
if skeleton && pivot > 0 {
pivoting = true
}
}
}
// fillHeaderSkeleton concurrently retrieves headers from all our available peers
// and maps them to the provided skeleton header chain.
//
// Any partial results from the beginning of the skeleton is (if possible) forwarded
// immediately to the header processor to keep the rest of the pipeline full even
// in the case of header stalls.
//
// The method returns the entire filled skeleton and also the number of headers
// already forwarded for processing.
func (d *Downloader) fillHeaderSkeleton(from uint64, skeleton []*types.Header) ([]*types.Header, []common.Hash, int, error) {
log.Debug("Filling up skeleton", "from", from)
d.queue.ScheduleSkeleton(from, skeleton)
err := d.concurrentFetch((*headerQueue)(d), false)
if err != nil {
log.Debug("Skeleton fill failed", "err", err)
}
filled, hashes, proced := d.queue.RetrieveHeaders()
if err == nil {
log.Debug("Skeleton fill succeeded", "filled", len(filled), "processed", proced)
}
return filled, hashes, proced, err
}
// fetchBodies iteratively downloads the scheduled block bodies, taking any // fetchBodies iteratively downloads the scheduled block bodies, taking any
// available peers, reserving a chunk of blocks for each, waiting for delivery // available peers, reserving a chunk of blocks for each, waiting for delivery
// and also periodically checking for timeouts. // and also periodically checking for timeouts.
func (d *Downloader) fetchBodies(from uint64, beaconMode bool) error { func (d *Downloader) fetchBodies(from uint64) error {
log.Debug("Downloading block bodies", "origin", from) log.Debug("Downloading block bodies", "origin", from)
err := d.concurrentFetch((*bodyQueue)(d), beaconMode) err := d.concurrentFetch((*bodyQueue)(d))
log.Debug("Block body download terminated", "err", err) log.Debug("Block body download terminated", "err", err)
return err return err
@ -1261,9 +636,9 @@ func (d *Downloader) fetchBodies(from uint64, beaconMode bool) error {
// fetchReceipts iteratively downloads the scheduled block receipts, taking any // fetchReceipts iteratively downloads the scheduled block receipts, taking any
// available peers, reserving a chunk of receipts for each, waiting for delivery // available peers, reserving a chunk of receipts for each, waiting for delivery
// and also periodically checking for timeouts. // and also periodically checking for timeouts.
func (d *Downloader) fetchReceipts(from uint64, beaconMode bool) error { func (d *Downloader) fetchReceipts(from uint64) error {
log.Debug("Downloading receipts", "origin", from) log.Debug("Downloading receipts", "origin", from)
err := d.concurrentFetch((*receiptQueue)(d), beaconMode) err := d.concurrentFetch((*receiptQueue)(d))
log.Debug("Receipt download terminated", "err", err) log.Debug("Receipt download terminated", "err", err)
return err return err
@ -1272,10 +647,9 @@ func (d *Downloader) fetchReceipts(from uint64, beaconMode bool) error {
// processHeaders takes batches of retrieved headers from an input channel and // processHeaders takes batches of retrieved headers from an input channel and
// keeps processing and scheduling them into the header chain and downloader's // keeps processing and scheduling them into the header chain and downloader's
// queue until the stream ends or a failure occurs. // queue until the stream ends or a failure occurs.
func (d *Downloader) processHeaders(origin uint64, td, ttd *big.Int, beaconMode bool) error { func (d *Downloader) processHeaders(origin uint64) error {
var ( var (
mode = d.getMode() mode = d.getMode()
gotHeaders = false // Wait for batches of headers to process
timer = time.NewTimer(time.Second) timer = time.NewTimer(time.Second)
) )
defer timer.Stop() defer timer.Stop()
@ -1295,48 +669,11 @@ func (d *Downloader) processHeaders(origin uint64, td, ttd *big.Int, beaconMode
case <-d.cancelCh: case <-d.cancelCh:
} }
} }
// If we're in legacy sync mode, we need to check total difficulty
// violations from malicious peers. That is not needed in beacon
// mode and we can skip to terminating sync.
if !beaconMode {
// If no headers were retrieved at all, the peer violated its TD promise that it had a
// better chain compared to ours. The only exception is if its promised blocks were
// already imported by other means (e.g. fetcher):
//
// R <remote peer>, L <local node>: Both at block 10
// R: Mine block 11, and propagate it to L
// L: Queue block 11 for import
// L: Notice that R's head and TD increased compared to ours, start sync
// L: Import of block 11 finishes
// L: Sync begins, and finds common ancestor at 11
// L: Request new headers up from 11 (R's TD was higher, it must have something)
// R: Nothing to give
if mode != LightSync {
head := d.blockchain.CurrentBlock()
if !gotHeaders && td.Cmp(d.blockchain.GetTd(head.Hash(), head.Number.Uint64())) > 0 {
return errStallingPeer
}
}
// If snap or light syncing, ensure promised headers are indeed delivered. This is
// needed to detect scenarios where an attacker feeds a bad pivot and then bails out
// of delivering the post-pivot blocks that would flag the invalid content.
//
// This check cannot be executed "as is" for full imports, since blocks may still be
// queued for processing when the header download completes. However, as long as the
// peer gave us something useful, we're already happy/progressed (above check).
if mode == SnapSync || mode == LightSync {
head := d.lightchain.CurrentHeader()
if td.Cmp(d.lightchain.GetTd(head.Hash(), head.Number.Uint64())) > 0 {
return errStallingPeer
}
}
}
return nil return nil
} }
// Otherwise split the chunk of headers into batches and process them // Otherwise split the chunk of headers into batches and process them
headers, hashes := task.headers, task.hashes headers, hashes := task.headers, task.hashes
gotHeaders = true
for len(headers) > 0 { for len(headers) > 0 {
// Terminate if something failed in between processing chunks // Terminate if something failed in between processing chunks
select { select {
@ -1357,44 +694,12 @@ func (d *Downloader) processHeaders(origin uint64, td, ttd *big.Int, beaconMode
// Although the received headers might be all valid, a legacy // Although the received headers might be all valid, a legacy
// PoW/PoA sync must not accept post-merge headers. Make sure // PoW/PoA sync must not accept post-merge headers. Make sure
// that any transition is rejected at this point. // that any transition is rejected at this point.
var (
rejected []*types.Header
td *big.Int
)
if !beaconMode && ttd != nil {
td = d.blockchain.GetTd(chunkHeaders[0].ParentHash, chunkHeaders[0].Number.Uint64()-1)
if td == nil {
// This should never really happen, but handle gracefully for now
log.Error("Failed to retrieve parent header TD", "number", chunkHeaders[0].Number.Uint64()-1, "hash", chunkHeaders[0].ParentHash)
return fmt.Errorf("%w: parent TD missing", errInvalidChain)
}
for i, header := range chunkHeaders {
td = new(big.Int).Add(td, header.Difficulty)
if td.Cmp(ttd) >= 0 {
// Terminal total difficulty reached, allow the last header in
if new(big.Int).Sub(td, header.Difficulty).Cmp(ttd) < 0 {
chunkHeaders, rejected = chunkHeaders[:i+1], chunkHeaders[i+1:]
if len(rejected) > 0 {
// Make a nicer user log as to the first TD truly rejected
td = new(big.Int).Add(td, rejected[0].Difficulty)
}
} else {
chunkHeaders, rejected = chunkHeaders[:i], chunkHeaders[i:]
}
break
}
}
}
if len(chunkHeaders) > 0 { if len(chunkHeaders) > 0 {
if n, err := d.lightchain.InsertHeaderChain(chunkHeaders); err != nil { if n, err := d.lightchain.InsertHeaderChain(chunkHeaders); err != nil {
log.Warn("Invalid header encountered", "number", chunkHeaders[n].Number, "hash", chunkHashes[n], "parent", chunkHeaders[n].ParentHash, "err", err) log.Warn("Invalid header encountered", "number", chunkHeaders[n].Number, "hash", chunkHashes[n], "parent", chunkHeaders[n].ParentHash, "err", err)
return fmt.Errorf("%w: %v", errInvalidChain, err) return fmt.Errorf("%w: %v", errInvalidChain, err)
} }
} }
if len(rejected) != 0 {
log.Info("Legacy sync reached merge threshold", "number", rejected[0].Number, "hash", rejected[0].Hash(), "td", td, "ttd", ttd)
return ErrMergeTransition
}
} }
// Unless we're doing light chains, schedule the headers for associated content retrieval // Unless we're doing light chains, schedule the headers for associated content retrieval
if mode == FullSync || mode == SnapSync { if mode == FullSync || mode == SnapSync {
@ -1436,7 +741,7 @@ func (d *Downloader) processHeaders(origin uint64, td, ttd *big.Int, beaconMode
} }
// processFullSyncContent takes fetch results from the queue and imports them into the chain. // processFullSyncContent takes fetch results from the queue and imports them into the chain.
func (d *Downloader) processFullSyncContent(ttd *big.Int, beaconMode bool) error { func (d *Downloader) processFullSyncContent() error {
for { for {
results := d.queue.Results(true) results := d.queue.Results(true)
if len(results) == 0 { if len(results) == 0 {
@ -1445,44 +750,9 @@ func (d *Downloader) processFullSyncContent(ttd *big.Int, beaconMode bool) error
if d.chainInsertHook != nil { if d.chainInsertHook != nil {
d.chainInsertHook(results) d.chainInsertHook(results)
} }
// Although the received blocks might be all valid, a legacy PoW/PoA sync
// must not accept post-merge blocks. Make sure that pre-merge blocks are
// imported, but post-merge ones are rejected.
var (
rejected []*fetchResult
td *big.Int
)
if !beaconMode && ttd != nil {
td = d.blockchain.GetTd(results[0].Header.ParentHash, results[0].Header.Number.Uint64()-1)
if td == nil {
// This should never really happen, but handle gracefully for now
log.Error("Failed to retrieve parent block TD", "number", results[0].Header.Number.Uint64()-1, "hash", results[0].Header.ParentHash)
return fmt.Errorf("%w: parent TD missing", errInvalidChain)
}
for i, result := range results {
td = new(big.Int).Add(td, result.Header.Difficulty)
if td.Cmp(ttd) >= 0 {
// Terminal total difficulty reached, allow the last block in
if new(big.Int).Sub(td, result.Header.Difficulty).Cmp(ttd) < 0 {
results, rejected = results[:i+1], results[i+1:]
if len(rejected) > 0 {
// Make a nicer user log as to the first TD truly rejected
td = new(big.Int).Add(td, rejected[0].Header.Difficulty)
}
} else {
results, rejected = results[:i], results[i:]
}
break
}
}
}
if err := d.importBlockResults(results); err != nil { if err := d.importBlockResults(results); err != nil {
return err return err
} }
if len(rejected) != 0 {
log.Info("Legacy sync reached merge threshold", "number", rejected[0].Header.Number, "hash", rejected[0].Header.Hash(), "td", td, "ttd", ttd)
return ErrMergeTransition
}
} }
} }

@ -20,7 +20,6 @@ import (
"fmt" "fmt"
"math/big" "math/big"
"os" "os"
"strings"
"sync" "sync"
"sync/atomic" "sync/atomic"
"testing" "testing"
@ -94,25 +93,6 @@ func (dl *downloadTester) terminate() {
os.RemoveAll(dl.freezer) os.RemoveAll(dl.freezer)
} }
// sync starts synchronizing with a remote peer, blocking until it completes.
func (dl *downloadTester) sync(id string, td *big.Int, mode SyncMode) error {
head := dl.peers[id].chain.CurrentBlock()
if td == nil {
// If no particular TD was requested, load from the peer's blockchain
td = dl.peers[id].chain.GetTd(head.Hash(), head.Number.Uint64())
}
// Synchronise with the chosen peer and ensure proper cleanup afterwards
err := dl.downloader.synchronise(id, head.Hash(), td, nil, mode, false, nil)
select {
case <-dl.downloader.cancelCh:
// Ok, downloader fully cancelled after sync cycle
default:
// Downloader is still accepting packets, can block a peer up
panic("downloader active post sync cycle") // panic will be caught by tester
}
return err
}
// newPeer registers a new block download source into the downloader. // newPeer registers a new block download source into the downloader.
func (dl *downloadTester) newPeer(id string, version uint, blocks []*types.Block) *downloadTesterPeer { func (dl *downloadTester) newPeer(id string, version uint, blocks []*types.Block) *downloadTesterPeer {
dl.lock.Lock() dl.lock.Lock()
@ -122,7 +102,7 @@ func (dl *downloadTester) newPeer(id string, version uint, blocks []*types.Block
dl: dl, dl: dl,
id: id, id: id,
chain: newTestBlockchain(blocks), chain: newTestBlockchain(blocks),
withholdHeaders: make(map[common.Hash]struct{}), withholdBodies: make(map[common.Hash]struct{}),
} }
dl.peers[id] = peer dl.peers[id] = peer
@ -147,10 +127,9 @@ func (dl *downloadTester) dropPeer(id string) {
type downloadTesterPeer struct { type downloadTesterPeer struct {
dl *downloadTester dl *downloadTester
withholdBodies map[common.Hash]struct{}
id string id string
chain *core.BlockChain chain *core.BlockChain
withholdHeaders map[common.Hash]struct{}
} }
// Head constructs a function to retrieve a peer's current head hash // Head constructs a function to retrieve a peer's current head hash
@ -186,15 +165,6 @@ func (dlp *downloadTesterPeer) RequestHeadersByHash(origin common.Hash, amount i
Reverse: reverse, Reverse: reverse,
}, nil) }, nil)
headers := unmarshalRlpHeaders(rlpHeaders) headers := unmarshalRlpHeaders(rlpHeaders)
// If a malicious peer is simulated withholding headers, delete them
for hash := range dlp.withholdHeaders {
for i, header := range headers {
if header.Hash() == hash {
headers = append(headers[:i], headers[i+1:]...)
break
}
}
}
hashes := make([]common.Hash, len(headers)) hashes := make([]common.Hash, len(headers))
for i, header := range headers { for i, header := range headers {
hashes[i] = header.Hash() hashes[i] = header.Hash()
@ -230,15 +200,6 @@ func (dlp *downloadTesterPeer) RequestHeadersByNumber(origin uint64, amount int,
Reverse: reverse, Reverse: reverse,
}, nil) }, nil)
headers := unmarshalRlpHeaders(rlpHeaders) headers := unmarshalRlpHeaders(rlpHeaders)
// If a malicious peer is simulated withholding headers, delete them
for hash := range dlp.withholdHeaders {
for i, header := range headers {
if header.Hash() == hash {
headers = append(headers[:i], headers[i+1:]...)
break
}
}
}
hashes := make([]common.Hash, len(headers)) hashes := make([]common.Hash, len(headers))
for i, header := range headers { for i, header := range headers {
hashes[i] = header.Hash() hashes[i] = header.Hash()
@ -278,7 +239,13 @@ func (dlp *downloadTesterPeer) RequestBodies(hashes []common.Hash, sink chan *et
) )
hasher := trie.NewStackTrie(nil) hasher := trie.NewStackTrie(nil)
for i, body := range bodies { for i, body := range bodies {
txsHashes[i] = types.DeriveSha(types.Transactions(body.Transactions), hasher) hash := types.DeriveSha(types.Transactions(body.Transactions), hasher)
if _, ok := dlp.withholdBodies[hash]; ok {
txsHashes = append(txsHashes[:i], txsHashes[i+1:]...)
uncleHashes = append(uncleHashes[:i], uncleHashes[i+1:]...)
continue
}
txsHashes[i] = hash
uncleHashes[i] = types.CalcUncleHash(body.Uncles) uncleHashes[i] = types.CalcUncleHash(body.Uncles)
} }
req := &eth.Request{ req := &eth.Request{
@ -442,7 +409,10 @@ func TestCanonicalSynchronisation68Snap(t *testing.T) { testCanonSync(t, eth.ET
func TestCanonicalSynchronisation68Light(t *testing.T) { testCanonSync(t, eth.ETH68, LightSync) } func TestCanonicalSynchronisation68Light(t *testing.T) { testCanonSync(t, eth.ETH68, LightSync) }
func testCanonSync(t *testing.T, protocol uint, mode SyncMode) { func testCanonSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t) success := make(chan struct{})
tester := newTesterWithNotification(t, func() {
close(success)
})
defer tester.terminate() defer tester.terminate()
// Create a small enough block chain to download // Create a small enough block chain to download
@ -450,10 +420,15 @@ func testCanonSync(t *testing.T, protocol uint, mode SyncMode) {
tester.newPeer("peer", protocol, chain.blocks[1:]) tester.newPeer("peer", protocol, chain.blocks[1:])
// Synchronise with the peer and make sure all relevant data was retrieved // Synchronise with the peer and make sure all relevant data was retrieved
if err := tester.sync("peer", nil, mode); err != nil { if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header(), nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err) t.Fatalf("failed to beacon-sync chain: %v", err)
} }
select {
case <-success:
assertOwnChain(t, tester, len(chain.blocks)) assertOwnChain(t, tester, len(chain.blocks))
case <-time.NewTimer(time.Second * 3).C:
t.Fatalf("Failed to sync chain in three seconds")
}
} }
// Tests that if a large batch of blocks are being downloaded, it is throttled // Tests that if a large batch of blocks are being downloaded, it is throttled
@ -479,7 +454,7 @@ func testThrottling(t *testing.T, protocol uint, mode SyncMode) {
// Start a synchronisation concurrently // Start a synchronisation concurrently
errc := make(chan error, 1) errc := make(chan error, 1)
go func() { go func() {
errc <- tester.sync("peer", nil, mode) errc <- tester.downloader.BeaconSync(mode, testChainBase.blocks[len(testChainBase.blocks)-1].Header(), nil)
}() }()
// Iteratively take some blocks, always checking the retrieval count // Iteratively take some blocks, always checking the retrieval count
for { for {
@ -535,132 +510,17 @@ func testThrottling(t *testing.T, protocol uint, mode SyncMode) {
} }
} }
// Tests that simple synchronization against a forked chain works correctly. In
// this test common ancestor lookup should *not* be short circuited, and a full
// binary search should be executed.
func TestForkedSync68Full(t *testing.T) { testForkedSync(t, eth.ETH68, FullSync) }
func TestForkedSync68Snap(t *testing.T) { testForkedSync(t, eth.ETH68, SnapSync) }
func TestForkedSync68Light(t *testing.T) { testForkedSync(t, eth.ETH68, LightSync) }
func testForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80)
chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + 81)
tester.newPeer("fork A", protocol, chainA.blocks[1:])
tester.newPeer("fork B", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("fork A", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("fork B", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainB.blocks))
}
// Tests that synchronising against a much shorter but much heavier fork works
// currently and is not dropped.
func TestHeavyForkedSync68Full(t *testing.T) { testHeavyForkedSync(t, eth.ETH68, FullSync) }
func TestHeavyForkedSync68Snap(t *testing.T) { testHeavyForkedSync(t, eth.ETH68, SnapSync) }
func TestHeavyForkedSync68Light(t *testing.T) { testHeavyForkedSync(t, eth.ETH68, LightSync) }
func testHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80)
chainB := testChainForkHeavy.shorten(len(testChainBase.blocks) + 79)
tester.newPeer("light", protocol, chainA.blocks[1:])
tester.newPeer("heavy", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("light", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("heavy", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainB.blocks))
}
// Tests that chain forks are contained within a certain interval of the current
// chain head, ensuring that malicious peers cannot waste resources by feeding
// long dead chains.
func TestBoundedForkedSync68Full(t *testing.T) { testBoundedForkedSync(t, eth.ETH68, FullSync) }
func TestBoundedForkedSync68Snap(t *testing.T) { testBoundedForkedSync(t, eth.ETH68, SnapSync) }
func TestBoundedForkedSync68Light(t *testing.T) { testBoundedForkedSync(t, eth.ETH68, LightSync) }
func testBoundedForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA
chainB := testChainForkLightB
tester.newPeer("original", protocol, chainA.blocks[1:])
tester.newPeer("rewriter", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
}
// Tests that chain forks are contained within a certain interval of the current
// chain head for short but heavy forks too. These are a bit special because they
// take different ancestor lookup paths.
func TestBoundedHeavyForkedSync68Full(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH68, FullSync)
}
func TestBoundedHeavyForkedSync68Snap(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH68, SnapSync)
}
func TestBoundedHeavyForkedSync68Light(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH68, LightSync)
}
func testBoundedHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a long enough forked chain
chainA := testChainForkLightA
chainB := testChainForkHeavy
tester.newPeer("original", protocol, chainA.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
tester.newPeer("heavy-rewriter", protocol, chainB.blocks[1:])
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
}
// Tests that a canceled download wipes all previously accumulated state. // Tests that a canceled download wipes all previously accumulated state.
func TestCancel68Full(t *testing.T) { testCancel(t, eth.ETH68, FullSync) } func TestCancel68Full(t *testing.T) { testCancel(t, eth.ETH68, FullSync) }
func TestCancel68Snap(t *testing.T) { testCancel(t, eth.ETH68, SnapSync) } func TestCancel68Snap(t *testing.T) { testCancel(t, eth.ETH68, SnapSync) }
func TestCancel68Light(t *testing.T) { testCancel(t, eth.ETH68, LightSync) } func TestCancel68Light(t *testing.T) { testCancel(t, eth.ETH68, LightSync) }
func testCancel(t *testing.T, protocol uint, mode SyncMode) { func testCancel(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t) complete := make(chan struct{})
success := func() {
close(complete)
}
tester := newTesterWithNotification(t, success)
defer tester.terminate() defer tester.terminate()
chain := testChainBase.shorten(MaxHeaderFetch) chain := testChainBase.shorten(MaxHeaderFetch)
@ -672,38 +532,16 @@ func testCancel(t *testing.T, protocol uint, mode SyncMode) {
t.Errorf("download queue not idle") t.Errorf("download queue not idle")
} }
// Synchronise with the peer, but cancel afterwards // Synchronise with the peer, but cancel afterwards
if err := tester.sync("peer", nil, mode); err != nil { if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header(), nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err) t.Fatalf("failed to synchronise blocks: %v", err)
} }
<-complete
tester.downloader.Cancel() tester.downloader.Cancel()
if !tester.downloader.queue.Idle() { if !tester.downloader.queue.Idle() {
t.Errorf("download queue not idle") t.Errorf("download queue not idle")
} }
} }
// Tests that synchronisation from multiple peers works as intended (multi thread sanity test).
func TestMultiSynchronisation68Full(t *testing.T) { testMultiSynchronisation(t, eth.ETH68, FullSync) }
func TestMultiSynchronisation68Snap(t *testing.T) { testMultiSynchronisation(t, eth.ETH68, SnapSync) }
func TestMultiSynchronisation68Light(t *testing.T) { testMultiSynchronisation(t, eth.ETH68, LightSync) }
func testMultiSynchronisation(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create various peers with various parts of the chain
targetPeers := 8
chain := testChainBase.shorten(targetPeers * 100)
for i := 0; i < targetPeers; i++ {
id := fmt.Sprintf("peer #%d", i)
tester.newPeer(id, protocol, chain.shorten(len(chain.blocks) / (i + 1)).blocks[1:])
}
if err := tester.sync("peer #0", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that synchronisations behave well in multi-version protocol environments // Tests that synchronisations behave well in multi-version protocol environments
// and not wreak havoc on other nodes in the network. // and not wreak havoc on other nodes in the network.
func TestMultiProtoSynchronisation68Full(t *testing.T) { testMultiProtoSync(t, eth.ETH68, FullSync) } func TestMultiProtoSynchronisation68Full(t *testing.T) { testMultiProtoSync(t, eth.ETH68, FullSync) }
@ -711,7 +549,11 @@ func TestMultiProtoSynchronisation68Snap(t *testing.T) { testMultiProtoSync(t,
func TestMultiProtoSynchronisation68Light(t *testing.T) { testMultiProtoSync(t, eth.ETH68, LightSync) } func TestMultiProtoSynchronisation68Light(t *testing.T) { testMultiProtoSync(t, eth.ETH68, LightSync) }
func testMultiProtoSync(t *testing.T, protocol uint, mode SyncMode) { func testMultiProtoSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t) complete := make(chan struct{})
success := func() {
close(complete)
}
tester := newTesterWithNotification(t, success)
defer tester.terminate() defer tester.terminate()
// Create a small enough block chain to download // Create a small enough block chain to download
@ -720,9 +562,14 @@ func testMultiProtoSync(t *testing.T, protocol uint, mode SyncMode) {
// Create peers of every type // Create peers of every type
tester.newPeer("peer 68", eth.ETH68, chain.blocks[1:]) tester.newPeer("peer 68", eth.ETH68, chain.blocks[1:])
// Synchronise with the requested peer and make sure all blocks were retrieved if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header(), nil); err != nil {
if err := tester.sync(fmt.Sprintf("peer %d", protocol), nil, mode); err != nil { t.Fatalf("failed to start beacon sync: #{err}")
t.Fatalf("failed to synchronise blocks: %v", err) }
select {
case <-complete:
break
case <-time.NewTimer(time.Second * 3).C:
t.Fatalf("Failed to sync chain in three seconds")
} }
assertOwnChain(t, tester, len(chain.blocks)) assertOwnChain(t, tester, len(chain.blocks))
@ -742,7 +589,10 @@ func TestEmptyShortCircuit68Snap(t *testing.T) { testEmptyShortCircuit(t, eth.E
func TestEmptyShortCircuit68Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH68, LightSync) } func TestEmptyShortCircuit68Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH68, LightSync) }
func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) { func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t) success := make(chan struct{})
tester := newTesterWithNotification(t, func() {
close(success)
})
defer tester.terminate() defer tester.terminate()
// Create a block chain to download // Create a block chain to download
@ -757,10 +607,19 @@ func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) {
tester.downloader.receiptFetchHook = func(headers []*types.Header) { tester.downloader.receiptFetchHook = func(headers []*types.Header) {
receiptsHave.Add(int32(len(headers))) receiptsHave.Add(int32(len(headers)))
} }
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("peer", nil, mode); err != nil { if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header(), nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err) t.Fatalf("failed to synchronise blocks: %v", err)
} }
select {
case <-success:
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks) - 1),
CurrentBlock: uint64(len(chain.blocks) - 1),
})
case <-time.NewTimer(time.Second * 3).C:
t.Fatalf("Failed to sync chain in three seconds")
}
assertOwnChain(t, tester, len(chain.blocks)) assertOwnChain(t, tester, len(chain.blocks))
// Validate the number of block bodies that should have been requested // Validate the number of block bodies that should have been requested
@ -783,195 +642,6 @@ func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) {
} }
} }
// Tests that headers are enqueued continuously, preventing malicious nodes from
// stalling the downloader by feeding gapped header chains.
func TestMissingHeaderAttack68Full(t *testing.T) { testMissingHeaderAttack(t, eth.ETH68, FullSync) }
func TestMissingHeaderAttack68Snap(t *testing.T) { testMissingHeaderAttack(t, eth.ETH68, SnapSync) }
func TestMissingHeaderAttack68Light(t *testing.T) { testMissingHeaderAttack(t, eth.ETH68, LightSync) }
func testMissingHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
attacker.withholdHeaders[chain.blocks[len(chain.blocks)/2-1].Hash()] = struct{}{}
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that if requested headers are shifted (i.e. first is missing), the queue
// detects the invalid numbering.
func TestShiftedHeaderAttack68Full(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH68, FullSync) }
func TestShiftedHeaderAttack68Snap(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH68, SnapSync) }
func TestShiftedHeaderAttack68Light(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH68, LightSync) }
func testShiftedHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Attempt a full sync with an attacker feeding shifted headers
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
attacker.withholdHeaders[chain.blocks[1].Hash()] = struct{}{}
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that a peer advertising a high TD doesn't get to stall the downloader
// afterwards by not sending any useful hashes.
func TestHighTDStarvationAttack68Full(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH68, FullSync)
}
func TestHighTDStarvationAttack68Snap(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH68, SnapSync)
}
func TestHighTDStarvationAttack68Light(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH68, LightSync)
}
func testHighTDStarvationAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(1)
tester.newPeer("attack", protocol, chain.blocks[1:])
if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
}
}
// Tests that misbehaving peers are disconnected, whilst behaving ones are not.
func TestBlockHeaderAttackerDropping68(t *testing.T) { testBlockHeaderAttackerDropping(t, eth.ETH68) }
func testBlockHeaderAttackerDropping(t *testing.T, protocol uint) {
// Define the disconnection requirement for individual hash fetch errors
tests := []struct {
result error
drop bool
}{
{nil, false}, // Sync succeeded, all is well
{errBusy, false}, // Sync is already in progress, no problem
{errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop
{errBadPeer, true}, // Peer was deemed bad for some reason, drop it
{errStallingPeer, true}, // Peer was detected to be stalling, drop it
{errUnsyncedPeer, true}, // Peer was detected to be unsynced, drop it
{errNoPeers, false}, // No peers to download from, soft race, no issue
{errTimeout, true}, // No hashes received in due time, drop the peer
{errEmptyHeaderSet, true}, // No headers were returned as a response, drop as it's a dead end
{errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser
{errInvalidAncestor, true}, // Agreed upon ancestor is not acceptable, drop the chain rewriter
{errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop
{errInvalidBody, false}, // A bad peer was detected, but not the sync origin
{errInvalidReceipt, false}, // A bad peer was detected, but not the sync origin
{errCancelContentProcessing, false}, // Synchronisation was canceled, origin may be innocent, don't drop
}
// Run the tests and check disconnection status
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(1)
for i, tt := range tests {
// Register a new peer and ensure its presence
id := fmt.Sprintf("test %d", i)
tester.newPeer(id, protocol, chain.blocks[1:])
if _, ok := tester.peers[id]; !ok {
t.Fatalf("test %d: registered peer not found", i)
}
// Simulate a synchronisation and check the required result
tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result }
tester.downloader.LegacySync(id, tester.chain.Genesis().Hash(), big.NewInt(1000), nil, FullSync)
if _, ok := tester.peers[id]; !ok != tt.drop {
t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop)
}
}
}
// Tests that synchronisation progress (origin block number, current block number
// and highest block number) is tracked and updated correctly.
func TestSyncProgress68Full(t *testing.T) { testSyncProgress(t, eth.ETH68, FullSync) }
func TestSyncProgress68Snap(t *testing.T) { testSyncProgress(t, eth.ETH68, SnapSync) }
func TestSyncProgress68Light(t *testing.T) { testSyncProgress(t, eth.ETH68, LightSync) }
func testSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise half the blocks and check initial progress
tester.newPeer("peer-half", protocol, chain.shorten(len(chain.blocks) / 2).blocks[1:])
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-half", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks)/2 - 1),
})
progress <- struct{}{}
pending.Wait()
// Synchronise all the blocks and check continuation progress
tester.newPeer("peer-full", protocol, chain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-full", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
StartingBlock: uint64(len(chain.blocks)/2 - 1),
CurrentBlock: uint64(len(chain.blocks)/2 - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(len(chain.blocks)/2 - 1),
CurrentBlock: uint64(len(chain.blocks) - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
}
func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.SyncProgress) { func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.SyncProgress) {
// Mark this method as a helper to report errors at callsite, not in here // Mark this method as a helper to report errors at callsite, not in here
t.Helper() t.Helper()
@ -982,296 +652,12 @@ func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.Sync
} }
} }
// Tests that synchronisation progress (origin block number and highest block
// number) is tracked and updated correctly in case of a fork (or manual head
// revertal).
func TestForkedSyncProgress68Full(t *testing.T) { testForkedSyncProgress(t, eth.ETH68, FullSync) }
func TestForkedSyncProgress68Snap(t *testing.T) { testForkedSyncProgress(t, eth.ETH68, SnapSync) }
func TestForkedSyncProgress68Light(t *testing.T) { testForkedSyncProgress(t, eth.ETH68, LightSync) }
func testForkedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise with one of the forks and check progress
tester.newPeer("fork A", protocol, chainA.blocks[1:])
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork A", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chainA.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
// Simulate a successful sync above the fork
tester.downloader.syncStatsChainOrigin = tester.downloader.syncStatsChainHeight
// Synchronise with the second fork and check progress resets
tester.newPeer("fork B", protocol, chainB.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork B", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "forking", ethereum.SyncProgress{
StartingBlock: uint64(len(testChainBase.blocks)) - 1,
CurrentBlock: uint64(len(chainA.blocks) - 1),
HighestBlock: uint64(len(chainB.blocks) - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(len(testChainBase.blocks)) - 1,
CurrentBlock: uint64(len(chainB.blocks) - 1),
HighestBlock: uint64(len(chainB.blocks) - 1),
})
}
// Tests that if synchronisation is aborted due to some failure, then the progress
// origin is not updated in the next sync cycle, as it should be considered the
// continuation of the previous sync and not a new instance.
func TestFailedSyncProgress68Full(t *testing.T) { testFailedSyncProgress(t, eth.ETH68, FullSync) }
func TestFailedSyncProgress68Snap(t *testing.T) { testFailedSyncProgress(t, eth.ETH68, SnapSync) }
func TestFailedSyncProgress68Light(t *testing.T) { testFailedSyncProgress(t, eth.ETH68, LightSync) }
func testFailedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Attempt a full sync with a faulty peer
missing := len(chain.blocks)/2 - 1
faulter := tester.newPeer("faulty", protocol, chain.blocks[1:])
faulter.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{}
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("faulty", nil, mode); err == nil {
panic("succeeded faulty synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress origin remind the same
// after a failure
tester.newPeer("valid", protocol, chain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", afterFailedSync)
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(len(chain.blocks) - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
}
// Tests that if an attacker fakes a chain height, after the attack is detected,
// the progress height is successfully reduced at the next sync invocation.
func TestFakedSyncProgress68Full(t *testing.T) { testFakedSyncProgress(t, eth.ETH68, FullSync) }
func TestFakedSyncProgress68Snap(t *testing.T) { testFakedSyncProgress(t, eth.ETH68, SnapSync) }
func TestFakedSyncProgress68Light(t *testing.T) { testFakedSyncProgress(t, eth.ETH68, LightSync) }
func testFakedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Create and sync with an attacker that promises a higher chain than available.
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
numMissing := 5
for i := len(chain.blocks) - 2; i > len(chain.blocks)-numMissing; i-- {
attacker.withholdHeaders[chain.blocks[i].Hash()] = struct{}{}
}
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("attack", nil, mode); err == nil {
panic("succeeded attacker synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress height has been reduced to
// the true value.
validChain := chain.shorten(len(chain.blocks) - numMissing)
tester.newPeer("valid", protocol, validChain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
CurrentBlock: afterFailedSync.CurrentBlock,
HighestBlock: uint64(len(validChain.blocks) - 1),
})
// Check final progress after successful sync.
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(len(validChain.blocks) - 1),
HighestBlock: uint64(len(validChain.blocks) - 1),
})
}
func TestRemoteHeaderRequestSpan(t *testing.T) {
testCases := []struct {
remoteHeight uint64
localHeight uint64
expected []int
}{
// Remote is way higher. We should ask for the remote head and go backwards
{1500, 1000,
[]int{1323, 1339, 1355, 1371, 1387, 1403, 1419, 1435, 1451, 1467, 1483, 1499},
},
{15000, 13006,
[]int{14823, 14839, 14855, 14871, 14887, 14903, 14919, 14935, 14951, 14967, 14983, 14999},
},
// Remote is pretty close to us. We don't have to fetch as many
{1200, 1150,
[]int{1149, 1154, 1159, 1164, 1169, 1174, 1179, 1184, 1189, 1194, 1199},
},
// Remote is equal to us (so on a fork with higher td)
// We should get the closest couple of ancestors
{1500, 1500,
[]int{1497, 1499},
},
// We're higher than the remote! Odd
{1000, 1500,
[]int{997, 999},
},
// Check some weird edgecases that it behaves somewhat rationally
{0, 1500,
[]int{0, 2},
},
{6000000, 0,
[]int{5999823, 5999839, 5999855, 5999871, 5999887, 5999903, 5999919, 5999935, 5999951, 5999967, 5999983, 5999999},
},
{0, 0,
[]int{0, 2},
},
}
reqs := func(from, count, span int) []int {
var r []int
num := from
for len(r) < count {
r = append(r, num)
num += span + 1
}
return r
}
for i, tt := range testCases {
from, count, span, max := calculateRequestSpan(tt.remoteHeight, tt.localHeight)
data := reqs(int(from), count, span)
if max != uint64(data[len(data)-1]) {
t.Errorf("test %d: wrong last value %d != %d", i, data[len(data)-1], max)
}
failed := false
if len(data) != len(tt.expected) {
failed = true
t.Errorf("test %d: length wrong, expected %d got %d", i, len(tt.expected), len(data))
} else {
for j, n := range data {
if n != tt.expected[j] {
failed = true
break
}
}
}
if failed {
res := strings.ReplaceAll(fmt.Sprint(data), " ", ",")
exp := strings.ReplaceAll(fmt.Sprint(tt.expected), " ", ",")
t.Logf("got: %v\n", res)
t.Logf("exp: %v\n", exp)
t.Errorf("test %d: wrong values", i)
}
}
}
// Tests that peers below a pre-configured checkpoint block are prevented from // Tests that peers below a pre-configured checkpoint block are prevented from
// being fast-synced from, avoiding potential cheap eclipse attacks. // being fast-synced from, avoiding potential cheap eclipse attacks.
func TestBeaconSync68Full(t *testing.T) { testBeaconSync(t, eth.ETH68, FullSync) } func TestBeaconSync68Full(t *testing.T) { testBeaconSync(t, eth.ETH68, FullSync) }
func TestBeaconSync68Snap(t *testing.T) { testBeaconSync(t, eth.ETH68, SnapSync) } func TestBeaconSync68Snap(t *testing.T) { testBeaconSync(t, eth.ETH68, SnapSync) }
func testBeaconSync(t *testing.T, protocol uint, mode SyncMode) { func testBeaconSync(t *testing.T, protocol uint, mode SyncMode) {
//log.Root().SetHandler(log.LvlFilterHandler(log.LvlInfo, log.StreamHandler(os.Stderr, log.TerminalFormat(true))))
var cases = []struct { var cases = []struct {
name string // The name of testing scenario name string // The name of testing scenario
local int // The length of local chain(canonical chain assumed), 0 means genesis is the head local int // The length of local chain(canonical chain assumed), 0 means genesis is the head
@ -1312,81 +698,67 @@ func testBeaconSync(t *testing.T, protocol uint, mode SyncMode) {
} }
} }
// Tests that synchronisation progress (origin block number and highest block // Tests that synchronisation progress (origin block number, current block number
// number) is tracked and updated correctly in case of manual head reversion // and highest block number) is tracked and updated correctly.
func TestBeaconForkedSyncProgress68Full(t *testing.T) { func TestSyncProgress68Full(t *testing.T) { testSyncProgress(t, eth.ETH68, FullSync) }
testBeaconForkedSyncProgress(t, eth.ETH68, FullSync) func TestSyncProgress68Snap(t *testing.T) { testSyncProgress(t, eth.ETH68, SnapSync) }
} func TestSyncProgress68Light(t *testing.T) { testSyncProgress(t, eth.ETH68, LightSync) }
func TestBeaconForkedSyncProgress68Snap(t *testing.T) {
testBeaconForkedSyncProgress(t, eth.ETH68, SnapSync)
}
func TestBeaconForkedSyncProgress68Light(t *testing.T) {
testBeaconForkedSyncProgress(t, eth.ETH68, LightSync)
}
func testBeaconForkedSyncProgress(t *testing.T, protocol uint, mode SyncMode) { func testSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
success := make(chan struct{}) success := make(chan struct{})
tester := newTesterWithNotification(t, func() { tester := newTesterWithNotification(t, func() {
success <- struct{}{} success <- struct{}{}
}) })
defer tester.terminate() defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{}) checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise with one of the forks and check progress chain := testChainBase.shorten(blockCacheMaxItems - 15)
tester.newPeer("fork A", protocol, chainA.blocks[1:]) shortChain := chain.shorten(len(chain.blocks) / 2).blocks[1:]
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.downloader.BeaconSync(mode, chainA.blocks[len(chainA.blocks)-1].Header(), nil); err != nil {
panic(fmt.Sprintf("failed to beacon sync: %v", err))
}
}()
<-starting // Connect to peer that provides all headers and part of the bodies
progress <- struct{}{} faultyPeer := tester.newPeer("peer-half", protocol, shortChain)
for _, header := range shortChain {
faultyPeer.withholdBodies[header.Hash()] = struct{}{}
}
if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)/2-1].Header(), nil); err != nil {
t.Fatalf("failed to beacon-sync chain: %v", err)
}
select { select {
case <-success: case <-success:
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{ // Ok, downloader fully cancelled after sync cycle
HighestBlock: uint64(len(chainA.blocks) - 1), checkProgress(t, tester.downloader, "peer-half", ethereum.SyncProgress{
CurrentBlock: uint64(len(chainA.blocks) - 1), CurrentBlock: uint64(len(chain.blocks)/2 - 1),
HighestBlock: uint64(len(chain.blocks)/2 - 1),
}) })
case <-time.NewTimer(time.Second * 3).C: case <-time.NewTimer(time.Second * 3).C:
t.Fatalf("Failed to sync chain in three seconds") t.Fatalf("Failed to sync chain in three seconds")
} }
// Set the head to a second fork // Synchronise all the blocks and check continuation progress
tester.newPeer("fork B", protocol, chainB.blocks[1:]) tester.newPeer("peer-full", protocol, chain.blocks[1:])
pending.Add(1) if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header(), nil); err != nil {
go func() { t.Fatalf("failed to beacon-sync chain: %v", err)
defer pending.Done() }
if err := tester.downloader.BeaconSync(mode, chainB.blocks[len(chainB.blocks)-1].Header(), nil); err != nil { var startingBlock uint64
panic(fmt.Sprintf("failed to beacon sync: %v", err)) if mode == LightSync {
// in light-sync mode:
// * the starting block is 0 on the second sync cycle because blocks
// are never downloaded.
// * The current/highest blocks reported in the progress reflect the
// current/highest header.
startingBlock = 0
} else {
startingBlock = uint64(len(chain.blocks)/2 - 1)
} }
}()
<-starting
progress <- struct{}{}
// reorg below available state causes the state sync to rewind to genesis
select { select {
case <-success: case <-success:
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{ // Ok, downloader fully cancelled after sync cycle
HighestBlock: uint64(len(chainB.blocks) - 1), checkProgress(t, tester.downloader, "peer-full", ethereum.SyncProgress{
CurrentBlock: uint64(len(chainB.blocks) - 1), StartingBlock: startingBlock,
StartingBlock: 0, CurrentBlock: uint64(len(chain.blocks) - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
}) })
case <-time.NewTimer(time.Second * 3).C: case <-time.NewTimer(time.Second * 3).C:
t.Fatalf("Failed to sync chain in three seconds") t.Fatalf("Failed to sync chain in three seconds")

@ -68,48 +68,3 @@ func (d *Downloader) fetchHeadersByHash(p *peerConnection, hash common.Hash, amo
return *res.Res.(*eth.BlockHeadersRequest), res.Meta.([]common.Hash), nil return *res.Res.(*eth.BlockHeadersRequest), res.Meta.([]common.Hash), nil
} }
} }
// fetchHeadersByNumber is a blocking version of Peer.RequestHeadersByNumber which
// handles all the cancellation, interruption and timeout mechanisms of a data
// retrieval to allow blocking API calls.
func (d *Downloader) fetchHeadersByNumber(p *peerConnection, number uint64, amount int, skip int, reverse bool) ([]*types.Header, []common.Hash, error) {
// Create the response sink and send the network request
start := time.Now()
resCh := make(chan *eth.Response)
req, err := p.peer.RequestHeadersByNumber(number, amount, skip, reverse, resCh)
if err != nil {
return nil, nil, err
}
defer req.Close()
// Wait until the response arrives, the request is cancelled or times out
ttl := d.peers.rates.TargetTimeout()
timeoutTimer := time.NewTimer(ttl)
defer timeoutTimer.Stop()
select {
case <-d.cancelCh:
return nil, nil, errCanceled
case <-timeoutTimer.C:
// Header retrieval timed out, update the metrics
p.log.Debug("Header request timed out", "elapsed", ttl)
headerTimeoutMeter.Mark(1)
return nil, nil, errTimeout
case res := <-resCh:
// Headers successfully retrieved, update the metrics
headerReqTimer.Update(time.Since(start))
headerInMeter.Mark(int64(len(*res.Res.(*eth.BlockHeadersRequest))))
// Don't reject the packet even if it turns out to be bad, downloader will
// disconnect the peer on its own terms. Simply delivery the headers to
// be processed by the caller
res.Done <- nil
return *res.Res.(*eth.BlockHeadersRequest), res.Meta.([]common.Hash), nil
}
}

@ -76,7 +76,7 @@ type typedQueue interface {
// concurrentFetch iteratively downloads scheduled block parts, taking available // concurrentFetch iteratively downloads scheduled block parts, taking available
// peers, reserving a chunk of fetch requests for each and waiting for delivery // peers, reserving a chunk of fetch requests for each and waiting for delivery
// or timeouts. // or timeouts.
func (d *Downloader) concurrentFetch(queue typedQueue, beaconMode bool) error { func (d *Downloader) concurrentFetch(queue typedQueue) error {
// Create a delivery channel to accept responses from all peers // Create a delivery channel to accept responses from all peers
responses := make(chan *eth.Response) responses := make(chan *eth.Response)
@ -126,10 +126,6 @@ func (d *Downloader) concurrentFetch(queue typedQueue, beaconMode bool) error {
// Prepare the queue and fetch block parts until the block header fetcher's done // Prepare the queue and fetch block parts until the block header fetcher's done
finished := false finished := false
for { for {
// Short circuit if we lost all our peers
if d.peers.Len() == 0 && !beaconMode {
return errNoPeers
}
// If there's nothing more to fetch, wait or terminate // If there's nothing more to fetch, wait or terminate
if queue.pending() == 0 { if queue.pending() == 0 {
if len(pending) == 0 && finished { if len(pending) == 0 && finished {
@ -158,27 +154,20 @@ func (d *Downloader) concurrentFetch(queue typedQueue, beaconMode bool) error {
} }
sort.Sort(&peerCapacitySort{idles, caps}) sort.Sort(&peerCapacitySort{idles, caps})
var ( var throttled bool
progressed bool
throttled bool
queued = queue.pending()
)
for _, peer := range idles { for _, peer := range idles {
// Short circuit if throttling activated or there are no more // Short circuit if throttling activated or there are no more
// queued tasks to be retrieved // queued tasks to be retrieved
if throttled { if throttled {
break break
} }
if queued = queue.pending(); queued == 0 { if queued := queue.pending(); queued == 0 {
break break
} }
// Reserve a chunk of fetches for a peer. A nil can mean either that // Reserve a chunk of fetches for a peer. A nil can mean either that
// no more headers are available, or that the peer is known not to // no more headers are available, or that the peer is known not to
// have them. // have them.
request, progress, throttle := queue.reserve(peer, queue.capacity(peer, d.peers.rates.TargetRoundTrip())) request, _, throttle := queue.reserve(peer, queue.capacity(peer, d.peers.rates.TargetRoundTrip()))
if progress {
progressed = true
}
if throttle { if throttle {
throttled = true throttled = true
throttleCounter.Inc(1) throttleCounter.Inc(1)
@ -207,11 +196,6 @@ func (d *Downloader) concurrentFetch(queue typedQueue, beaconMode bool) error {
timeout.Reset(ttl) timeout.Reset(ttl)
} }
} }
// Make sure that we have peers available for fetching. If all peers have been tried
// and all failed throw an error
if !progressed && !throttled && len(pending) == 0 && len(idles) == d.peers.Len() && queued > 0 && !beaconMode {
return errPeersUnavailable
}
} }
// Wait for something to happen // Wait for something to happen
select { select {
@ -315,16 +299,6 @@ func (d *Downloader) concurrentFetch(queue typedQueue, beaconMode bool) error {
queue.updateCapacity(peer, 0, 0) queue.updateCapacity(peer, 0, 0)
} else { } else {
d.dropPeer(peer.id) d.dropPeer(peer.id)
// If this peer was the master peer, abort sync immediately
d.cancelLock.RLock()
master := peer.id == d.cancelPeer
d.cancelLock.RUnlock()
if master {
d.cancel()
return errTimeout
}
} }
case res := <-responses: case res := <-responses:

@ -78,7 +78,6 @@ func (q *bodyQueue) request(peer *peerConnection, req *fetchRequest, resCh chan
if q.bodyFetchHook != nil { if q.bodyFetchHook != nil {
q.bodyFetchHook(req.Headers) q.bodyFetchHook(req.Headers)
} }
hashes := make([]common.Hash, 0, len(req.Headers)) hashes := make([]common.Hash, 0, len(req.Headers))
for _, header := range req.Headers { for _, header := range req.Headers {
hashes = append(hashes, header.Hash()) hashes = append(hashes, header.Hash())

@ -1,97 +0,0 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/log"
)
// headerQueue implements typedQueue and is a type adapter between the generic
// concurrent fetcher and the downloader.
type headerQueue Downloader
// waker returns a notification channel that gets pinged in case more header
// fetches have been queued up, so the fetcher might assign it to idle peers.
func (q *headerQueue) waker() chan bool {
return q.queue.headerContCh
}
// pending returns the number of headers that are currently queued for fetching
// by the concurrent downloader.
func (q *headerQueue) pending() int {
return q.queue.PendingHeaders()
}
// capacity is responsible for calculating how many headers a particular peer is
// estimated to be able to retrieve within the allotted round trip time.
func (q *headerQueue) capacity(peer *peerConnection, rtt time.Duration) int {
return peer.HeaderCapacity(rtt)
}
// updateCapacity is responsible for updating how many headers a particular peer
// is estimated to be able to retrieve in a unit time.
func (q *headerQueue) updateCapacity(peer *peerConnection, items int, span time.Duration) {
peer.UpdateHeaderRate(items, span)
}
// reserve is responsible for allocating a requested number of pending headers
// from the download queue to the specified peer.
func (q *headerQueue) reserve(peer *peerConnection, items int) (*fetchRequest, bool, bool) {
return q.queue.ReserveHeaders(peer, items), false, false
}
// unreserve is responsible for removing the current header retrieval allocation
// assigned to a specific peer and placing it back into the pool to allow
// reassigning to some other peer.
func (q *headerQueue) unreserve(peer string) int {
fails := q.queue.ExpireHeaders(peer)
if fails > 2 {
log.Trace("Header delivery timed out", "peer", peer)
} else {
log.Debug("Header delivery stalling", "peer", peer)
}
return fails
}
// request is responsible for converting a generic fetch request into a header
// one and sending it to the remote peer for fulfillment.
func (q *headerQueue) request(peer *peerConnection, req *fetchRequest, resCh chan *eth.Response) (*eth.Request, error) {
peer.log.Trace("Requesting new batch of headers", "from", req.From)
return peer.peer.RequestHeadersByNumber(req.From, MaxHeaderFetch, 0, false, resCh)
}
// deliver is responsible for taking a generic response packet from the concurrent
// fetcher, unpacking the header data and delivering it to the downloader's queue.
func (q *headerQueue) deliver(peer *peerConnection, packet *eth.Response) (int, error) {
headers := *packet.Res.(*eth.BlockHeadersRequest)
hashes := packet.Meta.([]common.Hash)
accepted, err := q.queue.DeliverHeaders(peer.id, headers, hashes, q.headerProcCh)
switch {
case err == nil && len(headers) == 0:
peer.log.Trace("Requested headers delivered")
case err == nil:
peer.log.Trace("Delivered new batch of headers", "count", len(headers), "accepted", accepted)
default:
peer.log.Debug("Failed to deliver retrieved headers", "err", err)
}
return accepted, err
}

@ -58,7 +58,6 @@ var pregenerated bool
func init() { func init() {
// Reduce some of the parameters to make the tester faster // Reduce some of the parameters to make the tester faster
fullMaxForkAncestry = 10000 fullMaxForkAncestry = 10000
lightMaxForkAncestry = 10000
blockCacheMaxItems = 1024 blockCacheMaxItems = 1024
fsHeaderSafetyNet = 256 fsHeaderSafetyNet = 256
fsHeaderContCheck = 500 * time.Millisecond fsHeaderContCheck = 500 * time.Millisecond