p2p: encrypted and authenticated RLPx frame I/O
This commit is contained in:
parent
936dd0f3bc
commit
51e01cceca
157
p2p/handshake.go
157
p2p/handshake.go
@ -5,12 +5,14 @@ import (
|
||||
"crypto/rand"
|
||||
"errors"
|
||||
"fmt"
|
||||
"hash"
|
||||
"io"
|
||||
"net"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/ethereum/go-ethereum/crypto/ecies"
|
||||
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
||||
"github.com/ethereum/go-ethereum/crypto/sha3"
|
||||
"github.com/ethereum/go-ethereum/p2p/discover"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
)
|
||||
@ -38,13 +40,23 @@ func newConn(fd net.Conn, hs *protoHandshake) *conn {
|
||||
return &conn{newFrameRW(fd, msgWriteTimeout), hs}
|
||||
}
|
||||
|
||||
// encHandshake represents information about the remote end
|
||||
// of a connection that is negotiated during the encryption handshake.
|
||||
// encHandshake contains the state of the encryption handshake.
|
||||
type encHandshake struct {
|
||||
ID discover.NodeID
|
||||
IngressMAC []byte
|
||||
EgressMAC []byte
|
||||
Token []byte
|
||||
remoteID discover.NodeID
|
||||
initiator bool
|
||||
initNonce, respNonce []byte
|
||||
dhSharedSecret []byte
|
||||
randomPrivKey *ecdsa.PrivateKey
|
||||
remoteRandomPub *ecdsa.PublicKey
|
||||
}
|
||||
|
||||
// secrets represents the connection secrets
|
||||
// which are negotiated during the encryption handshake.
|
||||
type secrets struct {
|
||||
RemoteID discover.NodeID
|
||||
AES, MAC []byte
|
||||
EgressMAC, IngressMAC hash.Hash
|
||||
Token []byte
|
||||
}
|
||||
|
||||
// protoHandshake is the RLP structure of the protocol handshake.
|
||||
@ -56,6 +68,34 @@ type protoHandshake struct {
|
||||
ID discover.NodeID
|
||||
}
|
||||
|
||||
// secrets is called after the handshake is completed.
|
||||
// It extracts the connection secrets from the handshake values.
|
||||
func (h *encHandshake) secrets(auth, authResp []byte) secrets {
|
||||
sharedSecret := crypto.Sha3(h.dhSharedSecret, crypto.Sha3(h.respNonce, h.initNonce))
|
||||
aesSecret := crypto.Sha3(h.dhSharedSecret, sharedSecret)
|
||||
s := secrets{
|
||||
RemoteID: h.remoteID,
|
||||
AES: aesSecret,
|
||||
MAC: crypto.Sha3(h.dhSharedSecret, aesSecret),
|
||||
Token: crypto.Sha3(sharedSecret),
|
||||
}
|
||||
|
||||
// setup sha3 instances for the MACs
|
||||
mac1 := sha3.NewKeccak256()
|
||||
mac1.Write(xor(s.MAC, h.respNonce))
|
||||
mac1.Write(auth)
|
||||
mac2 := sha3.NewKeccak256()
|
||||
mac2.Write(xor(s.MAC, h.initNonce))
|
||||
mac2.Write(authResp)
|
||||
if h.initiator {
|
||||
s.EgressMAC, s.IngressMAC = mac1, mac2
|
||||
} else {
|
||||
s.EgressMAC, s.IngressMAC = mac2, mac1
|
||||
}
|
||||
|
||||
return s
|
||||
}
|
||||
|
||||
// setupConn starts a protocol session on the given connection.
|
||||
// It runs the encryption handshake and the protocol handshake.
|
||||
// If dial is non-nil, the connection the local node is the initiator.
|
||||
@ -68,36 +108,47 @@ func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *di
|
||||
}
|
||||
|
||||
func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (*conn, error) {
|
||||
// var remotePubkey []byte
|
||||
// sessionToken, remotePubkey, err = inboundEncHandshake(fd, prv, nil)
|
||||
// copy(remoteID[:], remotePubkey)
|
||||
secrets, err := inboundEncHandshake(fd, prv, nil)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encryption handshake failed: %v", err)
|
||||
}
|
||||
|
||||
rw := newFrameRW(fd, msgWriteTimeout)
|
||||
rhs, err := readProtocolHandshake(rw, our)
|
||||
// Run the protocol handshake using authenticated messages.
|
||||
// TODO: move buffering setup here (out of newFrameRW)
|
||||
phsrw := newRlpxFrameRW(fd, secrets)
|
||||
rhs, err := readProtocolHandshake(phsrw, our)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := writeProtocolHandshake(rw, our); err != nil {
|
||||
if err := writeProtocolHandshake(phsrw, our); err != nil {
|
||||
return nil, fmt.Errorf("protocol write error: %v", err)
|
||||
}
|
||||
|
||||
rw := newFrameRW(fd, msgWriteTimeout)
|
||||
return &conn{rw, rhs}, nil
|
||||
}
|
||||
|
||||
func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
|
||||
// remoteID = dial.ID
|
||||
// sessionToken, err = outboundEncHandshake(fd, prv, remoteID[:], nil)
|
||||
secrets, err := outboundEncHandshake(fd, prv, dial.ID[:], nil)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encryption handshake failed: %v", err)
|
||||
}
|
||||
|
||||
rw := newFrameRW(fd, msgWriteTimeout)
|
||||
if err := writeProtocolHandshake(rw, our); err != nil {
|
||||
// Run the protocol handshake using authenticated messages.
|
||||
// TODO: move buffering setup here (out of newFrameRW)
|
||||
phsrw := newRlpxFrameRW(fd, secrets)
|
||||
if err := writeProtocolHandshake(phsrw, our); err != nil {
|
||||
return nil, fmt.Errorf("protocol write error: %v", err)
|
||||
}
|
||||
rhs, err := readProtocolHandshake(rw, our)
|
||||
rhs, err := readProtocolHandshake(phsrw, our)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("protocol handshake read error: %v", err)
|
||||
}
|
||||
if rhs.ID != dial.ID {
|
||||
return nil, errors.New("dialed node id mismatch")
|
||||
}
|
||||
|
||||
rw := newFrameRW(fd, msgWriteTimeout)
|
||||
return &conn{rw, rhs}, nil
|
||||
}
|
||||
|
||||
@ -107,43 +158,48 @@ func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake,
|
||||
// privateKey is the local client's private key
|
||||
// remotePublicKey is the remote peer's node ID
|
||||
// sessionToken is the token from a previous session with this node.
|
||||
func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (
|
||||
newSessionToken []byte,
|
||||
err error,
|
||||
) {
|
||||
func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (s secrets, err error) {
|
||||
auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return s, err
|
||||
}
|
||||
if _, err = conn.Write(auth); err != nil {
|
||||
return nil, err
|
||||
return s, err
|
||||
}
|
||||
|
||||
response := make([]byte, rHSLen)
|
||||
if _, err = io.ReadFull(conn, response); err != nil {
|
||||
return nil, err
|
||||
return s, err
|
||||
}
|
||||
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return s, err
|
||||
}
|
||||
|
||||
return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
|
||||
h := &encHandshake{
|
||||
initiator: true,
|
||||
initNonce: initNonce,
|
||||
respNonce: recNonce,
|
||||
randomPrivKey: randomPrivKey,
|
||||
remoteRandomPub: remoteRandomPubKey,
|
||||
}
|
||||
copy(h.remoteID[:], remotePublicKey)
|
||||
return h.secrets(auth, response), nil
|
||||
}
|
||||
|
||||
// authMsg creates the initiator handshake.
|
||||
// TODO: change all the names
|
||||
func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
|
||||
auth, initNonce []byte,
|
||||
randomPrvKey *ecdsa.PrivateKey,
|
||||
err error,
|
||||
) {
|
||||
// session init, common to both parties
|
||||
remotePubKey, err := importPublicKey(remotePubKeyS)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
var tokenFlag byte // = 0x00
|
||||
var tokenFlag byte
|
||||
if sessionToken == nil {
|
||||
// no session token found means we need to generate shared secret.
|
||||
// ecies shared secret is used as initial session token for new peers
|
||||
@ -151,14 +207,13 @@ func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
|
||||
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
|
||||
return
|
||||
}
|
||||
// tokenFlag = 0x00 // redundant
|
||||
} else {
|
||||
// for known peers, we use stored token from the previous session
|
||||
tokenFlag = 0x01
|
||||
}
|
||||
|
||||
//E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
|
||||
// E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
|
||||
//E(remote-pubk, S(ecdhe-random, sha3(ecdh-shared-secret^nonce)) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
|
||||
// E(remote-pubk, S(ecdhe-random, sha3(token^nonce)) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
|
||||
// allocate msgLen long message,
|
||||
var msg []byte = make([]byte, authMsgLen)
|
||||
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
|
||||
@ -242,27 +297,32 @@ func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
|
||||
//
|
||||
// privateKey is the local client's private key
|
||||
// sessionToken is the token from a previous session with this node.
|
||||
func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (
|
||||
token, remotePubKey []byte,
|
||||
err error,
|
||||
) {
|
||||
func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (s secrets, err error) {
|
||||
// we are listening connection. we are responders in the
|
||||
// handshake. Extract info from the authentication. The initiator
|
||||
// starts by sending us a handshake that we need to respond to. so
|
||||
// we read auth message first, then respond.
|
||||
auth := make([]byte, iHSLen)
|
||||
if _, err := io.ReadFull(conn, auth); err != nil {
|
||||
return nil, nil, err
|
||||
return s, err
|
||||
}
|
||||
response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
return s, err
|
||||
}
|
||||
if _, err = conn.Write(response); err != nil {
|
||||
return nil, nil, err
|
||||
return s, err
|
||||
}
|
||||
token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
|
||||
return token, remotePubKey, err
|
||||
|
||||
h := &encHandshake{
|
||||
initiator: false,
|
||||
initNonce: initNonce,
|
||||
respNonce: recNonce,
|
||||
randomPrivKey: randomPrivKey,
|
||||
remoteRandomPub: remoteRandomPubKey,
|
||||
}
|
||||
copy(h.remoteID[:], remotePubKey)
|
||||
return h.secrets(auth, response), err
|
||||
}
|
||||
|
||||
// authResp is called by peer if it accepted (but not
|
||||
@ -349,23 +409,6 @@ func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
|
||||
return
|
||||
}
|
||||
|
||||
// newSession is called after the handshake is completed. The
|
||||
// arguments are values negotiated in the handshake. The return value
|
||||
// is a new session Token to be remembered for the next time we
|
||||
// connect with this peer.
|
||||
func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) {
|
||||
// 3) Now we can trust ecdhe-random-pubk to derive new keys
|
||||
//ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
|
||||
pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey)
|
||||
dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce))
|
||||
sessionToken := crypto.Sha3(sharedSecret)
|
||||
return sessionToken, nil
|
||||
}
|
||||
|
||||
// importPublicKey unmarshals 512 bit public keys.
|
||||
func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
|
||||
var pubKey65 []byte
|
||||
|
@ -2,8 +2,6 @@ package p2p
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/ecdsa"
|
||||
"crypto/rand"
|
||||
"net"
|
||||
"reflect"
|
||||
"testing"
|
||||
@ -69,102 +67,46 @@ func TestSharedSecret(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestCryptoHandshake(t *testing.T) {
|
||||
testCryptoHandshake(newkey(), newkey(), nil, t)
|
||||
}
|
||||
|
||||
func TestCryptoHandshakeWithToken(t *testing.T) {
|
||||
sessionToken := make([]byte, shaLen)
|
||||
rand.Read(sessionToken)
|
||||
testCryptoHandshake(newkey(), newkey(), sessionToken, t)
|
||||
}
|
||||
|
||||
func testCryptoHandshake(prv0, prv1 *ecdsa.PrivateKey, sessionToken []byte, t *testing.T) {
|
||||
var err error
|
||||
// pub0 := &prv0.PublicKey
|
||||
pub1 := &prv1.PublicKey
|
||||
|
||||
// pub0s := crypto.FromECDSAPub(pub0)
|
||||
pub1s := crypto.FromECDSAPub(pub1)
|
||||
|
||||
// simulate handshake by feeding output to input
|
||||
// initiator sends handshake 'auth'
|
||||
auth, initNonce, randomPrivKey, err := authMsg(prv0, pub1s, sessionToken)
|
||||
if err != nil {
|
||||
t.Errorf("%v", err)
|
||||
}
|
||||
// t.Logf("-> %v", hexkey(auth))
|
||||
|
||||
// receiver reads auth and responds with response
|
||||
response, remoteRecNonce, remoteInitNonce, _, remoteRandomPrivKey, remoteInitRandomPubKey, err := authResp(auth, sessionToken, prv1)
|
||||
if err != nil {
|
||||
t.Errorf("%v", err)
|
||||
}
|
||||
// t.Logf("<- %v\n", hexkey(response))
|
||||
|
||||
// initiator reads receiver's response and the key exchange completes
|
||||
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prv0)
|
||||
if err != nil {
|
||||
t.Errorf("completeHandshake error: %v", err)
|
||||
}
|
||||
|
||||
// now both parties should have the same session parameters
|
||||
initSessionToken, err := newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
|
||||
if err != nil {
|
||||
t.Errorf("newSession error: %v", err)
|
||||
}
|
||||
|
||||
recSessionToken, err := newSession(remoteInitNonce, remoteRecNonce, remoteRandomPrivKey, remoteInitRandomPubKey)
|
||||
if err != nil {
|
||||
t.Errorf("newSession error: %v", err)
|
||||
}
|
||||
|
||||
// fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response)
|
||||
|
||||
// fmt.Printf("\nauth %x\ninitNonce %x\nresponse%x\nremoteRecNonce %x\nremoteInitNonce %x\nremoteRandomPubKey %x\nrecNonce %x\nremoteInitRandomPubKey %x\ninitSessionToken %x\n\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, remoteInitRandomPubKey, initSessionToken)
|
||||
|
||||
if !bytes.Equal(initNonce, remoteInitNonce) {
|
||||
t.Errorf("nonces do not match")
|
||||
}
|
||||
if !bytes.Equal(recNonce, remoteRecNonce) {
|
||||
t.Errorf("receiver nonces do not match")
|
||||
}
|
||||
if !bytes.Equal(initSessionToken, recSessionToken) {
|
||||
t.Errorf("session tokens do not match")
|
||||
}
|
||||
}
|
||||
|
||||
func TestEncHandshake(t *testing.T) {
|
||||
defer testlog(t).detach()
|
||||
|
||||
prv0, _ := crypto.GenerateKey()
|
||||
prv1, _ := crypto.GenerateKey()
|
||||
pub0s, _ := exportPublicKey(&prv0.PublicKey)
|
||||
pub1s, _ := exportPublicKey(&prv1.PublicKey)
|
||||
rw0, rw1 := net.Pipe()
|
||||
tokens := make(chan []byte)
|
||||
secrets := make(chan secrets)
|
||||
|
||||
go func() {
|
||||
token, err := outboundEncHandshake(rw0, prv0, pub1s, nil)
|
||||
pub1s, _ := exportPublicKey(&prv1.PublicKey)
|
||||
s, err := outboundEncHandshake(rw0, prv0, pub1s, nil)
|
||||
if err != nil {
|
||||
t.Errorf("outbound side error: %v", err)
|
||||
}
|
||||
tokens <- token
|
||||
id1 := discover.PubkeyID(&prv1.PublicKey)
|
||||
if s.RemoteID != id1 {
|
||||
t.Errorf("outbound side remote ID mismatch")
|
||||
}
|
||||
secrets <- s
|
||||
}()
|
||||
go func() {
|
||||
token, remotePubkey, err := inboundEncHandshake(rw1, prv1, nil)
|
||||
s, err := inboundEncHandshake(rw1, prv1, nil)
|
||||
if err != nil {
|
||||
t.Errorf("inbound side error: %v", err)
|
||||
}
|
||||
if !bytes.Equal(remotePubkey, pub0s) {
|
||||
t.Errorf("inbound side returned wrong remote pubkey\n got: %x\n want: %x", remotePubkey, pub0s)
|
||||
id0 := discover.PubkeyID(&prv0.PublicKey)
|
||||
if s.RemoteID != id0 {
|
||||
t.Errorf("inbound side remote ID mismatch")
|
||||
}
|
||||
tokens <- token
|
||||
secrets <- s
|
||||
}()
|
||||
|
||||
t1, t2 := <-tokens, <-tokens
|
||||
if !bytes.Equal(t1, t2) {
|
||||
t.Error("session token mismatch")
|
||||
// get computed secrets from both sides
|
||||
t1, t2 := <-secrets, <-secrets
|
||||
// don't compare remote node IDs
|
||||
t1.RemoteID, t2.RemoteID = discover.NodeID{}, discover.NodeID{}
|
||||
// flip MACs on one of them so they compare equal
|
||||
t1.EgressMAC, t1.IngressMAC = t1.IngressMAC, t1.EgressMAC
|
||||
if !reflect.DeepEqual(t1, t2) {
|
||||
t.Errorf("secrets mismatch:\n t1: %#v\n t2: %#v", t1, t2)
|
||||
}
|
||||
}
|
||||
|
||||
|
66
p2p/rlpx.go
66
p2p/rlpx.go
@ -13,24 +13,44 @@ import (
|
||||
)
|
||||
|
||||
var (
|
||||
// this is used in place of actual frame header data.
|
||||
// TODO: replace this when Msg contains the protocol type code.
|
||||
zeroHeader = []byte{0xC2, 0x80, 0x80}
|
||||
zero16 = make([]byte, 16)
|
||||
|
||||
// sixteen zero bytes
|
||||
zero16 = make([]byte, 16)
|
||||
)
|
||||
|
||||
type rlpxFrameRW struct {
|
||||
conn io.ReadWriter
|
||||
enc cipher.Stream
|
||||
dec cipher.Stream
|
||||
|
||||
macCipher cipher.Block
|
||||
egressMAC hash.Hash
|
||||
ingressMAC hash.Hash
|
||||
}
|
||||
|
||||
func newRlpxFrameRW(conn io.ReadWriter, macSecret []byte, egressMAC, ingressMAC hash.Hash) *rlpxFrameRW {
|
||||
cipher, err := aes.NewCipher(macSecret)
|
||||
func newRlpxFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
|
||||
macc, err := aes.NewCipher(s.MAC)
|
||||
if err != nil {
|
||||
panic("invalid macSecret: " + err.Error())
|
||||
panic("invalid MAC secret: " + err.Error())
|
||||
}
|
||||
encc, err := aes.NewCipher(s.AES)
|
||||
if err != nil {
|
||||
panic("invalid AES secret: " + err.Error())
|
||||
}
|
||||
// we use an all-zeroes IV for AES because the key used
|
||||
// for encryption is ephemeral.
|
||||
iv := make([]byte, encc.BlockSize())
|
||||
return &rlpxFrameRW{
|
||||
conn: conn,
|
||||
enc: cipher.NewCTR(encc, iv),
|
||||
dec: cipher.NewCTR(encc, iv),
|
||||
macCipher: macc,
|
||||
egressMAC: s.EgressMAC,
|
||||
ingressMAC: s.IngressMAC,
|
||||
}
|
||||
return &rlpxFrameRW{conn: conn, macCipher: cipher, egressMAC: egressMAC, ingressMAC: ingressMAC}
|
||||
}
|
||||
|
||||
func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
|
||||
@ -41,13 +61,14 @@ func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
|
||||
fsize := uint32(len(ptype)) + msg.Size
|
||||
putInt24(fsize, headbuf) // TODO: check overflow
|
||||
copy(headbuf[3:], zeroHeader)
|
||||
rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
|
||||
copy(headbuf[16:], updateHeaderMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
|
||||
if _, err := rw.conn.Write(headbuf); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// write frame, updating the egress MAC while writing to conn.
|
||||
tee := io.MultiWriter(rw.conn, rw.egressMAC)
|
||||
// write encrypted frame, updating the egress MAC while writing to conn.
|
||||
tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
|
||||
if _, err := tee.Write(ptype); err != nil {
|
||||
return err
|
||||
}
|
||||
@ -62,7 +83,8 @@ func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
|
||||
|
||||
// write packet-mac. egress MAC is up to date because
|
||||
// frame content was written to it as well.
|
||||
_, err := rw.conn.Write(rw.egressMAC.Sum(nil))
|
||||
mac := updateHeaderMAC(rw.egressMAC, rw.macCipher, rw.egressMAC.Sum(nil))
|
||||
_, err := rw.conn.Write(mac)
|
||||
return err
|
||||
}
|
||||
|
||||
@ -72,34 +94,40 @@ func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
|
||||
if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
fsize := readInt24(headbuf)
|
||||
// ignore protocol type for now
|
||||
// verify header mac
|
||||
shouldMAC := updateHeaderMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
|
||||
if !hmac.Equal(shouldMAC[:16], headbuf[16:]) {
|
||||
return msg, errors.New("bad header MAC")
|
||||
}
|
||||
rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
|
||||
fsize := readInt24(headbuf)
|
||||
// ignore protocol type for now
|
||||
|
||||
// read the frame content
|
||||
framebuf := make([]byte, fsize)
|
||||
var rsize = fsize // frame size rounded up to 16 byte boundary
|
||||
if padding := fsize % 16; padding > 0 {
|
||||
rsize += 16 - padding
|
||||
}
|
||||
framebuf := make([]byte, rsize)
|
||||
if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
rw.ingressMAC.Write(framebuf)
|
||||
if padding := fsize % 16; padding > 0 {
|
||||
if _, err := io.CopyN(rw.ingressMAC, rw.conn, int64(16-padding)); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
}
|
||||
|
||||
// read and validate frame MAC. we can re-use headbuf for that.
|
||||
rw.ingressMAC.Write(framebuf)
|
||||
if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
if !hmac.Equal(rw.ingressMAC.Sum(nil), headbuf) {
|
||||
shouldMAC = updateHeaderMAC(rw.ingressMAC, rw.macCipher, rw.ingressMAC.Sum(nil))
|
||||
if !hmac.Equal(shouldMAC, headbuf) {
|
||||
return msg, errors.New("bad frame MAC")
|
||||
}
|
||||
|
||||
// decrypt frame content
|
||||
rw.dec.XORKeyStream(framebuf, framebuf)
|
||||
|
||||
// decode message code
|
||||
content := bytes.NewReader(framebuf)
|
||||
content := bytes.NewReader(framebuf[:fsize])
|
||||
if err := rlp.Decode(content, &msg.Code); err != nil {
|
||||
return msg, err
|
||||
}
|
||||
|
@ -16,14 +16,18 @@ import (
|
||||
|
||||
func TestRlpxFrameFake(t *testing.T) {
|
||||
buf := new(bytes.Buffer)
|
||||
secret := crypto.Sha3()
|
||||
hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})
|
||||
rw := newRlpxFrameRW(buf, secret, hash, hash)
|
||||
rw := newRlpxFrameRW(buf, secrets{
|
||||
AES: crypto.Sha3(),
|
||||
MAC: crypto.Sha3(),
|
||||
IngressMAC: hash,
|
||||
EgressMAC: hash,
|
||||
})
|
||||
|
||||
golden := unhex(`
|
||||
000006C2808000000000000000000000
|
||||
00828ddae471818bb0bfa6b551d1cb42
|
||||
01010101010101010101010101010101
|
||||
08C40102030400000000000000000000
|
||||
ba628a4ba590cb43f7848f41c4382885
|
||||
01010101010101010101010101010101
|
||||
01010101010101010101010101010101
|
||||
`)
|
||||
@ -75,27 +79,35 @@ func unhex(str string) []byte {
|
||||
|
||||
func TestRlpxFrameRW(t *testing.T) {
|
||||
var (
|
||||
aesSecret = make([]byte, 16)
|
||||
macSecret = make([]byte, 16)
|
||||
egressMACinit = make([]byte, 32)
|
||||
ingressMACinit = make([]byte, 32)
|
||||
)
|
||||
for _, s := range [][]byte{macSecret, egressMACinit, ingressMACinit} {
|
||||
for _, s := range [][]byte{aesSecret, macSecret, egressMACinit, ingressMACinit} {
|
||||
rand.Read(s)
|
||||
}
|
||||
|
||||
conn := new(bytes.Buffer)
|
||||
|
||||
em1 := sha3.NewKeccak256()
|
||||
em1.Write(egressMACinit)
|
||||
im1 := sha3.NewKeccak256()
|
||||
im1.Write(ingressMACinit)
|
||||
rw1 := newRlpxFrameRW(conn, macSecret, em1, im1)
|
||||
s1 := secrets{
|
||||
AES: aesSecret,
|
||||
MAC: macSecret,
|
||||
EgressMAC: sha3.NewKeccak256(),
|
||||
IngressMAC: sha3.NewKeccak256(),
|
||||
}
|
||||
s1.EgressMAC.Write(egressMACinit)
|
||||
s1.IngressMAC.Write(ingressMACinit)
|
||||
rw1 := newRlpxFrameRW(conn, s1)
|
||||
|
||||
em2 := sha3.NewKeccak256()
|
||||
em2.Write(ingressMACinit)
|
||||
im2 := sha3.NewKeccak256()
|
||||
im2.Write(egressMACinit)
|
||||
rw2 := newRlpxFrameRW(conn, macSecret, em2, im2)
|
||||
s2 := secrets{
|
||||
AES: aesSecret,
|
||||
MAC: macSecret,
|
||||
EgressMAC: sha3.NewKeccak256(),
|
||||
IngressMAC: sha3.NewKeccak256(),
|
||||
}
|
||||
s2.EgressMAC.Write(ingressMACinit)
|
||||
s2.IngressMAC.Write(egressMACinit)
|
||||
rw2 := newRlpxFrameRW(conn, s2)
|
||||
|
||||
// send some messages
|
||||
for i := 0; i < 10; i++ {
|
||||
|
Loading…
Reference in New Issue
Block a user