Merge pull request #20152 from karalabe/snapshot-5

Dynamic state snapshots
This commit is contained in:
Péter Szilágyi 2020-03-23 12:57:31 +02:00 committed by GitHub
commit 613af7ceea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
59 changed files with 5690 additions and 154 deletions

@ -124,7 +124,7 @@ func (b *SimulatedBackend) rollback() {
statedb, _ := b.blockchain.State()
b.pendingBlock = blocks[0]
b.pendingState, _ = state.New(b.pendingBlock.Root(), statedb.Database())
b.pendingState, _ = state.New(b.pendingBlock.Root(), statedb.Database(), nil)
}
// stateByBlockNumber retrieves a state by a given blocknumber.
@ -480,7 +480,7 @@ func (b *SimulatedBackend) SendTransaction(ctx context.Context, tx *types.Transa
statedb, _ := b.blockchain.State()
b.pendingBlock = blocks[0]
b.pendingState, _ = state.New(b.pendingBlock.Root(), statedb.Database())
b.pendingState, _ = state.New(b.pendingBlock.Root(), statedb.Database(), nil)
return nil
}
@ -593,7 +593,7 @@ func (b *SimulatedBackend) AdjustTime(adjustment time.Duration) error {
statedb, _ := b.blockchain.State()
b.pendingBlock = blocks[0]
b.pendingState, _ = state.New(b.pendingBlock.Root(), statedb.Database())
b.pendingState, _ = state.New(b.pendingBlock.Root(), statedb.Database(), nil)
return nil
}

@ -129,10 +129,10 @@ func runCmd(ctx *cli.Context) error {
genesisConfig = gen
db := rawdb.NewMemoryDatabase()
genesis := gen.ToBlock(db)
statedb, _ = state.New(genesis.Root(), state.NewDatabase(db))
statedb, _ = state.New(genesis.Root(), state.NewDatabase(db), nil)
chainConfig = gen.Config
} else {
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
genesisConfig = new(core.Genesis)
}
if ctx.GlobalString(SenderFlag.Name) != "" {

@ -96,7 +96,7 @@ func stateTestCmd(ctx *cli.Context) error {
for _, st := range test.Subtests() {
// Run the test and aggregate the result
result := &StatetestResult{Name: key, Fork: st.Fork, Pass: true}
state, err := test.Run(st, cfg)
state, err := test.Run(st, cfg, false)
// print state root for evmlab tracing
if ctx.GlobalBool(MachineFlag.Name) && state != nil {
fmt.Fprintf(os.Stderr, "{\"stateRoot\": \"%x\"}\n", state.IntermediateRoot(false))

@ -79,6 +79,7 @@ The dumpgenesis command dumps the genesis block configuration in JSON format to
utils.CacheFlag,
utils.SyncModeFlag,
utils.GCModeFlag,
utils.SnapshotFlag,
utils.CacheDatabaseFlag,
utils.CacheGCFlag,
},
@ -544,7 +545,7 @@ func dump(ctx *cli.Context) error {
fmt.Println("{}")
utils.Fatalf("block not found")
} else {
state, err := state.New(block.Root(), state.NewDatabase(chainDb))
state, err := state.New(block.Root(), state.NewDatabase(chainDb), nil)
if err != nil {
utils.Fatalf("could not create new state: %v", err)
}

@ -91,6 +91,7 @@ var (
utils.SyncModeFlag,
utils.ExitWhenSyncedFlag,
utils.GCModeFlag,
utils.SnapshotFlag,
utils.LightServeFlag,
utils.LightLegacyServFlag,
utils.LightIngressFlag,
@ -106,6 +107,7 @@ var (
utils.CacheDatabaseFlag,
utils.CacheTrieFlag,
utils.CacheGCFlag,
utils.CacheSnapshotFlag,
utils.CacheNoPrefetchFlag,
utils.ListenPortFlag,
utils.MaxPeersFlag,

@ -137,6 +137,7 @@ var AppHelpFlagGroups = []flagGroup{
utils.CacheDatabaseFlag,
utils.CacheTrieFlag,
utils.CacheGCFlag,
utils.CacheSnapshotFlag,
utils.CacheNoPrefetchFlag,
},
},

@ -225,6 +225,10 @@ var (
Usage: `Blockchain garbage collection mode ("full", "archive")`,
Value: "full",
}
SnapshotFlag = cli.BoolFlag{
Name: "snapshot",
Usage: `Enables snapshot-database mode -- experimental work in progress feature`,
}
LightKDFFlag = cli.BoolFlag{
Name: "lightkdf",
Usage: "Reduce key-derivation RAM & CPU usage at some expense of KDF strength",
@ -383,14 +387,19 @@ var (
}
CacheTrieFlag = cli.IntFlag{
Name: "cache.trie",
Usage: "Percentage of cache memory allowance to use for trie caching (default = 25% full mode, 50% archive mode)",
Value: 25,
Usage: "Percentage of cache memory allowance to use for trie caching (default = 15% full mode, 30% archive mode)",
Value: 15,
}
CacheGCFlag = cli.IntFlag{
Name: "cache.gc",
Usage: "Percentage of cache memory allowance to use for trie pruning (default = 25% full mode, 0% archive mode)",
Value: 25,
}
CacheSnapshotFlag = cli.IntFlag{
Name: "cache.snapshot",
Usage: "Percentage of cache memory allowance to use for snapshot caching (default = 10% full mode, 20% archive mode)",
Value: 10,
}
CacheNoPrefetchFlag = cli.BoolFlag{
Name: "cache.noprefetch",
Usage: "Disable heuristic state prefetch during block import (less CPU and disk IO, more time waiting for data)",
@ -1463,6 +1472,12 @@ func SetEthConfig(ctx *cli.Context, stack *node.Node, cfg *eth.Config) {
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheGCFlag.Name) {
cfg.TrieDirtyCache = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheGCFlag.Name) / 100
}
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheSnapshotFlag.Name) {
cfg.SnapshotCache = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheSnapshotFlag.Name) / 100
}
if !ctx.GlobalIsSet(SnapshotFlag.Name) {
cfg.SnapshotCache = 0 // Disabled
}
if ctx.GlobalIsSet(DocRootFlag.Name) {
cfg.DocRoot = ctx.GlobalString(DocRootFlag.Name)
}
@ -1724,6 +1739,10 @@ func MakeChain(ctx *cli.Context, stack *node.Node) (chain *core.BlockChain, chai
TrieDirtyLimit: eth.DefaultConfig.TrieDirtyCache,
TrieDirtyDisabled: ctx.GlobalString(GCModeFlag.Name) == "archive",
TrieTimeLimit: eth.DefaultConfig.TrieTimeout,
SnapshotLimit: eth.DefaultConfig.SnapshotCache,
}
if !ctx.GlobalIsSet(SnapshotFlag.Name) {
cache.SnapshotLimit = 0 // Disabled
}
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheTrieFlag.Name) {
cache.TrieCleanLimit = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheTrieFlag.Name) / 100

@ -34,6 +34,7 @@ import (
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/ethdb"
@ -61,6 +62,10 @@ var (
storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil)
storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil)
snapshotAccountReadTimer = metrics.NewRegisteredTimer("chain/snapshot/account/reads", nil)
snapshotStorageReadTimer = metrics.NewRegisteredTimer("chain/snapshot/storage/reads", nil)
snapshotCommitTimer = metrics.NewRegisteredTimer("chain/snapshot/commits", nil)
blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil)
blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil)
blockExecutionTimer = metrics.NewRegisteredTimer("chain/execution", nil)
@ -115,6 +120,9 @@ type CacheConfig struct {
TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk
TrieDirtyDisabled bool // Whether to disable trie write caching and GC altogether (archive node)
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
SnapshotLimit int // Memory allowance (MB) to use for caching snapshot entries in memory
SnapshotWait bool // Wait for snapshot construction on startup. TODO(karalabe): This is a dirty hack for testing, nuke it
}
// BlockChain represents the canonical chain given a database with a genesis
@ -136,6 +144,7 @@ type BlockChain struct {
cacheConfig *CacheConfig // Cache configuration for pruning
db ethdb.Database // Low level persistent database to store final content in
snaps *snapshot.Tree // Snapshot tree for fast trie leaf access
triegc *prque.Prque // Priority queue mapping block numbers to tries to gc
gcproc time.Duration // Accumulates canonical block processing for trie dumping
@ -188,6 +197,8 @@ func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *par
TrieCleanLimit: 256,
TrieDirtyLimit: 256,
TrieTimeLimit: 5 * time.Minute,
SnapshotLimit: 256,
SnapshotWait: true,
}
}
bodyCache, _ := lru.New(bodyCacheLimit)
@ -293,6 +304,10 @@ func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *par
}
}
}
// Load any existing snapshot, regenerating it if loading failed
if bc.cacheConfig.SnapshotLimit > 0 {
bc.snaps = snapshot.New(bc.db, bc.stateCache.TrieDB(), bc.cacheConfig.SnapshotLimit, bc.CurrentBlock().Root(), !bc.cacheConfig.SnapshotWait)
}
// Take ownership of this particular state
go bc.update()
return bc, nil
@ -339,7 +354,7 @@ func (bc *BlockChain) loadLastState() error {
return bc.Reset()
}
// Make sure the state associated with the block is available
if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
if _, err := state.New(currentBlock.Root(), bc.stateCache, bc.snaps); err != nil {
// Dangling block without a state associated, init from scratch
log.Warn("Head state missing, repairing chain", "number", currentBlock.Number(), "hash", currentBlock.Hash())
if err := bc.repair(&currentBlock); err != nil {
@ -401,7 +416,7 @@ func (bc *BlockChain) SetHead(head uint64) error {
if newHeadBlock == nil {
newHeadBlock = bc.genesisBlock
} else {
if _, err := state.New(newHeadBlock.Root(), bc.stateCache); err != nil {
if _, err := state.New(newHeadBlock.Root(), bc.stateCache, bc.snaps); err != nil {
// Rewound state missing, rolled back to before pivot, reset to genesis
newHeadBlock = bc.genesisBlock
}
@ -486,6 +501,10 @@ func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error {
headBlockGauge.Update(int64(block.NumberU64()))
bc.chainmu.Unlock()
// Destroy any existing state snapshot and regenerate it in the background
if bc.snaps != nil {
bc.snaps.Rebuild(block.Root())
}
log.Info("Committed new head block", "number", block.Number(), "hash", hash)
return nil
}
@ -524,7 +543,7 @@ func (bc *BlockChain) State() (*state.StateDB, error) {
// StateAt returns a new mutable state based on a particular point in time.
func (bc *BlockChain) StateAt(root common.Hash) (*state.StateDB, error) {
return state.New(root, bc.stateCache)
return state.New(root, bc.stateCache, bc.snaps)
}
// StateCache returns the caching database underpinning the blockchain instance.
@ -576,7 +595,7 @@ func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
func (bc *BlockChain) repair(head **types.Block) error {
for {
// Abort if we've rewound to a head block that does have associated state
if _, err := state.New((*head).Root(), bc.stateCache); err == nil {
if _, err := state.New((*head).Root(), bc.stateCache, bc.snaps); err == nil {
log.Info("Rewound blockchain to past state", "number", (*head).Number(), "hash", (*head).Hash())
return nil
}
@ -839,6 +858,14 @@ func (bc *BlockChain) Stop() {
bc.wg.Wait()
// Ensure that the entirety of the state snapshot is journalled to disk.
var snapBase common.Hash
if bc.snaps != nil {
var err error
if snapBase, err = bc.snaps.Journal(bc.CurrentBlock().Root()); err != nil {
log.Error("Failed to journal state snapshot", "err", err)
}
}
// Ensure the state of a recent block is also stored to disk before exiting.
// We're writing three different states to catch different restart scenarios:
// - HEAD: So we don't need to reprocess any blocks in the general case
@ -857,6 +884,12 @@ func (bc *BlockChain) Stop() {
}
}
}
if snapBase != (common.Hash{}) {
log.Info("Writing snapshot state to disk", "root", snapBase)
if err := triedb.Commit(snapBase, true); err != nil {
log.Error("Failed to commit recent state trie", "err", err)
}
}
for !bc.triegc.Empty() {
triedb.Dereference(bc.triegc.PopItem().(common.Hash))
}
@ -1647,7 +1680,7 @@ func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals bool) (int, er
if parent == nil {
parent = bc.GetHeader(block.ParentHash(), block.NumberU64()-1)
}
statedb, err := state.New(parent.Root, bc.stateCache)
statedb, err := state.New(parent.Root, bc.stateCache, bc.snaps)
if err != nil {
return it.index, err
}
@ -1656,9 +1689,9 @@ func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals bool) (int, er
var followupInterrupt uint32
if !bc.cacheConfig.TrieCleanNoPrefetch {
if followup, err := it.peek(); followup != nil && err == nil {
throwaway, _ := state.New(parent.Root, bc.stateCache)
throwaway, _ := state.New(parent.Root, bc.stateCache, bc.snaps)
go func(start time.Time, followup *types.Block, throwaway *state.StateDB, interrupt *uint32) {
bc.prefetcher.Prefetch(followup, throwaway, bc.vmConfig, interrupt)
bc.prefetcher.Prefetch(followup, throwaway, bc.vmConfig, &followupInterrupt)
blockPrefetchExecuteTimer.Update(time.Since(start))
if atomic.LoadUint32(interrupt) == 1 {
@ -1680,10 +1713,12 @@ func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals bool) (int, er
storageReadTimer.Update(statedb.StorageReads) // Storage reads are complete, we can mark them
accountUpdateTimer.Update(statedb.AccountUpdates) // Account updates are complete, we can mark them
storageUpdateTimer.Update(statedb.StorageUpdates) // Storage updates are complete, we can mark them
snapshotAccountReadTimer.Update(statedb.SnapshotAccountReads) // Account reads are complete, we can mark them
snapshotStorageReadTimer.Update(statedb.SnapshotStorageReads) // Storage reads are complete, we can mark them
triehash := statedb.AccountHashes + statedb.StorageHashes // Save to not double count in validation
trieproc := statedb.AccountReads + statedb.AccountUpdates
trieproc += statedb.StorageReads + statedb.StorageUpdates
trieproc := statedb.SnapshotAccountReads + statedb.AccountReads + statedb.AccountUpdates
trieproc += statedb.SnapshotStorageReads + statedb.StorageReads + statedb.StorageUpdates
blockExecutionTimer.Update(time.Since(substart) - trieproc - triehash)
@ -1714,8 +1749,9 @@ func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals bool) (int, er
// Update the metrics touched during block commit
accountCommitTimer.Update(statedb.AccountCommits) // Account commits are complete, we can mark them
storageCommitTimer.Update(statedb.StorageCommits) // Storage commits are complete, we can mark them
snapshotCommitTimer.Update(statedb.SnapshotCommits) // Snapshot commits are complete, we can mark them
blockWriteTimer.Update(time.Since(substart) - statedb.AccountCommits - statedb.StorageCommits)
blockWriteTimer.Update(time.Since(substart) - statedb.AccountCommits - statedb.StorageCommits - statedb.SnapshotCommits)
blockInsertTimer.UpdateSince(start)
switch status {

@ -144,7 +144,7 @@ func testBlockChainImport(chain types.Blocks, blockchain *BlockChain) error {
}
return err
}
statedb, err := state.New(blockchain.GetBlockByHash(block.ParentHash()).Root(), blockchain.stateCache)
statedb, err := state.New(blockchain.GetBlockByHash(block.ParentHash()).Root(), blockchain.stateCache, nil)
if err != nil {
return err
}
@ -2315,7 +2315,7 @@ func TestDeleteCreateRevert(t *testing.T) {
// The address 0xAAAAA selfdestructs if called
aa: {
// Code needs to just selfdestruct
Code: []byte{byte(vm.PC), 0xFF},
Code: []byte{byte(vm.PC), byte(vm.SELFDESTRUCT)},
Nonce: 1,
Balance: big.NewInt(0),
},
@ -2362,3 +2362,522 @@ func TestDeleteCreateRevert(t *testing.T) {
t.Fatalf("block %d: failed to insert into chain: %v", n, err)
}
}
// TestDeleteRecreateSlots tests a state-transition that contains both deletion
// and recreation of contract state.
// Contract A exists, has slots 1 and 2 set
// Tx 1: Selfdestruct A
// Tx 2: Re-create A, set slots 3 and 4
// Expected outcome is that _all_ slots are cleared from A, due to the selfdestruct,
// and then the new slots exist
func TestDeleteRecreateSlots(t *testing.T) {
var (
// Generate a canonical chain to act as the main dataset
engine = ethash.NewFaker()
db = rawdb.NewMemoryDatabase()
// A sender who makes transactions, has some funds
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
bb = common.HexToAddress("0x000000000000000000000000000000000000bbbb")
aaStorage = make(map[common.Hash]common.Hash) // Initial storage in AA
aaCode = []byte{byte(vm.PC), byte(vm.SELFDESTRUCT)} // Code for AA (simple selfdestruct)
)
// Populate two slots
aaStorage[common.HexToHash("01")] = common.HexToHash("01")
aaStorage[common.HexToHash("02")] = common.HexToHash("02")
// The bb-code needs to CREATE2 the aa contract. It consists of
// both initcode and deployment code
// initcode:
// 1. Set slots 3=3, 4=4,
// 2. Return aaCode
initCode := []byte{
byte(vm.PUSH1), 0x3, // value
byte(vm.PUSH1), 0x3, // location
byte(vm.SSTORE), // Set slot[3] = 1
byte(vm.PUSH1), 0x4, // value
byte(vm.PUSH1), 0x4, // location
byte(vm.SSTORE), // Set slot[4] = 1
// Slots are set, now return the code
byte(vm.PUSH2), byte(vm.PC), byte(vm.SELFDESTRUCT), // Push code on stack
byte(vm.PUSH1), 0x0, // memory start on stack
byte(vm.MSTORE),
// Code is now in memory.
byte(vm.PUSH1), 0x2, // size
byte(vm.PUSH1), byte(32 - 2), // offset
byte(vm.RETURN),
}
if l := len(initCode); l > 32 {
t.Fatalf("init code is too long for a pushx, need a more elaborate deployer")
}
bbCode := []byte{
// Push initcode onto stack
byte(vm.PUSH1) + byte(len(initCode)-1)}
bbCode = append(bbCode, initCode...)
bbCode = append(bbCode, []byte{
byte(vm.PUSH1), 0x0, // memory start on stack
byte(vm.MSTORE),
byte(vm.PUSH1), 0x00, // salt
byte(vm.PUSH1), byte(len(initCode)), // size
byte(vm.PUSH1), byte(32 - len(initCode)), // offset
byte(vm.PUSH1), 0x00, // endowment
byte(vm.CREATE2),
}...)
initHash := crypto.Keccak256Hash(initCode)
aa := crypto.CreateAddress2(bb, [32]byte{}, initHash[:])
t.Logf("Destination address: %x\n", aa)
gspec := &Genesis{
Config: params.TestChainConfig,
Alloc: GenesisAlloc{
address: {Balance: funds},
// The address 0xAAAAA selfdestructs if called
aa: {
// Code needs to just selfdestruct
Code: aaCode,
Nonce: 1,
Balance: big.NewInt(0),
Storage: aaStorage,
},
// The contract BB recreates AA
bb: {
Code: bbCode,
Balance: big.NewInt(1),
},
},
}
genesis := gspec.MustCommit(db)
blocks, _ := GenerateChain(params.TestChainConfig, genesis, engine, db, 1, func(i int, b *BlockGen) {
b.SetCoinbase(common.Address{1})
// One transaction to AA, to kill it
tx, _ := types.SignTx(types.NewTransaction(0, aa,
big.NewInt(0), 50000, big.NewInt(1), nil), types.HomesteadSigner{}, key)
b.AddTx(tx)
// One transaction to BB, to recreate AA
tx, _ = types.SignTx(types.NewTransaction(1, bb,
big.NewInt(0), 100000, big.NewInt(1), nil), types.HomesteadSigner{}, key)
b.AddTx(tx)
})
// Import the canonical chain
diskdb := rawdb.NewMemoryDatabase()
gspec.MustCommit(diskdb)
chain, err := NewBlockChain(diskdb, nil, params.TestChainConfig, engine, vm.Config{
Debug: true,
Tracer: vm.NewJSONLogger(nil, os.Stdout),
}, nil)
if err != nil {
t.Fatalf("failed to create tester chain: %v", err)
}
if n, err := chain.InsertChain(blocks); err != nil {
t.Fatalf("block %d: failed to insert into chain: %v", n, err)
}
statedb, _ := chain.State()
// If all is correct, then slot 1 and 2 are zero
if got, exp := statedb.GetState(aa, common.HexToHash("01")), (common.Hash{}); got != exp {
t.Errorf("got %x exp %x", got, exp)
}
if got, exp := statedb.GetState(aa, common.HexToHash("02")), (common.Hash{}); got != exp {
t.Errorf("got %x exp %x", got, exp)
}
// Also, 3 and 4 should be set
if got, exp := statedb.GetState(aa, common.HexToHash("03")), common.HexToHash("03"); got != exp {
t.Fatalf("got %x exp %x", got, exp)
}
if got, exp := statedb.GetState(aa, common.HexToHash("04")), common.HexToHash("04"); got != exp {
t.Fatalf("got %x exp %x", got, exp)
}
}
// TestDeleteRecreateAccount tests a state-transition that contains deletion of a
// contract with storage, and a recreate of the same contract via a
// regular value-transfer
// Expected outcome is that _all_ slots are cleared from A
func TestDeleteRecreateAccount(t *testing.T) {
var (
// Generate a canonical chain to act as the main dataset
engine = ethash.NewFaker()
db = rawdb.NewMemoryDatabase()
// A sender who makes transactions, has some funds
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
aa = common.HexToAddress("0x7217d81b76bdd8707601e959454e3d776aee5f43")
aaStorage = make(map[common.Hash]common.Hash) // Initial storage in AA
aaCode = []byte{byte(vm.PC), byte(vm.SELFDESTRUCT)} // Code for AA (simple selfdestruct)
)
// Populate two slots
aaStorage[common.HexToHash("01")] = common.HexToHash("01")
aaStorage[common.HexToHash("02")] = common.HexToHash("02")
gspec := &Genesis{
Config: params.TestChainConfig,
Alloc: GenesisAlloc{
address: {Balance: funds},
// The address 0xAAAAA selfdestructs if called
aa: {
// Code needs to just selfdestruct
Code: aaCode,
Nonce: 1,
Balance: big.NewInt(0),
Storage: aaStorage,
},
},
}
genesis := gspec.MustCommit(db)
blocks, _ := GenerateChain(params.TestChainConfig, genesis, engine, db, 1, func(i int, b *BlockGen) {
b.SetCoinbase(common.Address{1})
// One transaction to AA, to kill it
tx, _ := types.SignTx(types.NewTransaction(0, aa,
big.NewInt(0), 50000, big.NewInt(1), nil), types.HomesteadSigner{}, key)
b.AddTx(tx)
// One transaction to AA, to recreate it (but without storage
tx, _ = types.SignTx(types.NewTransaction(1, aa,
big.NewInt(1), 100000, big.NewInt(1), nil), types.HomesteadSigner{}, key)
b.AddTx(tx)
})
// Import the canonical chain
diskdb := rawdb.NewMemoryDatabase()
gspec.MustCommit(diskdb)
chain, err := NewBlockChain(diskdb, nil, params.TestChainConfig, engine, vm.Config{
Debug: true,
Tracer: vm.NewJSONLogger(nil, os.Stdout),
}, nil)
if err != nil {
t.Fatalf("failed to create tester chain: %v", err)
}
if n, err := chain.InsertChain(blocks); err != nil {
t.Fatalf("block %d: failed to insert into chain: %v", n, err)
}
statedb, _ := chain.State()
// If all is correct, then both slots are zero
if got, exp := statedb.GetState(aa, common.HexToHash("01")), (common.Hash{}); got != exp {
t.Errorf("got %x exp %x", got, exp)
}
if got, exp := statedb.GetState(aa, common.HexToHash("02")), (common.Hash{}); got != exp {
t.Errorf("got %x exp %x", got, exp)
}
}
// TestDeleteRecreateSlotsAcrossManyBlocks tests multiple state-transition that contains both deletion
// and recreation of contract state.
// Contract A exists, has slots 1 and 2 set
// Tx 1: Selfdestruct A
// Tx 2: Re-create A, set slots 3 and 4
// Expected outcome is that _all_ slots are cleared from A, due to the selfdestruct,
// and then the new slots exist
func TestDeleteRecreateSlotsAcrossManyBlocks(t *testing.T) {
var (
// Generate a canonical chain to act as the main dataset
engine = ethash.NewFaker()
db = rawdb.NewMemoryDatabase()
// A sender who makes transactions, has some funds
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
bb = common.HexToAddress("0x000000000000000000000000000000000000bbbb")
aaStorage = make(map[common.Hash]common.Hash) // Initial storage in AA
aaCode = []byte{byte(vm.PC), byte(vm.SELFDESTRUCT)} // Code for AA (simple selfdestruct)
)
// Populate two slots
aaStorage[common.HexToHash("01")] = common.HexToHash("01")
aaStorage[common.HexToHash("02")] = common.HexToHash("02")
// The bb-code needs to CREATE2 the aa contract. It consists of
// both initcode and deployment code
// initcode:
// 1. Set slots 3=blocknum+1, 4=4,
// 2. Return aaCode
initCode := []byte{
byte(vm.PUSH1), 0x1, //
byte(vm.NUMBER), // value = number + 1
byte(vm.ADD), //
byte(vm.PUSH1), 0x3, // location
byte(vm.SSTORE), // Set slot[3] = number + 1
byte(vm.PUSH1), 0x4, // value
byte(vm.PUSH1), 0x4, // location
byte(vm.SSTORE), // Set slot[4] = 4
// Slots are set, now return the code
byte(vm.PUSH2), byte(vm.PC), byte(vm.SELFDESTRUCT), // Push code on stack
byte(vm.PUSH1), 0x0, // memory start on stack
byte(vm.MSTORE),
// Code is now in memory.
byte(vm.PUSH1), 0x2, // size
byte(vm.PUSH1), byte(32 - 2), // offset
byte(vm.RETURN),
}
if l := len(initCode); l > 32 {
t.Fatalf("init code is too long for a pushx, need a more elaborate deployer")
}
bbCode := []byte{
// Push initcode onto stack
byte(vm.PUSH1) + byte(len(initCode)-1)}
bbCode = append(bbCode, initCode...)
bbCode = append(bbCode, []byte{
byte(vm.PUSH1), 0x0, // memory start on stack
byte(vm.MSTORE),
byte(vm.PUSH1), 0x00, // salt
byte(vm.PUSH1), byte(len(initCode)), // size
byte(vm.PUSH1), byte(32 - len(initCode)), // offset
byte(vm.PUSH1), 0x00, // endowment
byte(vm.CREATE2),
}...)
initHash := crypto.Keccak256Hash(initCode)
aa := crypto.CreateAddress2(bb, [32]byte{}, initHash[:])
t.Logf("Destination address: %x\n", aa)
gspec := &Genesis{
Config: params.TestChainConfig,
Alloc: GenesisAlloc{
address: {Balance: funds},
// The address 0xAAAAA selfdestructs if called
aa: {
// Code needs to just selfdestruct
Code: aaCode,
Nonce: 1,
Balance: big.NewInt(0),
Storage: aaStorage,
},
// The contract BB recreates AA
bb: {
Code: bbCode,
Balance: big.NewInt(1),
},
},
}
genesis := gspec.MustCommit(db)
var nonce uint64
type expectation struct {
exist bool
blocknum int
values map[int]int
}
var current = &expectation{
exist: true, // exists in genesis
blocknum: 0,
values: map[int]int{1: 1, 2: 2},
}
var expectations []*expectation
var newDestruct = func(e *expectation) *types.Transaction {
tx, _ := types.SignTx(types.NewTransaction(nonce, aa,
big.NewInt(0), 50000, big.NewInt(1), nil), types.HomesteadSigner{}, key)
nonce++
if e.exist {
e.exist = false
e.values = nil
}
t.Logf("block %d; adding destruct\n", e.blocknum)
return tx
}
var newResurrect = func(e *expectation) *types.Transaction {
tx, _ := types.SignTx(types.NewTransaction(nonce, bb,
big.NewInt(0), 100000, big.NewInt(1), nil), types.HomesteadSigner{}, key)
nonce++
if !e.exist {
e.exist = true
e.values = map[int]int{3: e.blocknum + 1, 4: 4}
}
t.Logf("block %d; adding resurrect\n", e.blocknum)
return tx
}
blocks, _ := GenerateChain(params.TestChainConfig, genesis, engine, db, 150, func(i int, b *BlockGen) {
var exp = new(expectation)
exp.blocknum = i + 1
exp.values = make(map[int]int)
for k, v := range current.values {
exp.values[k] = v
}
exp.exist = current.exist
b.SetCoinbase(common.Address{1})
if i%2 == 0 {
b.AddTx(newDestruct(exp))
}
if i%3 == 0 {
b.AddTx(newResurrect(exp))
}
if i%5 == 0 {
b.AddTx(newDestruct(exp))
}
if i%7 == 0 {
b.AddTx(newResurrect(exp))
}
expectations = append(expectations, exp)
current = exp
})
// Import the canonical chain
diskdb := rawdb.NewMemoryDatabase()
gspec.MustCommit(diskdb)
chain, err := NewBlockChain(diskdb, nil, params.TestChainConfig, engine, vm.Config{
//Debug: true,
//Tracer: vm.NewJSONLogger(nil, os.Stdout),
}, nil)
if err != nil {
t.Fatalf("failed to create tester chain: %v", err)
}
var asHash = func(num int) common.Hash {
return common.BytesToHash([]byte{byte(num)})
}
for i, block := range blocks {
blockNum := i + 1
if n, err := chain.InsertChain([]*types.Block{block}); err != nil {
t.Fatalf("block %d: failed to insert into chain: %v", n, err)
}
statedb, _ := chain.State()
// If all is correct, then slot 1 and 2 are zero
if got, exp := statedb.GetState(aa, common.HexToHash("01")), (common.Hash{}); got != exp {
t.Errorf("block %d, got %x exp %x", blockNum, got, exp)
}
if got, exp := statedb.GetState(aa, common.HexToHash("02")), (common.Hash{}); got != exp {
t.Errorf("block %d, got %x exp %x", blockNum, got, exp)
}
exp := expectations[i]
if exp.exist {
if !statedb.Exist(aa) {
t.Fatalf("block %d, expected %v to exist, it did not", blockNum, aa)
}
for slot, val := range exp.values {
if gotValue, expValue := statedb.GetState(aa, asHash(slot)), asHash(val); gotValue != expValue {
t.Fatalf("block %d, slot %d, got %x exp %x", blockNum, slot, gotValue, expValue)
}
}
} else {
if statedb.Exist(aa) {
t.Fatalf("block %d, expected %v to not exist, it did", blockNum, aa)
}
}
}
}
// TestInitThenFailCreateContract tests a pretty notorious case that happened
// on mainnet over blocks 7338108, 7338110 and 7338115.
// - Block 7338108: address e771789f5cccac282f23bb7add5690e1f6ca467c is initiated
// with 0.001 ether (thus created but no code)
// - Block 7338110: a CREATE2 is attempted. The CREATE2 would deploy code on
// the same address e771789f5cccac282f23bb7add5690e1f6ca467c. However, the
// deployment fails due to OOG during initcode execution
// - Block 7338115: another tx checks the balance of
// e771789f5cccac282f23bb7add5690e1f6ca467c, and the snapshotter returned it as
// zero.
//
// The problem being that the snapshotter maintains a destructset, and adds items
// to the destructset in case something is created "onto" an existing item.
// We need to either roll back the snapDestructs, or not place it into snapDestructs
// in the first place.
//
func TestInitThenFailCreateContract(t *testing.T) {
var (
// Generate a canonical chain to act as the main dataset
engine = ethash.NewFaker()
db = rawdb.NewMemoryDatabase()
// A sender who makes transactions, has some funds
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
bb = common.HexToAddress("0x000000000000000000000000000000000000bbbb")
)
// The bb-code needs to CREATE2 the aa contract. It consists of
// both initcode and deployment code
// initcode:
// 1. If blocknum < 1, error out (e.g invalid opcode)
// 2. else, return a snippet of code
initCode := []byte{
byte(vm.PUSH1), 0x1, // y (2)
byte(vm.NUMBER), // x (number)
byte(vm.GT), // x > y?
byte(vm.PUSH1), byte(0x8),
byte(vm.JUMPI), // jump to label if number > 2
byte(0xFE), // illegal opcode
byte(vm.JUMPDEST),
byte(vm.PUSH1), 0x2, // size
byte(vm.PUSH1), 0x0, // offset
byte(vm.RETURN), // return 2 bytes of zero-code
}
if l := len(initCode); l > 32 {
t.Fatalf("init code is too long for a pushx, need a more elaborate deployer")
}
bbCode := []byte{
// Push initcode onto stack
byte(vm.PUSH1) + byte(len(initCode)-1)}
bbCode = append(bbCode, initCode...)
bbCode = append(bbCode, []byte{
byte(vm.PUSH1), 0x0, // memory start on stack
byte(vm.MSTORE),
byte(vm.PUSH1), 0x00, // salt
byte(vm.PUSH1), byte(len(initCode)), // size
byte(vm.PUSH1), byte(32 - len(initCode)), // offset
byte(vm.PUSH1), 0x00, // endowment
byte(vm.CREATE2),
}...)
initHash := crypto.Keccak256Hash(initCode)
aa := crypto.CreateAddress2(bb, [32]byte{}, initHash[:])
t.Logf("Destination address: %x\n", aa)
gspec := &Genesis{
Config: params.TestChainConfig,
Alloc: GenesisAlloc{
address: {Balance: funds},
// The address aa has some funds
aa: {Balance: big.NewInt(100000)},
// The contract BB tries to create code onto AA
bb: {
Code: bbCode,
Balance: big.NewInt(1),
},
},
}
genesis := gspec.MustCommit(db)
nonce := uint64(0)
blocks, _ := GenerateChain(params.TestChainConfig, genesis, engine, db, 4, func(i int, b *BlockGen) {
b.SetCoinbase(common.Address{1})
// One transaction to BB
tx, _ := types.SignTx(types.NewTransaction(nonce, bb,
big.NewInt(0), 100000, big.NewInt(1), nil), types.HomesteadSigner{}, key)
b.AddTx(tx)
nonce++
})
// Import the canonical chain
diskdb := rawdb.NewMemoryDatabase()
gspec.MustCommit(diskdb)
chain, err := NewBlockChain(diskdb, nil, params.TestChainConfig, engine, vm.Config{
//Debug: true,
//Tracer: vm.NewJSONLogger(nil, os.Stdout),
}, nil)
if err != nil {
t.Fatalf("failed to create tester chain: %v", err)
}
statedb, _ := chain.State()
if got, exp := statedb.GetBalance(aa), big.NewInt(100000); got.Cmp(exp) != 0 {
t.Fatalf("Genesis err, got %v exp %v", got, exp)
}
// First block tries to create, but fails
{
block := blocks[0]
if _, err := chain.InsertChain([]*types.Block{blocks[0]}); err != nil {
t.Fatalf("block %d: failed to insert into chain: %v", block.NumberU64(), err)
}
statedb, _ = chain.State()
if got, exp := statedb.GetBalance(aa), big.NewInt(100000); got.Cmp(exp) != 0 {
t.Fatalf("block %d: got %v exp %v", block.NumberU64(), got, exp)
}
}
// Import the rest of the blocks
for _, block := range blocks[1:] {
if _, err := chain.InsertChain([]*types.Block{block}); err != nil {
t.Fatalf("block %d: failed to insert into chain: %v", block.NumberU64(), err)
}
}
}

@ -228,7 +228,7 @@ func GenerateChain(config *params.ChainConfig, parent *types.Block, engine conse
return nil, nil
}
for i := 0; i < n; i++ {
statedb, err := state.New(parent.Root(), state.NewDatabase(db))
statedb, err := state.New(parent.Root(), state.NewDatabase(db), nil)
if err != nil {
panic(err)
}

@ -178,7 +178,7 @@ func SetupGenesisBlockWithOverride(db ethdb.Database, genesis *Genesis, override
// We have the genesis block in database(perhaps in ancient database)
// but the corresponding state is missing.
header := rawdb.ReadHeader(db, stored, 0)
if _, err := state.New(header.Root, state.NewDatabaseWithCache(db, 0)); err != nil {
if _, err := state.New(header.Root, state.NewDatabaseWithCache(db, 0), nil); err != nil {
if genesis == nil {
genesis = DefaultGenesisBlock()
}
@ -259,7 +259,7 @@ func (g *Genesis) ToBlock(db ethdb.Database) *types.Block {
if db == nil {
db = rawdb.NewMemoryDatabase()
}
statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(db), nil)
for addr, account := range g.Alloc {
statedb.AddBalance(addr, account.Balance)
statedb.SetCode(addr, account.Code)

@ -0,0 +1,120 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rawdb
import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
)
// ReadSnapshotRoot retrieves the root of the block whose state is contained in
// the persisted snapshot.
func ReadSnapshotRoot(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(snapshotRootKey)
if len(data) != common.HashLength {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteSnapshotRoot stores the root of the block whose state is contained in
// the persisted snapshot.
func WriteSnapshotRoot(db ethdb.KeyValueWriter, root common.Hash) {
if err := db.Put(snapshotRootKey, root[:]); err != nil {
log.Crit("Failed to store snapshot root", "err", err)
}
}
// DeleteSnapshotRoot deletes the hash of the block whose state is contained in
// the persisted snapshot. Since snapshots are not immutable, this method can
// be used during updates, so a crash or failure will mark the entire snapshot
// invalid.
func DeleteSnapshotRoot(db ethdb.KeyValueWriter) {
if err := db.Delete(snapshotRootKey); err != nil {
log.Crit("Failed to remove snapshot root", "err", err)
}
}
// ReadAccountSnapshot retrieves the snapshot entry of an account trie leaf.
func ReadAccountSnapshot(db ethdb.KeyValueReader, hash common.Hash) []byte {
data, _ := db.Get(accountSnapshotKey(hash))
return data
}
// WriteAccountSnapshot stores the snapshot entry of an account trie leaf.
func WriteAccountSnapshot(db ethdb.KeyValueWriter, hash common.Hash, entry []byte) {
if err := db.Put(accountSnapshotKey(hash), entry); err != nil {
log.Crit("Failed to store account snapshot", "err", err)
}
}
// DeleteAccountSnapshot removes the snapshot entry of an account trie leaf.
func DeleteAccountSnapshot(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Delete(accountSnapshotKey(hash)); err != nil {
log.Crit("Failed to delete account snapshot", "err", err)
}
}
// ReadStorageSnapshot retrieves the snapshot entry of an storage trie leaf.
func ReadStorageSnapshot(db ethdb.KeyValueReader, accountHash, storageHash common.Hash) []byte {
data, _ := db.Get(storageSnapshotKey(accountHash, storageHash))
return data
}
// WriteStorageSnapshot stores the snapshot entry of an storage trie leaf.
func WriteStorageSnapshot(db ethdb.KeyValueWriter, accountHash, storageHash common.Hash, entry []byte) {
if err := db.Put(storageSnapshotKey(accountHash, storageHash), entry); err != nil {
log.Crit("Failed to store storage snapshot", "err", err)
}
}
// DeleteStorageSnapshot removes the snapshot entry of an storage trie leaf.
func DeleteStorageSnapshot(db ethdb.KeyValueWriter, accountHash, storageHash common.Hash) {
if err := db.Delete(storageSnapshotKey(accountHash, storageHash)); err != nil {
log.Crit("Failed to delete storage snapshot", "err", err)
}
}
// IterateStorageSnapshots returns an iterator for walking the entire storage
// space of a specific account.
func IterateStorageSnapshots(db ethdb.Iteratee, accountHash common.Hash) ethdb.Iterator {
return db.NewIteratorWithPrefix(storageSnapshotsKey(accountHash))
}
// ReadSnapshotJournal retrieves the serialized in-memory diff layers saved at
// the last shutdown. The blob is expected to be max a few 10s of megabytes.
func ReadSnapshotJournal(db ethdb.KeyValueReader) []byte {
data, _ := db.Get(snapshotJournalKey)
return data
}
// WriteSnapshotJournal stores the serialized in-memory diff layers to save at
// shutdown. The blob is expected to be max a few 10s of megabytes.
func WriteSnapshotJournal(db ethdb.KeyValueWriter, journal []byte) {
if err := db.Put(snapshotJournalKey, journal); err != nil {
log.Crit("Failed to store snapshot journal", "err", err)
}
}
// DeleteSnapshotJournal deletes the serialized in-memory diff layers saved at
// the last shutdown
func DeleteSnapshotJournal(db ethdb.KeyValueWriter) {
if err := db.Delete(snapshotJournalKey); err != nil {
log.Crit("Failed to remove snapshot journal", "err", err)
}
}

@ -239,6 +239,8 @@ func InspectDatabase(db ethdb.Database) error {
hashNumPairing common.StorageSize
trieSize common.StorageSize
txlookupSize common.StorageSize
accountSnapSize common.StorageSize
storageSnapSize common.StorageSize
preimageSize common.StorageSize
bloomBitsSize common.StorageSize
cliqueSnapsSize common.StorageSize
@ -280,6 +282,10 @@ func InspectDatabase(db ethdb.Database) error {
receiptSize += size
case bytes.HasPrefix(key, txLookupPrefix) && len(key) == (len(txLookupPrefix)+common.HashLength):
txlookupSize += size
case bytes.HasPrefix(key, SnapshotAccountPrefix) && len(key) == (len(SnapshotAccountPrefix)+common.HashLength):
accountSnapSize += size
case bytes.HasPrefix(key, SnapshotStoragePrefix) && len(key) == (len(SnapshotStoragePrefix)+2*common.HashLength):
storageSnapSize += size
case bytes.HasPrefix(key, preimagePrefix) && len(key) == (len(preimagePrefix)+common.HashLength):
preimageSize += size
case bytes.HasPrefix(key, bloomBitsPrefix) && len(key) == (len(bloomBitsPrefix)+10+common.HashLength):
@ -331,6 +337,8 @@ func InspectDatabase(db ethdb.Database) error {
{"Key-Value store", "Bloombit index", bloomBitsSize.String()},
{"Key-Value store", "Trie nodes", trieSize.String()},
{"Key-Value store", "Trie preimages", preimageSize.String()},
{"Key-Value store", "Account snapshot", accountSnapSize.String()},
{"Key-Value store", "Storage snapshot", storageSnapSize.String()},
{"Key-Value store", "Clique snapshots", cliqueSnapsSize.String()},
{"Key-Value store", "Singleton metadata", metadata.String()},
{"Ancient store", "Headers", ancientHeaders.String()},

@ -41,6 +41,12 @@ var (
// fastTrieProgressKey tracks the number of trie entries imported during fast sync.
fastTrieProgressKey = []byte("TrieSync")
// snapshotRootKey tracks the hash of the last snapshot.
snapshotRootKey = []byte("SnapshotRoot")
// snapshotJournalKey tracks the in-memory diff layers across restarts.
snapshotJournalKey = []byte("SnapshotJournal")
// Data item prefixes (use single byte to avoid mixing data types, avoid `i`, used for indexes).
headerPrefix = []byte("h") // headerPrefix + num (uint64 big endian) + hash -> header
headerTDSuffix = []byte("t") // headerPrefix + num (uint64 big endian) + hash + headerTDSuffix -> td
@ -52,6 +58,8 @@ var (
txLookupPrefix = []byte("l") // txLookupPrefix + hash -> transaction/receipt lookup metadata
bloomBitsPrefix = []byte("B") // bloomBitsPrefix + bit (uint16 big endian) + section (uint64 big endian) + hash -> bloom bits
SnapshotAccountPrefix = []byte("a") // SnapshotAccountPrefix + account hash -> account trie value
SnapshotStoragePrefix = []byte("o") // SnapshotStoragePrefix + account hash + storage hash -> storage trie value
preimagePrefix = []byte("secure-key-") // preimagePrefix + hash -> preimage
configPrefix = []byte("ethereum-config-") // config prefix for the db
@ -145,6 +153,21 @@ func txLookupKey(hash common.Hash) []byte {
return append(txLookupPrefix, hash.Bytes()...)
}
// accountSnapshotKey = SnapshotAccountPrefix + hash
func accountSnapshotKey(hash common.Hash) []byte {
return append(SnapshotAccountPrefix, hash.Bytes()...)
}
// storageSnapshotKey = SnapshotStoragePrefix + account hash + storage hash
func storageSnapshotKey(accountHash, storageHash common.Hash) []byte {
return append(append(SnapshotStoragePrefix, accountHash.Bytes()...), storageHash.Bytes()...)
}
// storageSnapshotsKey = SnapshotStoragePrefix + account hash + storage hash
func storageSnapshotsKey(accountHash common.Hash) []byte {
return append(SnapshotStoragePrefix, accountHash.Bytes()...)
}
// bloomBitsKey = bloomBitsPrefix + bit (uint16 big endian) + section (uint64 big endian) + hash
func bloomBitsKey(bit uint, section uint64, hash common.Hash) []byte {
key := append(append(bloomBitsPrefix, make([]byte, 10)...), hash.Bytes()...)

@ -29,7 +29,7 @@ func TestNodeIteratorCoverage(t *testing.T) {
// Create some arbitrary test state to iterate
db, root, _ := makeTestState()
state, err := New(root, db)
state, err := New(root, db, nil)
if err != nil {
t.Fatalf("failed to create state trie at %x: %v", root, err)
}

@ -91,6 +91,7 @@ type (
}
resetObjectChange struct {
prev *stateObject
prevdestruct bool
}
suicideChange struct {
account *common.Address
@ -142,6 +143,9 @@ func (ch createObjectChange) dirtied() *common.Address {
func (ch resetObjectChange) revert(s *StateDB) {
s.setStateObject(ch.prev)
if !ch.prevdestruct && s.snap != nil {
delete(s.snapDestructs, ch.prev.addrHash)
}
}
func (ch resetObjectChange) dirtied() *common.Address {

@ -0,0 +1,54 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
)
// Account is a slim version of a state.Account, where the root and code hash
// are replaced with a nil byte slice for empty accounts.
type Account struct {
Nonce uint64
Balance *big.Int
Root []byte
CodeHash []byte
}
// AccountRLP converts a state.Account content into a slim snapshot version RLP
// encoded.
func AccountRLP(nonce uint64, balance *big.Int, root common.Hash, codehash []byte) []byte {
slim := Account{
Nonce: nonce,
Balance: balance,
}
if root != emptyRoot {
slim.Root = root[:]
}
if !bytes.Equal(codehash, emptyCode[:]) {
slim.CodeHash = codehash
}
data, err := rlp.EncodeToBytes(slim)
if err != nil {
panic(err)
}
return data
}

@ -0,0 +1,533 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"encoding/binary"
"fmt"
"math"
"math/rand"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
"github.com/steakknife/bloomfilter"
)
var (
// aggregatorMemoryLimit is the maximum size of the bottom-most diff layer
// that aggregates the writes from above until it's flushed into the disk
// layer.
//
// Note, bumping this up might drastically increase the size of the bloom
// filters that's stored in every diff layer. Don't do that without fully
// understanding all the implications.
aggregatorMemoryLimit = uint64(4 * 1024 * 1024)
// aggregatorItemLimit is an approximate number of items that will end up
// in the agregator layer before it's flushed out to disk. A plain account
// weighs around 14B (+hash), a storage slot 32B (+hash), a deleted slot
// 0B (+hash). Slots are mostly set/unset in lockstep, so thet average at
// 16B (+hash). All in all, the average entry seems to be 15+32=47B. Use a
// smaller number to be on the safe side.
aggregatorItemLimit = aggregatorMemoryLimit / 42
// bloomTargetError is the target false positive rate when the aggregator
// layer is at its fullest. The actual value will probably move around up
// and down from this number, it's mostly a ballpark figure.
//
// Note, dropping this down might drastically increase the size of the bloom
// filters that's stored in every diff layer. Don't do that without fully
// understanding all the implications.
bloomTargetError = 0.02
// bloomSize is the ideal bloom filter size given the maximum number of items
// it's expected to hold and the target false positive error rate.
bloomSize = math.Ceil(float64(aggregatorItemLimit) * math.Log(bloomTargetError) / math.Log(1/math.Pow(2, math.Log(2))))
// bloomFuncs is the ideal number of bits a single entry should set in the
// bloom filter to keep its size to a minimum (given it's size and maximum
// entry count).
bloomFuncs = math.Round((bloomSize / float64(aggregatorItemLimit)) * math.Log(2))
// the bloom offsets are runtime constants which determines which part of the
// the account/storage hash the hasher functions looks at, to determine the
// bloom key for an account/slot. This is randomized at init(), so that the
// global population of nodes do not all display the exact same behaviour with
// regards to bloom content
bloomDestructHasherOffset = 0
bloomAccountHasherOffset = 0
bloomStorageHasherOffset = 0
)
func init() {
// Init the bloom offsets in the range [0:24] (requires 8 bytes)
bloomDestructHasherOffset = rand.Intn(25)
bloomAccountHasherOffset = rand.Intn(25)
bloomStorageHasherOffset = rand.Intn(25)
// The destruct and account blooms must be different, as the storage slots
// will check for destruction too for every bloom miss. It should not collide
// with modified accounts.
for bloomAccountHasherOffset == bloomDestructHasherOffset {
bloomAccountHasherOffset = rand.Intn(25)
}
}
// diffLayer represents a collection of modifications made to a state snapshot
// after running a block on top. It contains one sorted list for the account trie
// and one-one list for each storage tries.
//
// The goal of a diff layer is to act as a journal, tracking recent modifications
// made to the state, that have not yet graduated into a semi-immutable state.
type diffLayer struct {
origin *diskLayer // Base disk layer to directly use on bloom misses
parent snapshot // Parent snapshot modified by this one, never nil
memory uint64 // Approximate guess as to how much memory we use
root common.Hash // Root hash to which this snapshot diff belongs to
stale uint32 // Signals that the layer became stale (state progressed)
destructSet map[common.Hash]struct{} // Keyed markers for deleted (and potentially) recreated accounts
accountList []common.Hash // List of account for iteration. If it exists, it's sorted, otherwise it's nil
accountData map[common.Hash][]byte // Keyed accounts for direct retrival (nil means deleted)
storageList map[common.Hash][]common.Hash // List of storage slots for iterated retrievals, one per account. Any existing lists are sorted if non-nil
storageData map[common.Hash]map[common.Hash][]byte // Keyed storage slots for direct retrival. one per account (nil means deleted)
diffed *bloomfilter.Filter // Bloom filter tracking all the diffed items up to the disk layer
lock sync.RWMutex
}
// destructBloomHasher is a wrapper around a common.Hash to satisfy the interface
// API requirements of the bloom library used. It's used to convert a destruct
// event into a 64 bit mini hash.
type destructBloomHasher common.Hash
func (h destructBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") }
func (h destructBloomHasher) Sum(b []byte) []byte { panic("not implemented") }
func (h destructBloomHasher) Reset() { panic("not implemented") }
func (h destructBloomHasher) BlockSize() int { panic("not implemented") }
func (h destructBloomHasher) Size() int { return 8 }
func (h destructBloomHasher) Sum64() uint64 {
return binary.BigEndian.Uint64(h[bloomDestructHasherOffset : bloomDestructHasherOffset+8])
}
// accountBloomHasher is a wrapper around a common.Hash to satisfy the interface
// API requirements of the bloom library used. It's used to convert an account
// hash into a 64 bit mini hash.
type accountBloomHasher common.Hash
func (h accountBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") }
func (h accountBloomHasher) Sum(b []byte) []byte { panic("not implemented") }
func (h accountBloomHasher) Reset() { panic("not implemented") }
func (h accountBloomHasher) BlockSize() int { panic("not implemented") }
func (h accountBloomHasher) Size() int { return 8 }
func (h accountBloomHasher) Sum64() uint64 {
return binary.BigEndian.Uint64(h[bloomAccountHasherOffset : bloomAccountHasherOffset+8])
}
// storageBloomHasher is a wrapper around a [2]common.Hash to satisfy the interface
// API requirements of the bloom library used. It's used to convert an account
// hash into a 64 bit mini hash.
type storageBloomHasher [2]common.Hash
func (h storageBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") }
func (h storageBloomHasher) Sum(b []byte) []byte { panic("not implemented") }
func (h storageBloomHasher) Reset() { panic("not implemented") }
func (h storageBloomHasher) BlockSize() int { panic("not implemented") }
func (h storageBloomHasher) Size() int { return 8 }
func (h storageBloomHasher) Sum64() uint64 {
return binary.BigEndian.Uint64(h[0][bloomStorageHasherOffset:bloomStorageHasherOffset+8]) ^
binary.BigEndian.Uint64(h[1][bloomStorageHasherOffset:bloomStorageHasherOffset+8])
}
// newDiffLayer creates a new diff on top of an existing snapshot, whether that's a low
// level persistent database or a hierarchical diff already.
func newDiffLayer(parent snapshot, root common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
// Create the new layer with some pre-allocated data segments
dl := &diffLayer{
parent: parent,
root: root,
destructSet: destructs,
accountData: accounts,
storageData: storage,
}
switch parent := parent.(type) {
case *diskLayer:
dl.rebloom(parent)
case *diffLayer:
dl.rebloom(parent.origin)
default:
panic("unknown parent type")
}
// Sanity check that accounts or storage slots are never nil
for accountHash, blob := range accounts {
if blob == nil {
panic(fmt.Sprintf("account %#x nil", accountHash))
}
}
for accountHash, slots := range storage {
if slots == nil {
panic(fmt.Sprintf("storage %#x nil", accountHash))
}
}
// Determine memory size and track the dirty writes
for _, data := range accounts {
dl.memory += uint64(common.HashLength + len(data))
snapshotDirtyAccountWriteMeter.Mark(int64(len(data)))
}
// Fill the storage hashes and sort them for the iterator
dl.storageList = make(map[common.Hash][]common.Hash)
for accountHash := range destructs {
dl.storageList[accountHash] = nil
}
// Determine memory size and track the dirty writes
for _, slots := range storage {
for _, data := range slots {
dl.memory += uint64(common.HashLength + len(data))
snapshotDirtyStorageWriteMeter.Mark(int64(len(data)))
}
}
dl.memory += uint64(len(dl.storageList) * common.HashLength)
return dl
}
// rebloom discards the layer's current bloom and rebuilds it from scratch based
// on the parent's and the local diffs.
func (dl *diffLayer) rebloom(origin *diskLayer) {
dl.lock.Lock()
defer dl.lock.Unlock()
defer func(start time.Time) {
snapshotBloomIndexTimer.Update(time.Since(start))
}(time.Now())
// Inject the new origin that triggered the rebloom
dl.origin = origin
// Retrieve the parent bloom or create a fresh empty one
if parent, ok := dl.parent.(*diffLayer); ok {
parent.lock.RLock()
dl.diffed, _ = parent.diffed.Copy()
parent.lock.RUnlock()
} else {
dl.diffed, _ = bloomfilter.New(uint64(bloomSize), uint64(bloomFuncs))
}
// Iterate over all the accounts and storage slots and index them
for hash := range dl.destructSet {
dl.diffed.Add(destructBloomHasher(hash))
}
for hash := range dl.accountData {
dl.diffed.Add(accountBloomHasher(hash))
}
for accountHash, slots := range dl.storageData {
for storageHash := range slots {
dl.diffed.Add(storageBloomHasher{accountHash, storageHash})
}
}
// Calculate the current false positive rate and update the error rate meter.
// This is a bit cheating because subsequent layers will overwrite it, but it
// should be fine, we're only interested in ballpark figures.
k := float64(dl.diffed.K())
n := float64(dl.diffed.N())
m := float64(dl.diffed.M())
snapshotBloomErrorGauge.Update(math.Pow(1.0-math.Exp((-k)*(n+0.5)/(m-1)), k))
}
// Root returns the root hash for which this snapshot was made.
func (dl *diffLayer) Root() common.Hash {
return dl.root
}
// Parent returns the subsequent layer of a diff layer.
func (dl *diffLayer) Parent() snapshot {
return dl.parent
}
// Stale return whether this layer has become stale (was flattened across) or if
// it's still live.
func (dl *diffLayer) Stale() bool {
return atomic.LoadUint32(&dl.stale) != 0
}
// Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format.
func (dl *diffLayer) Account(hash common.Hash) (*Account, error) {
data, err := dl.AccountRLP(hash)
if err != nil {
return nil, err
}
if len(data) == 0 { // can be both nil and []byte{}
return nil, nil
}
account := new(Account)
if err := rlp.DecodeBytes(data, account); err != nil {
panic(err)
}
return account, nil
}
// AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format.
func (dl *diffLayer) AccountRLP(hash common.Hash) ([]byte, error) {
// Check the bloom filter first whether there's even a point in reaching into
// all the maps in all the layers below
dl.lock.RLock()
hit := dl.diffed.Contains(accountBloomHasher(hash))
if !hit {
hit = dl.diffed.Contains(destructBloomHasher(hash))
}
dl.lock.RUnlock()
// If the bloom filter misses, don't even bother with traversing the memory
// diff layers, reach straight into the bottom persistent disk layer
if !hit {
snapshotBloomAccountMissMeter.Mark(1)
return dl.origin.AccountRLP(hash)
}
// The bloom filter hit, start poking in the internal maps
return dl.accountRLP(hash, 0)
}
// accountRLP is an internal version of AccountRLP that skips the bloom filter
// checks and uses the internal maps to try and retrieve the data. It's meant
// to be used if a higher layer's bloom filter hit already.
func (dl *diffLayer) accountRLP(hash common.Hash, depth int) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.Stale() {
return nil, ErrSnapshotStale
}
// If the account is known locally, return it
if data, ok := dl.accountData[hash]; ok {
snapshotDirtyAccountHitMeter.Mark(1)
snapshotDirtyAccountHitDepthHist.Update(int64(depth))
snapshotDirtyAccountReadMeter.Mark(int64(len(data)))
snapshotBloomAccountTrueHitMeter.Mark(1)
return data, nil
}
// If the account is known locally, but deleted, return it
if _, ok := dl.destructSet[hash]; ok {
snapshotDirtyAccountHitMeter.Mark(1)
snapshotDirtyAccountHitDepthHist.Update(int64(depth))
snapshotDirtyAccountInexMeter.Mark(1)
snapshotBloomAccountTrueHitMeter.Mark(1)
return nil, nil
}
// Account unknown to this diff, resolve from parent
if diff, ok := dl.parent.(*diffLayer); ok {
return diff.accountRLP(hash, depth+1)
}
// Failed to resolve through diff layers, mark a bloom error and use the disk
snapshotBloomAccountFalseHitMeter.Mark(1)
return dl.parent.AccountRLP(hash)
}
// Storage directly retrieves the storage data associated with a particular hash,
// within a particular account. If the slot is unknown to this diff, it's parent
// is consulted.
func (dl *diffLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
// Check the bloom filter first whether there's even a point in reaching into
// all the maps in all the layers below
dl.lock.RLock()
hit := dl.diffed.Contains(storageBloomHasher{accountHash, storageHash})
if !hit {
hit = dl.diffed.Contains(destructBloomHasher(accountHash))
}
dl.lock.RUnlock()
// If the bloom filter misses, don't even bother with traversing the memory
// diff layers, reach straight into the bottom persistent disk layer
if !hit {
snapshotBloomStorageMissMeter.Mark(1)
return dl.origin.Storage(accountHash, storageHash)
}
// The bloom filter hit, start poking in the internal maps
return dl.storage(accountHash, storageHash, 0)
}
// storage is an internal version of Storage that skips the bloom filter checks
// and uses the internal maps to try and retrieve the data. It's meant to be
// used if a higher layer's bloom filter hit already.
func (dl *diffLayer) storage(accountHash, storageHash common.Hash, depth int) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.Stale() {
return nil, ErrSnapshotStale
}
// If the account is known locally, try to resolve the slot locally
if storage, ok := dl.storageData[accountHash]; ok {
if data, ok := storage[storageHash]; ok {
snapshotDirtyStorageHitMeter.Mark(1)
snapshotDirtyStorageHitDepthHist.Update(int64(depth))
if n := len(data); n > 0 {
snapshotDirtyStorageReadMeter.Mark(int64(n))
} else {
snapshotDirtyStorageInexMeter.Mark(1)
}
snapshotBloomStorageTrueHitMeter.Mark(1)
return data, nil
}
}
// If the account is known locally, but deleted, return an empty slot
if _, ok := dl.destructSet[accountHash]; ok {
snapshotDirtyStorageHitMeter.Mark(1)
snapshotDirtyStorageHitDepthHist.Update(int64(depth))
snapshotDirtyStorageInexMeter.Mark(1)
snapshotBloomStorageTrueHitMeter.Mark(1)
return nil, nil
}
// Storage slot unknown to this diff, resolve from parent
if diff, ok := dl.parent.(*diffLayer); ok {
return diff.storage(accountHash, storageHash, depth+1)
}
// Failed to resolve through diff layers, mark a bloom error and use the disk
snapshotBloomStorageFalseHitMeter.Mark(1)
return dl.parent.Storage(accountHash, storageHash)
}
// Update creates a new layer on top of the existing snapshot diff tree with
// the specified data items.
func (dl *diffLayer) Update(blockRoot common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
return newDiffLayer(dl, blockRoot, destructs, accounts, storage)
}
// flatten pushes all data from this point downwards, flattening everything into
// a single diff at the bottom. Since usually the lowermost diff is the largest,
// the flattening bulds up from there in reverse.
func (dl *diffLayer) flatten() snapshot {
// If the parent is not diff, we're the first in line, return unmodified
parent, ok := dl.parent.(*diffLayer)
if !ok {
return dl
}
// Parent is a diff, flatten it first (note, apart from weird corned cases,
// flatten will realistically only ever merge 1 layer, so there's no need to
// be smarter about grouping flattens together).
parent = parent.flatten().(*diffLayer)
parent.lock.Lock()
defer parent.lock.Unlock()
// Before actually writing all our data to the parent, first ensure that the
// parent hasn't been 'corrupted' by someone else already flattening into it
if atomic.SwapUint32(&parent.stale, 1) != 0 {
panic("parent diff layer is stale") // we've flattened into the same parent from two children, boo
}
// Overwrite all the updated accounts blindly, merge the sorted list
for hash := range dl.destructSet {
parent.destructSet[hash] = struct{}{}
delete(parent.accountData, hash)
delete(parent.storageData, hash)
}
for hash, data := range dl.accountData {
parent.accountData[hash] = data
}
// Overwrite all the updated storage slots (individually)
for accountHash, storage := range dl.storageData {
// If storage didn't exist (or was deleted) in the parent, overwrite blindly
if _, ok := parent.storageData[accountHash]; !ok {
parent.storageData[accountHash] = storage
continue
}
// Storage exists in both parent and child, merge the slots
comboData := parent.storageData[accountHash]
for storageHash, data := range storage {
comboData[storageHash] = data
}
parent.storageData[accountHash] = comboData
}
// Return the combo parent
return &diffLayer{
parent: parent.parent,
origin: parent.origin,
root: dl.root,
destructSet: parent.destructSet,
accountData: parent.accountData,
storageData: parent.storageData,
storageList: make(map[common.Hash][]common.Hash),
diffed: dl.diffed,
memory: parent.memory + dl.memory,
}
}
// AccountList returns a sorted list of all accounts in this difflayer, including
// the deleted ones.
//
// Note, the returned slice is not a copy, so do not modify it.
func (dl *diffLayer) AccountList() []common.Hash {
// If an old list already exists, return it
dl.lock.RLock()
list := dl.accountList
dl.lock.RUnlock()
if list != nil {
return list
}
// No old sorted account list exists, generate a new one
dl.lock.Lock()
defer dl.lock.Unlock()
dl.accountList = make([]common.Hash, 0, len(dl.destructSet)+len(dl.accountData))
for hash := range dl.accountData {
dl.accountList = append(dl.accountList, hash)
}
for hash := range dl.destructSet {
if _, ok := dl.accountData[hash]; !ok {
dl.accountList = append(dl.accountList, hash)
}
}
sort.Sort(hashes(dl.accountList))
return dl.accountList
}
// StorageList returns a sorted list of all storage slot hashes in this difflayer
// for the given account.
//
// Note, the returned slice is not a copy, so do not modify it.
func (dl *diffLayer) StorageList(accountHash common.Hash) []common.Hash {
// If an old list already exists, return it
dl.lock.RLock()
list := dl.storageList[accountHash]
dl.lock.RUnlock()
if list != nil {
return list
}
// No old sorted account list exists, generate a new one
dl.lock.Lock()
defer dl.lock.Unlock()
storageMap := dl.storageData[accountHash]
storageList := make([]common.Hash, 0, len(storageMap))
for k := range storageMap {
storageList = append(storageList, k)
}
sort.Sort(hashes(storageList))
dl.storageList[accountHash] = storageList
return storageList
}

@ -0,0 +1,399 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"math/rand"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
func copyDestructs(destructs map[common.Hash]struct{}) map[common.Hash]struct{} {
copy := make(map[common.Hash]struct{})
for hash := range destructs {
copy[hash] = struct{}{}
}
return copy
}
func copyAccounts(accounts map[common.Hash][]byte) map[common.Hash][]byte {
copy := make(map[common.Hash][]byte)
for hash, blob := range accounts {
copy[hash] = blob
}
return copy
}
func copyStorage(storage map[common.Hash]map[common.Hash][]byte) map[common.Hash]map[common.Hash][]byte {
copy := make(map[common.Hash]map[common.Hash][]byte)
for accHash, slots := range storage {
copy[accHash] = make(map[common.Hash][]byte)
for slotHash, blob := range slots {
copy[accHash][slotHash] = blob
}
}
return copy
}
// TestMergeBasics tests some simple merges
func TestMergeBasics(t *testing.T) {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(4) == 0 {
destructs[h] = struct{}{}
}
if rand.Intn(2) == 0 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child := newDiffLayer(parent, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check account lists
if have, want := len(merged.accountList), 0; have != want {
t.Errorf("accountList wrong: have %v, want %v", have, want)
}
if have, want := len(merged.AccountList()), len(accounts); have != want {
t.Errorf("AccountList() wrong: have %v, want %v", have, want)
}
if have, want := len(merged.accountList), len(accounts); have != want {
t.Errorf("accountList [2] wrong: have %v, want %v", have, want)
}
}
{ // Check account drops
if have, want := len(merged.destructSet), len(destructs); have != want {
t.Errorf("accountDrop wrong: have %v, want %v", have, want)
}
}
{ // Check storage lists
i := 0
for aHash, sMap := range storage {
if have, want := len(merged.storageList), i; have != want {
t.Errorf("[1] storageList wrong: have %v, want %v", have, want)
}
if have, want := len(merged.StorageList(aHash)), len(sMap); have != want {
t.Errorf("[2] StorageList() wrong: have %v, want %v", have, want)
}
if have, want := len(merged.storageList[aHash]), len(sMap); have != want {
t.Errorf("storageList wrong: have %v, want %v", have, want)
}
i++
}
}
}
// TestMergeDelete tests some deletion
func TestMergeDelete(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
h1 := common.HexToHash("0x01")
h2 := common.HexToHash("0x02")
flipDrops := func() map[common.Hash]struct{} {
return map[common.Hash]struct{}{
h2: struct{}{},
}
}
flipAccs := func() map[common.Hash][]byte {
return map[common.Hash][]byte{
h1: randomAccount(),
}
}
flopDrops := func() map[common.Hash]struct{} {
return map[common.Hash]struct{}{
h1: struct{}{},
}
}
flopAccs := func() map[common.Hash][]byte {
return map[common.Hash][]byte{
h2: randomAccount(),
}
}
// Add some flipAccs-flopping layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, flipDrops(), flipAccs(), storage)
child := parent.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
if data, _ := child.Account(h1); data == nil {
t.Errorf("last diff layer: expected %x account to be non-nil", h1)
}
if data, _ := child.Account(h2); data != nil {
t.Errorf("last diff layer: expected %x account to be nil", h2)
}
if _, ok := child.destructSet[h1]; ok {
t.Errorf("last diff layer: expected %x drop to be missing", h1)
}
if _, ok := child.destructSet[h2]; !ok {
t.Errorf("last diff layer: expected %x drop to be present", h1)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
if data, _ := merged.Account(h1); data == nil {
t.Errorf("merged layer: expected %x account to be non-nil", h1)
}
if data, _ := merged.Account(h2); data != nil {
t.Errorf("merged layer: expected %x account to be nil", h2)
}
if _, ok := merged.destructSet[h1]; !ok { // Note, drops stay alive until persisted to disk!
t.Errorf("merged diff layer: expected %x drop to be present", h1)
}
if _, ok := merged.destructSet[h2]; !ok { // Note, drops stay alive until persisted to disk!
t.Errorf("merged diff layer: expected %x drop to be present", h1)
}
// If we add more granular metering of memory, we can enable this again,
// but it's not implemented for now
//if have, want := merged.memory, child.memory; have != want {
// t.Errorf("mem wrong: have %d, want %d", have, want)
//}
}
// This tests that if we create a new account, and set a slot, and then merge
// it, the lists will be correct.
func TestInsertAndMerge(t *testing.T) {
// Fill up a parent
var (
acc = common.HexToHash("0x01")
slot = common.HexToHash("0x02")
parent *diffLayer
child *diffLayer
)
{
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
parent = newDiffLayer(emptyLayer(), common.Hash{}, destructs, accounts, storage)
}
{
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
accounts[acc] = randomAccount()
storage[acc] = make(map[common.Hash][]byte)
storage[acc][slot] = []byte{0x01}
child = newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check that slot value is present
have, _ := merged.Storage(acc, slot)
if want := []byte{0x01}; !bytes.Equal(have, want) {
t.Errorf("merged slot value wrong: have %x, want %x", have, want)
}
}
}
func emptyLayer() *diskLayer {
return &diskLayer{
diskdb: memorydb.New(),
cache: fastcache.New(500 * 1024),
}
}
// BenchmarkSearch checks how long it takes to find a non-existing key
// BenchmarkSearch-6 200000 10481 ns/op (1K per layer)
// BenchmarkSearch-6 200000 10760 ns/op (10K per layer)
// BenchmarkSearch-6 100000 17866 ns/op
//
// BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock()
func BenchmarkSearch(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
for i := 0; i < 10000; i++ {
accounts[randomHash()] = randomAccount()
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
var layer snapshot
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
key := crypto.Keccak256Hash([]byte{0x13, 0x38})
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.AccountRLP(key)
}
}
// BenchmarkSearchSlot checks how long it takes to find a non-existing key
// - Number of layers: 128
// - Each layers contains the account, with a couple of storage slots
// BenchmarkSearchSlot-6 100000 14554 ns/op
// BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex)
// BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic)
// With bloom filter:
// BenchmarkSearchSlot-6 3467835 351 ns/op
func BenchmarkSearchSlot(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
accountKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
storageKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
accountRLP := randomAccount()
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
accounts[accountKey] = accountRLP
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 5; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
var layer snapshot
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Storage(accountKey, storageKey)
}
}
// With accountList and sorting
// BenchmarkFlatten-6 50 29890856 ns/op
//
// Without sorting and tracking accountlist
// BenchmarkFlatten-6 300 5511511 ns/op
func BenchmarkFlatten(b *testing.B) {
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
for i := 0; i < 100; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 20; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StopTimer()
var layer snapshot
layer = emptyLayer()
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.StartTimer()
for i := 1; i < 128; i++ {
dl, ok := layer.(*diffLayer)
if !ok {
break
}
layer = dl.flatten()
}
b.StopTimer()
}
}
// This test writes ~324M of diff layers to disk, spread over
// - 128 individual layers,
// - each with 200 accounts
// - containing 200 slots
//
// BenchmarkJournal-6 1 1471373923 ns/ops
// BenchmarkJournal-6 1 1208083335 ns/op // bufio writer
func BenchmarkJournal(b *testing.B) {
fill := func(parent snapshot) *diffLayer {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
for i := 0; i < 200; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 200; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
}
layer := snapshot(new(diskLayer))
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Journal(new(bytes.Buffer))
}
}

@ -0,0 +1,166 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"sync"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// diskLayer is a low level persistent snapshot built on top of a key-value store.
type diskLayer struct {
diskdb ethdb.KeyValueStore // Key-value store containing the base snapshot
triedb *trie.Database // Trie node cache for reconstuction purposes
cache *fastcache.Cache // Cache to avoid hitting the disk for direct access
root common.Hash // Root hash of the base snapshot
stale bool // Signals that the layer became stale (state progressed)
genMarker []byte // Marker for the state that's indexed during initial layer generation
genPending chan struct{} // Notification channel when generation is done (test synchronicity)
genAbort chan chan *generatorStats // Notification channel to abort generating the snapshot in this layer
lock sync.RWMutex
}
// Root returns root hash for which this snapshot was made.
func (dl *diskLayer) Root() common.Hash {
return dl.root
}
// Parent always returns nil as there's no layer below the disk.
func (dl *diskLayer) Parent() snapshot {
return nil
}
// Stale return whether this layer has become stale (was flattened across) or if
// it's still live.
func (dl *diskLayer) Stale() bool {
dl.lock.RLock()
defer dl.lock.RUnlock()
return dl.stale
}
// Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format.
func (dl *diskLayer) Account(hash common.Hash) (*Account, error) {
data, err := dl.AccountRLP(hash)
if err != nil {
return nil, err
}
if len(data) == 0 { // can be both nil and []byte{}
return nil, nil
}
account := new(Account)
if err := rlp.DecodeBytes(data, account); err != nil {
panic(err)
}
return account, nil
}
// AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format.
func (dl *diskLayer) AccountRLP(hash common.Hash) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.stale {
return nil, ErrSnapshotStale
}
// If the layer is being generated, ensure the requested hash has already been
// covered by the generator.
if dl.genMarker != nil && bytes.Compare(hash[:], dl.genMarker) > 0 {
return nil, ErrNotCoveredYet
}
// If we're in the disk layer, all diff layers missed
snapshotDirtyAccountMissMeter.Mark(1)
// Try to retrieve the account from the memory cache
if blob, found := dl.cache.HasGet(nil, hash[:]); found {
snapshotCleanAccountHitMeter.Mark(1)
snapshotCleanAccountReadMeter.Mark(int64(len(blob)))
return blob, nil
}
// Cache doesn't contain account, pull from disk and cache for later
blob := rawdb.ReadAccountSnapshot(dl.diskdb, hash)
dl.cache.Set(hash[:], blob)
snapshotCleanAccountMissMeter.Mark(1)
if n := len(blob); n > 0 {
snapshotCleanAccountWriteMeter.Mark(int64(n))
} else {
snapshotCleanAccountInexMeter.Mark(1)
}
return blob, nil
}
// Storage directly retrieves the storage data associated with a particular hash,
// within a particular account.
func (dl *diskLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.stale {
return nil, ErrSnapshotStale
}
key := append(accountHash[:], storageHash[:]...)
// If the layer is being generated, ensure the requested hash has already been
// covered by the generator.
if dl.genMarker != nil && bytes.Compare(key, dl.genMarker) > 0 {
return nil, ErrNotCoveredYet
}
// If we're in the disk layer, all diff layers missed
snapshotDirtyStorageMissMeter.Mark(1)
// Try to retrieve the storage slot from the memory cache
if blob, found := dl.cache.HasGet(nil, key); found {
snapshotCleanStorageHitMeter.Mark(1)
snapshotCleanStorageReadMeter.Mark(int64(len(blob)))
return blob, nil
}
// Cache doesn't contain storage slot, pull from disk and cache for later
blob := rawdb.ReadStorageSnapshot(dl.diskdb, accountHash, storageHash)
dl.cache.Set(key, blob)
snapshotCleanStorageMissMeter.Mark(1)
if n := len(blob); n > 0 {
snapshotCleanStorageWriteMeter.Mark(int64(n))
} else {
snapshotCleanStorageInexMeter.Mark(1)
}
return blob, nil
}
// Update creates a new layer on top of the existing snapshot diff tree with
// the specified data items. Note, the maps are retained by the method to avoid
// copying everything.
func (dl *diskLayer) Update(blockHash common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
return newDiffLayer(dl, blockHash, destructs, accounts, storage)
}

@ -0,0 +1,435 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
// reverse reverses the contents of a byte slice. It's used to update random accs
// with deterministic changes.
func reverse(blob []byte) []byte {
res := make([]byte, len(blob))
for i, b := range blob {
res[len(blob)-1-i] = b
}
return res
}
// Tests that merging something into a disk layer persists it into the database
// and invalidates any previously written and cached values.
func TestDiskMerge(t *testing.T) {
// Create some accounts in the disk layer
db := memorydb.New()
var (
accNoModNoCache = common.Hash{0x1}
accNoModCache = common.Hash{0x2}
accModNoCache = common.Hash{0x3}
accModCache = common.Hash{0x4}
accDelNoCache = common.Hash{0x5}
accDelCache = common.Hash{0x6}
conNoModNoCache = common.Hash{0x7}
conNoModNoCacheSlot = common.Hash{0x70}
conNoModCache = common.Hash{0x8}
conNoModCacheSlot = common.Hash{0x80}
conModNoCache = common.Hash{0x9}
conModNoCacheSlot = common.Hash{0x90}
conModCache = common.Hash{0xa}
conModCacheSlot = common.Hash{0xa0}
conDelNoCache = common.Hash{0xb}
conDelNoCacheSlot = common.Hash{0xb0}
conDelCache = common.Hash{0xc}
conDelCacheSlot = common.Hash{0xc0}
conNukeNoCache = common.Hash{0xd}
conNukeNoCacheSlot = common.Hash{0xd0}
conNukeCache = common.Hash{0xe}
conNukeCacheSlot = common.Hash{0xe0}
baseRoot = randomHash()
diffRoot = randomHash()
)
rawdb.WriteAccountSnapshot(db, accNoModNoCache, accNoModNoCache[:])
rawdb.WriteAccountSnapshot(db, accNoModCache, accNoModCache[:])
rawdb.WriteAccountSnapshot(db, accModNoCache, accModNoCache[:])
rawdb.WriteAccountSnapshot(db, accModCache, accModCache[:])
rawdb.WriteAccountSnapshot(db, accDelNoCache, accDelNoCache[:])
rawdb.WriteAccountSnapshot(db, accDelCache, accDelCache[:])
rawdb.WriteAccountSnapshot(db, conNoModNoCache, conNoModNoCache[:])
rawdb.WriteStorageSnapshot(db, conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conNoModCache, conNoModCache[:])
rawdb.WriteStorageSnapshot(db, conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conModNoCache, conModNoCache[:])
rawdb.WriteStorageSnapshot(db, conModNoCache, conModNoCacheSlot, conModNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conModCache, conModCache[:])
rawdb.WriteStorageSnapshot(db, conModCache, conModCacheSlot, conModCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conDelNoCache, conDelNoCache[:])
rawdb.WriteStorageSnapshot(db, conDelNoCache, conDelNoCacheSlot, conDelNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conDelCache, conDelCache[:])
rawdb.WriteStorageSnapshot(db, conDelCache, conDelCacheSlot, conDelCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conNukeNoCache, conNukeNoCache[:])
rawdb.WriteStorageSnapshot(db, conNukeNoCache, conNukeNoCacheSlot, conNukeNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conNukeCache, conNukeCache[:])
rawdb.WriteStorageSnapshot(db, conNukeCache, conNukeCacheSlot, conNukeCacheSlot[:])
rawdb.WriteSnapshotRoot(db, baseRoot)
// Create a disk layer based on the above and cache in some data
snaps := &Tree{
layers: map[common.Hash]snapshot{
baseRoot: &diskLayer{
diskdb: db,
cache: fastcache.New(500 * 1024),
root: baseRoot,
},
},
}
base := snaps.Snapshot(baseRoot)
base.AccountRLP(accNoModCache)
base.AccountRLP(accModCache)
base.AccountRLP(accDelCache)
base.Storage(conNoModCache, conNoModCacheSlot)
base.Storage(conModCache, conModCacheSlot)
base.Storage(conDelCache, conDelCacheSlot)
base.Storage(conNukeCache, conNukeCacheSlot)
// Modify or delete some accounts, flatten everything onto disk
if err := snaps.Update(diffRoot, baseRoot, map[common.Hash]struct{}{
accDelNoCache: struct{}{},
accDelCache: struct{}{},
conNukeNoCache: struct{}{},
conNukeCache: struct{}{},
}, map[common.Hash][]byte{
accModNoCache: reverse(accModNoCache[:]),
accModCache: reverse(accModCache[:]),
}, map[common.Hash]map[common.Hash][]byte{
conModNoCache: {conModNoCacheSlot: reverse(conModNoCacheSlot[:])},
conModCache: {conModCacheSlot: reverse(conModCacheSlot[:])},
conDelNoCache: {conDelNoCacheSlot: nil},
conDelCache: {conDelCacheSlot: nil},
}); err != nil {
t.Fatalf("failed to update snapshot tree: %v", err)
}
if err := snaps.Cap(diffRoot, 0); err != nil {
t.Fatalf("failed to flatten snapshot tree: %v", err)
}
// Retrieve all the data through the disk layer and validate it
base = snaps.Snapshot(diffRoot)
if _, ok := base.(*diskLayer); !ok {
t.Fatalf("update not flattend into the disk layer")
}
// assertAccount ensures that an account matches the given blob.
assertAccount := func(account common.Hash, data []byte) {
t.Helper()
blob, err := base.AccountRLP(account)
if err != nil {
t.Errorf("account access (%x) failed: %v", account, err)
} else if !bytes.Equal(blob, data) {
t.Errorf("account access (%x) mismatch: have %x, want %x", account, blob, data)
}
}
assertAccount(accNoModNoCache, accNoModNoCache[:])
assertAccount(accNoModCache, accNoModCache[:])
assertAccount(accModNoCache, reverse(accModNoCache[:]))
assertAccount(accModCache, reverse(accModCache[:]))
assertAccount(accDelNoCache, nil)
assertAccount(accDelCache, nil)
// assertStorage ensures that a storage slot matches the given blob.
assertStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
blob, err := base.Storage(account, slot)
if err != nil {
t.Errorf("storage access (%x:%x) failed: %v", account, slot, err)
} else if !bytes.Equal(blob, data) {
t.Errorf("storage access (%x:%x) mismatch: have %x, want %x", account, slot, blob, data)
}
}
assertStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertStorage(conDelCache, conDelCacheSlot, nil)
assertStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertStorage(conNukeCache, conNukeCacheSlot, nil)
// Retrieve all the data directly from the database and validate it
// assertDatabaseAccount ensures that an account from the database matches the given blob.
assertDatabaseAccount := func(account common.Hash, data []byte) {
t.Helper()
if blob := rawdb.ReadAccountSnapshot(db, account); !bytes.Equal(blob, data) {
t.Errorf("account database access (%x) mismatch: have %x, want %x", account, blob, data)
}
}
assertDatabaseAccount(accNoModNoCache, accNoModNoCache[:])
assertDatabaseAccount(accNoModCache, accNoModCache[:])
assertDatabaseAccount(accModNoCache, reverse(accModNoCache[:]))
assertDatabaseAccount(accModCache, reverse(accModCache[:]))
assertDatabaseAccount(accDelNoCache, nil)
assertDatabaseAccount(accDelCache, nil)
// assertDatabaseStorage ensures that a storage slot from the database matches the given blob.
assertDatabaseStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
if blob := rawdb.ReadStorageSnapshot(db, account, slot); !bytes.Equal(blob, data) {
t.Errorf("storage database access (%x:%x) mismatch: have %x, want %x", account, slot, blob, data)
}
}
assertDatabaseStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertDatabaseStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertDatabaseStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertDatabaseStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertDatabaseStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertDatabaseStorage(conDelCache, conDelCacheSlot, nil)
assertDatabaseStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertDatabaseStorage(conNukeCache, conNukeCacheSlot, nil)
}
// Tests that merging something into a disk layer persists it into the database
// and invalidates any previously written and cached values, discarding anything
// after the in-progress generation marker.
func TestDiskPartialMerge(t *testing.T) {
// Iterate the test a few times to ensure we pick various internal orderings
// for the data slots as well as the progress marker.
for i := 0; i < 1024; i++ {
// Create some accounts in the disk layer
db := memorydb.New()
var (
accNoModNoCache = randomHash()
accNoModCache = randomHash()
accModNoCache = randomHash()
accModCache = randomHash()
accDelNoCache = randomHash()
accDelCache = randomHash()
conNoModNoCache = randomHash()
conNoModNoCacheSlot = randomHash()
conNoModCache = randomHash()
conNoModCacheSlot = randomHash()
conModNoCache = randomHash()
conModNoCacheSlot = randomHash()
conModCache = randomHash()
conModCacheSlot = randomHash()
conDelNoCache = randomHash()
conDelNoCacheSlot = randomHash()
conDelCache = randomHash()
conDelCacheSlot = randomHash()
conNukeNoCache = randomHash()
conNukeNoCacheSlot = randomHash()
conNukeCache = randomHash()
conNukeCacheSlot = randomHash()
baseRoot = randomHash()
diffRoot = randomHash()
genMarker = append(randomHash().Bytes(), randomHash().Bytes()...)
)
// insertAccount injects an account into the database if it's after the
// generator marker, drops the op otherwise. This is needed to seed the
// database with a valid starting snapshot.
insertAccount := func(account common.Hash, data []byte) {
if bytes.Compare(account[:], genMarker) <= 0 {
rawdb.WriteAccountSnapshot(db, account, data[:])
}
}
insertAccount(accNoModNoCache, accNoModNoCache[:])
insertAccount(accNoModCache, accNoModCache[:])
insertAccount(accModNoCache, accModNoCache[:])
insertAccount(accModCache, accModCache[:])
insertAccount(accDelNoCache, accDelNoCache[:])
insertAccount(accDelCache, accDelCache[:])
// insertStorage injects a storage slot into the database if it's after
// the generator marker, drops the op otherwise. This is needed to seed
// the database with a valid starting snapshot.
insertStorage := func(account common.Hash, slot common.Hash, data []byte) {
if bytes.Compare(append(account[:], slot[:]...), genMarker) <= 0 {
rawdb.WriteStorageSnapshot(db, account, slot, data[:])
}
}
insertAccount(conNoModNoCache, conNoModNoCache[:])
insertStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
insertAccount(conNoModCache, conNoModCache[:])
insertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
insertAccount(conModNoCache, conModNoCache[:])
insertStorage(conModNoCache, conModNoCacheSlot, conModNoCacheSlot[:])
insertAccount(conModCache, conModCache[:])
insertStorage(conModCache, conModCacheSlot, conModCacheSlot[:])
insertAccount(conDelNoCache, conDelNoCache[:])
insertStorage(conDelNoCache, conDelNoCacheSlot, conDelNoCacheSlot[:])
insertAccount(conDelCache, conDelCache[:])
insertStorage(conDelCache, conDelCacheSlot, conDelCacheSlot[:])
insertAccount(conNukeNoCache, conNukeNoCache[:])
insertStorage(conNukeNoCache, conNukeNoCacheSlot, conNukeNoCacheSlot[:])
insertAccount(conNukeCache, conNukeCache[:])
insertStorage(conNukeCache, conNukeCacheSlot, conNukeCacheSlot[:])
rawdb.WriteSnapshotRoot(db, baseRoot)
// Create a disk layer based on the above using a random progress marker
// and cache in some data.
snaps := &Tree{
layers: map[common.Hash]snapshot{
baseRoot: &diskLayer{
diskdb: db,
cache: fastcache.New(500 * 1024),
root: baseRoot,
},
},
}
snaps.layers[baseRoot].(*diskLayer).genMarker = genMarker
base := snaps.Snapshot(baseRoot)
// assertAccount ensures that an account matches the given blob if it's
// already covered by the disk snapshot, and errors out otherwise.
assertAccount := func(account common.Hash, data []byte) {
t.Helper()
blob, err := base.AccountRLP(account)
if bytes.Compare(account[:], genMarker) > 0 && err != ErrNotCoveredYet {
t.Fatalf("test %d: post-marker (%x) account access (%x) succeeded: %x", i, genMarker, account, blob)
}
if bytes.Compare(account[:], genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) account access (%x) mismatch: have %x, want %x", i, genMarker, account, blob, data)
}
}
assertAccount(accNoModCache, accNoModCache[:])
assertAccount(accModCache, accModCache[:])
assertAccount(accDelCache, accDelCache[:])
// assertStorage ensures that a storage slot matches the given blob if
// it's already covered by the disk snapshot, and errors out otherwise.
assertStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
blob, err := base.Storage(account, slot)
if bytes.Compare(append(account[:], slot[:]...), genMarker) > 0 && err != ErrNotCoveredYet {
t.Fatalf("test %d: post-marker (%x) storage access (%x:%x) succeeded: %x", i, genMarker, account, slot, blob)
}
if bytes.Compare(append(account[:], slot[:]...), genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) storage access (%x:%x) mismatch: have %x, want %x", i, genMarker, account, slot, blob, data)
}
}
assertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertStorage(conModCache, conModCacheSlot, conModCacheSlot[:])
assertStorage(conDelCache, conDelCacheSlot, conDelCacheSlot[:])
assertStorage(conNukeCache, conNukeCacheSlot, conNukeCacheSlot[:])
// Modify or delete some accounts, flatten everything onto disk
if err := snaps.Update(diffRoot, baseRoot, map[common.Hash]struct{}{
accDelNoCache: struct{}{},
accDelCache: struct{}{},
conNukeNoCache: struct{}{},
conNukeCache: struct{}{},
}, map[common.Hash][]byte{
accModNoCache: reverse(accModNoCache[:]),
accModCache: reverse(accModCache[:]),
}, map[common.Hash]map[common.Hash][]byte{
conModNoCache: {conModNoCacheSlot: reverse(conModNoCacheSlot[:])},
conModCache: {conModCacheSlot: reverse(conModCacheSlot[:])},
conDelNoCache: {conDelNoCacheSlot: nil},
conDelCache: {conDelCacheSlot: nil},
}); err != nil {
t.Fatalf("test %d: failed to update snapshot tree: %v", i, err)
}
if err := snaps.Cap(diffRoot, 0); err != nil {
t.Fatalf("test %d: failed to flatten snapshot tree: %v", i, err)
}
// Retrieve all the data through the disk layer and validate it
base = snaps.Snapshot(diffRoot)
if _, ok := base.(*diskLayer); !ok {
t.Fatalf("test %d: update not flattend into the disk layer", i)
}
assertAccount(accNoModNoCache, accNoModNoCache[:])
assertAccount(accNoModCache, accNoModCache[:])
assertAccount(accModNoCache, reverse(accModNoCache[:]))
assertAccount(accModCache, reverse(accModCache[:]))
assertAccount(accDelNoCache, nil)
assertAccount(accDelCache, nil)
assertStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertStorage(conDelCache, conDelCacheSlot, nil)
assertStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertStorage(conNukeCache, conNukeCacheSlot, nil)
// Retrieve all the data directly from the database and validate it
// assertDatabaseAccount ensures that an account inside the database matches
// the given blob if it's already covered by the disk snapshot, and does not
// exist otherwise.
assertDatabaseAccount := func(account common.Hash, data []byte) {
t.Helper()
blob := rawdb.ReadAccountSnapshot(db, account)
if bytes.Compare(account[:], genMarker) > 0 && blob != nil {
t.Fatalf("test %d: post-marker (%x) account database access (%x) succeeded: %x", i, genMarker, account, blob)
}
if bytes.Compare(account[:], genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) account database access (%x) mismatch: have %x, want %x", i, genMarker, account, blob, data)
}
}
assertDatabaseAccount(accNoModNoCache, accNoModNoCache[:])
assertDatabaseAccount(accNoModCache, accNoModCache[:])
assertDatabaseAccount(accModNoCache, reverse(accModNoCache[:]))
assertDatabaseAccount(accModCache, reverse(accModCache[:]))
assertDatabaseAccount(accDelNoCache, nil)
assertDatabaseAccount(accDelCache, nil)
// assertDatabaseStorage ensures that a storage slot inside the database
// matches the given blob if it's already covered by the disk snapshot,
// and does not exist otherwise.
assertDatabaseStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
blob := rawdb.ReadStorageSnapshot(db, account, slot)
if bytes.Compare(append(account[:], slot[:]...), genMarker) > 0 && blob != nil {
t.Fatalf("test %d: post-marker (%x) storage database access (%x:%x) succeeded: %x", i, genMarker, account, slot, blob)
}
if bytes.Compare(append(account[:], slot[:]...), genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) storage database access (%x:%x) mismatch: have %x, want %x", i, genMarker, account, slot, blob, data)
}
}
assertDatabaseStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertDatabaseStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertDatabaseStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertDatabaseStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertDatabaseStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertDatabaseStorage(conDelCache, conDelCacheSlot, nil)
assertDatabaseStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertDatabaseStorage(conNukeCache, conNukeCacheSlot, nil)
}
}
// Tests that merging something into a disk layer persists it into the database
// and invalidates any previously written and cached values, discarding anything
// after the in-progress generation marker.
//
// This test case is a tiny specialized case of TestDiskPartialMerge, which tests
// some very specific cornercases that random tests won't ever trigger.
func TestDiskMidAccountPartialMerge(t *testing.T) {
}

@ -0,0 +1,262 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"encoding/binary"
"math/big"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
var (
// emptyRoot is the known root hash of an empty trie.
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
// emptyCode is the known hash of the empty EVM bytecode.
emptyCode = crypto.Keccak256Hash(nil)
)
// generatorStats is a collection of statistics gathered by the snapshot generator
// for logging purposes.
type generatorStats struct {
wiping chan struct{} // Notification channel if wiping is in progress
origin uint64 // Origin prefix where generation started
start time.Time // Timestamp when generation started
accounts uint64 // Number of accounts indexed
slots uint64 // Number of storage slots indexed
storage common.StorageSize // Account and storage slot size
}
// Log creates an contextual log with the given message and the context pulled
// from the internally maintained statistics.
func (gs *generatorStats) Log(msg string, marker []byte) {
var ctx []interface{}
// Figure out whether we're after or within an account
switch len(marker) {
case common.HashLength:
ctx = append(ctx, []interface{}{"at", common.BytesToHash(marker)}...)
case 2 * common.HashLength:
ctx = append(ctx, []interface{}{
"in", common.BytesToHash(marker[:common.HashLength]),
"at", common.BytesToHash(marker[common.HashLength:]),
}...)
}
// Add the usual measurements
ctx = append(ctx, []interface{}{
"accounts", gs.accounts,
"slots", gs.slots,
"storage", gs.storage,
"elapsed", common.PrettyDuration(time.Since(gs.start)),
}...)
// Calculate the estimated indexing time based on current stats
if len(marker) > 0 {
if done := binary.BigEndian.Uint64(marker[:8]) - gs.origin; done > 0 {
left := math.MaxUint64 - binary.BigEndian.Uint64(marker[:8])
speed := done/uint64(time.Since(gs.start)/time.Millisecond+1) + 1 // +1s to avoid division by zero
ctx = append(ctx, []interface{}{
"eta", common.PrettyDuration(time.Duration(left/speed) * time.Millisecond),
}...)
}
}
log.Info(msg, ctx...)
}
// generateSnapshot regenerates a brand new snapshot based on an existing state
// database and head block asynchronously. The snapshot is returned immediately
// and generation is continued in the background until done.
func generateSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int, root common.Hash, wiper chan struct{}) *diskLayer {
// Wipe any previously existing snapshot from the database if no wiper is
// currently in progress.
if wiper == nil {
wiper = wipeSnapshot(diskdb, true)
}
// Create a new disk layer with an initialized state marker at zero
rawdb.WriteSnapshotRoot(diskdb, root)
base := &diskLayer{
diskdb: diskdb,
triedb: triedb,
root: root,
cache: fastcache.New(cache * 1024 * 1024),
genMarker: []byte{}, // Initialized but empty!
genPending: make(chan struct{}),
genAbort: make(chan chan *generatorStats),
}
go base.generate(&generatorStats{wiping: wiper, start: time.Now()})
return base
}
// generate is a background thread that iterates over the state and storage tries,
// constructing the state snapshot. All the arguments are purely for statistics
// gethering and logging, since the method surfs the blocks as they arrive, often
// being restarted.
func (dl *diskLayer) generate(stats *generatorStats) {
// If a database wipe is in operation, wait until it's done
if stats.wiping != nil {
stats.Log("Wiper running, state snapshotting paused", dl.genMarker)
select {
// If wiper is done, resume normal mode of operation
case <-stats.wiping:
stats.wiping = nil
stats.start = time.Now()
// If generator was aboted during wipe, return
case abort := <-dl.genAbort:
abort <- stats
return
}
}
// Create an account and state iterator pointing to the current generator marker
accTrie, err := trie.NewSecure(dl.root, dl.triedb)
if err != nil {
// The account trie is missing (GC), surf the chain until one becomes available
stats.Log("Trie missing, state snapshotting paused", dl.genMarker)
abort := <-dl.genAbort
abort <- stats
return
}
stats.Log("Resuming state snapshot generation", dl.genMarker)
var accMarker []byte
if len(dl.genMarker) > 0 { // []byte{} is the start, use nil for that
accMarker = dl.genMarker[:common.HashLength]
}
accIt := trie.NewIterator(accTrie.NodeIterator(accMarker))
batch := dl.diskdb.NewBatch()
// Iterate from the previous marker and continue generating the state snapshot
logged := time.Now()
for accIt.Next() {
// Retrieve the current account and flatten it into the internal format
accountHash := common.BytesToHash(accIt.Key)
var acc struct {
Nonce uint64
Balance *big.Int
Root common.Hash
CodeHash []byte
}
if err := rlp.DecodeBytes(accIt.Value, &acc); err != nil {
log.Crit("Invalid account encountered during snapshot creation", "err", err)
}
data := AccountRLP(acc.Nonce, acc.Balance, acc.Root, acc.CodeHash)
// If the account is not yet in-progress, write it out
if accMarker == nil || !bytes.Equal(accountHash[:], accMarker) {
rawdb.WriteAccountSnapshot(batch, accountHash, data)
stats.storage += common.StorageSize(1 + common.HashLength + len(data))
stats.accounts++
}
// If we've exceeded our batch allowance or termination was requested, flush to disk
var abort chan *generatorStats
select {
case abort = <-dl.genAbort:
default:
}
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Only write and set the marker if we actually did something useful
if batch.ValueSize() > 0 {
batch.Write()
batch.Reset()
dl.lock.Lock()
dl.genMarker = accountHash[:]
dl.lock.Unlock()
}
if abort != nil {
stats.Log("Aborting state snapshot generation", accountHash[:])
abort <- stats
return
}
}
// If the account is in-progress, continue where we left off (otherwise iterate all)
if acc.Root != emptyRoot {
storeTrie, err := trie.NewSecure(acc.Root, dl.triedb)
if err != nil {
log.Crit("Storage trie inaccessible for snapshot generation", "err", err)
}
var storeMarker []byte
if accMarker != nil && bytes.Equal(accountHash[:], accMarker) && len(dl.genMarker) > common.HashLength {
storeMarker = dl.genMarker[common.HashLength:]
}
storeIt := trie.NewIterator(storeTrie.NodeIterator(storeMarker))
for storeIt.Next() {
rawdb.WriteStorageSnapshot(batch, accountHash, common.BytesToHash(storeIt.Key), storeIt.Value)
stats.storage += common.StorageSize(1 + 2*common.HashLength + len(storeIt.Value))
stats.slots++
// If we've exceeded our batch allowance or termination was requested, flush to disk
var abort chan *generatorStats
select {
case abort = <-dl.genAbort:
default:
}
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Only write and set the marker if we actually did something useful
if batch.ValueSize() > 0 {
batch.Write()
batch.Reset()
dl.lock.Lock()
dl.genMarker = append(accountHash[:], storeIt.Key...)
dl.lock.Unlock()
}
if abort != nil {
stats.Log("Aborting state snapshot generation", append(accountHash[:], storeIt.Key...))
abort <- stats
return
}
}
}
}
if time.Since(logged) > 8*time.Second {
stats.Log("Generating state snapshot", accIt.Key)
logged = time.Now()
}
// Some account processed, unmark the marker
accMarker = nil
}
// Snapshot fully generated, set the marker to nil
if batch.ValueSize() > 0 {
batch.Write()
}
log.Info("Generated state snapshot", "accounts", stats.accounts, "slots", stats.slots,
"storage", stats.storage, "elapsed", common.PrettyDuration(time.Since(stats.start)))
dl.lock.Lock()
dl.genMarker = nil
close(dl.genPending)
dl.lock.Unlock()
// Someone will be looking for us, wait it out
abort := <-dl.genAbort
abort <- nil
}

@ -0,0 +1,204 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"fmt"
"sort"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
)
// AccountIterator is an iterator to step over all the accounts in a snapshot,
// which may or may npt be composed of multiple layers.
type AccountIterator interface {
// Next steps the iterator forward one element, returning false if exhausted,
// or an error if iteration failed for some reason (e.g. root being iterated
// becomes stale and garbage collected).
Next() bool
// Error returns any failure that occurred during iteration, which might have
// caused a premature iteration exit (e.g. snapshot stack becoming stale).
Error() error
// Hash returns the hash of the account the iterator is currently at.
Hash() common.Hash
// Account returns the RLP encoded slim account the iterator is currently at.
// An error will be returned if the iterator becomes invalid (e.g. snaph
Account() []byte
// Release releases associated resources. Release should always succeed and
// can be called multiple times without causing error.
Release()
}
// diffAccountIterator is an account iterator that steps over the accounts (both
// live and deleted) contained within a single diff layer. Higher order iterators
// will use the deleted accounts to skip deeper iterators.
type diffAccountIterator struct {
// curHash is the current hash the iterator is positioned on. The field is
// explicitly tracked since the referenced diff layer might go stale after
// the iterator was positioned and we don't want to fail accessing the old
// hash as long as the iterator is not touched any more.
curHash common.Hash
layer *diffLayer // Live layer to retrieve values from
keys []common.Hash // Keys left in the layer to iterate
fail error // Any failures encountered (stale)
}
// AccountIterator creates an account iterator over a single diff layer.
func (dl *diffLayer) AccountIterator(seek common.Hash) AccountIterator {
// Seek out the requested starting account
hashes := dl.AccountList()
index := sort.Search(len(hashes), func(i int) bool {
return bytes.Compare(seek[:], hashes[i][:]) < 0
})
// Assemble and returned the already seeked iterator
return &diffAccountIterator{
layer: dl,
keys: hashes[index:],
}
}
// Next steps the iterator forward one element, returning false if exhausted.
func (it *diffAccountIterator) Next() bool {
// If the iterator was already stale, consider it a programmer error. Although
// we could just return false here, triggering this path would probably mean
// somebody forgot to check for Error, so lets blow up instead of undefined
// behavior that's hard to debug.
if it.fail != nil {
panic(fmt.Sprintf("called Next of failed iterator: %v", it.fail))
}
// Stop iterating if all keys were exhausted
if len(it.keys) == 0 {
return false
}
if it.layer.Stale() {
it.fail, it.keys = ErrSnapshotStale, nil
return false
}
// Iterator seems to be still alive, retrieve and cache the live hash
it.curHash = it.keys[0]
// key cached, shift the iterator and notify the user of success
it.keys = it.keys[1:]
return true
}
// Error returns any failure that occurred during iteration, which might have
// caused a premature iteration exit (e.g. snapshot stack becoming stale).
func (it *diffAccountIterator) Error() error {
return it.fail
}
// Hash returns the hash of the account the iterator is currently at.
func (it *diffAccountIterator) Hash() common.Hash {
return it.curHash
}
// Account returns the RLP encoded slim account the iterator is currently at.
// This method may _fail_, if the underlying layer has been flattened between
// the call to Next and Acccount. That type of error will set it.Err.
// This method assumes that flattening does not delete elements from
// the accountdata mapping (writing nil into it is fine though), and will panic
// if elements have been deleted.
func (it *diffAccountIterator) Account() []byte {
it.layer.lock.RLock()
blob, ok := it.layer.accountData[it.curHash]
if !ok {
if _, ok := it.layer.destructSet[it.curHash]; ok {
return nil
}
panic(fmt.Sprintf("iterator referenced non-existent account: %x", it.curHash))
}
it.layer.lock.RUnlock()
if it.layer.Stale() {
it.fail, it.keys = ErrSnapshotStale, nil
}
return blob
}
// Release is a noop for diff account iterators as there are no held resources.
func (it *diffAccountIterator) Release() {}
// diskAccountIterator is an account iterator that steps over the live accounts
// contained within a disk layer.
type diskAccountIterator struct {
layer *diskLayer
it ethdb.Iterator
}
// AccountIterator creates an account iterator over a disk layer.
func (dl *diskLayer) AccountIterator(seek common.Hash) AccountIterator {
// TODO: Fix seek position, or remove seek parameter
return &diskAccountIterator{
layer: dl,
it: dl.diskdb.NewIteratorWithPrefix(rawdb.SnapshotAccountPrefix),
}
}
// Next steps the iterator forward one element, returning false if exhausted.
func (it *diskAccountIterator) Next() bool {
// If the iterator was already exhausted, don't bother
if it.it == nil {
return false
}
// Try to advance the iterator and release it if we reached the end
for {
if !it.it.Next() || !bytes.HasPrefix(it.it.Key(), rawdb.SnapshotAccountPrefix) {
it.it.Release()
it.it = nil
return false
}
if len(it.it.Key()) == len(rawdb.SnapshotAccountPrefix)+common.HashLength {
break
}
}
return true
}
// Error returns any failure that occurred during iteration, which might have
// caused a premature iteration exit (e.g. snapshot stack becoming stale).
//
// A diff layer is immutable after creation content wise and can always be fully
// iterated without error, so this method always returns nil.
func (it *diskAccountIterator) Error() error {
return it.it.Error()
}
// Hash returns the hash of the account the iterator is currently at.
func (it *diskAccountIterator) Hash() common.Hash {
return common.BytesToHash(it.it.Key())
}
// Account returns the RLP encoded slim account the iterator is currently at.
func (it *diskAccountIterator) Account() []byte {
return it.it.Value()
}
// Release releases the database snapshot held during iteration.
func (it *diskAccountIterator) Release() {
// The iterator is auto-released on exhaustion, so make sure it's still alive
if it.it != nil {
it.it.Release()
it.it = nil
}
}

@ -0,0 +1,115 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"github.com/ethereum/go-ethereum/common"
)
// binaryAccountIterator is a simplistic iterator to step over the accounts in
// a snapshot, which may or may npt be composed of multiple layers. Performance
// wise this iterator is slow, it's meant for cross validating the fast one,
type binaryAccountIterator struct {
a *diffAccountIterator
b AccountIterator
aDone bool
bDone bool
k common.Hash
fail error
}
// newBinaryAccountIterator creates a simplistic account iterator to step over
// all the accounts in a slow, but eaily verifiable way.
func (dl *diffLayer) newBinaryAccountIterator() AccountIterator {
parent, ok := dl.parent.(*diffLayer)
if !ok {
// parent is the disk layer
return dl.AccountIterator(common.Hash{})
}
l := &binaryAccountIterator{
a: dl.AccountIterator(common.Hash{}).(*diffAccountIterator),
b: parent.newBinaryAccountIterator(),
}
l.aDone = !l.a.Next()
l.bDone = !l.b.Next()
return l
}
// Next steps the iterator forward one element, returning false if exhausted,
// or an error if iteration failed for some reason (e.g. root being iterated
// becomes stale and garbage collected).
func (it *binaryAccountIterator) Next() bool {
if it.aDone && it.bDone {
return false
}
nextB := it.b.Hash()
first:
nextA := it.a.Hash()
if it.aDone {
it.bDone = !it.b.Next()
it.k = nextB
return true
}
if it.bDone {
it.aDone = !it.a.Next()
it.k = nextA
return true
}
if diff := bytes.Compare(nextA[:], nextB[:]); diff < 0 {
it.aDone = !it.a.Next()
it.k = nextA
return true
} else if diff == 0 {
// Now we need to advance one of them
it.aDone = !it.a.Next()
goto first
}
it.bDone = !it.b.Next()
it.k = nextB
return true
}
// Error returns any failure that occurred during iteration, which might have
// caused a premature iteration exit (e.g. snapshot stack becoming stale).
func (it *binaryAccountIterator) Error() error {
return it.fail
}
// Hash returns the hash of the account the iterator is currently at.
func (it *binaryAccountIterator) Hash() common.Hash {
return it.k
}
// Account returns the RLP encoded slim account the iterator is currently at, or
// nil if the iterated snapshot stack became stale (you can check Error after
// to see if it failed or not).
func (it *binaryAccountIterator) Account() []byte {
blob, err := it.a.layer.AccountRLP(it.k)
if err != nil {
it.fail = err
return nil
}
return blob
}
// Release recursively releases all the iterators in the stack.
func (it *binaryAccountIterator) Release() {
it.a.Release()
it.b.Release()
}

@ -0,0 +1,302 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"fmt"
"sort"
"github.com/ethereum/go-ethereum/common"
)
// weightedAccountIterator is an account iterator with an assigned weight. It is
// used to prioritise which account is the correct one if multiple iterators find
// the same one (modified in multiple consecutive blocks).
type weightedAccountIterator struct {
it AccountIterator
priority int
}
// weightedAccountIterators is a set of iterators implementing the sort.Interface.
type weightedAccountIterators []*weightedAccountIterator
// Len implements sort.Interface, returning the number of active iterators.
func (its weightedAccountIterators) Len() int { return len(its) }
// Less implements sort.Interface, returning which of two iterators in the stack
// is before the other.
func (its weightedAccountIterators) Less(i, j int) bool {
// Order the iterators primarily by the account hashes
hashI := its[i].it.Hash()
hashJ := its[j].it.Hash()
switch bytes.Compare(hashI[:], hashJ[:]) {
case -1:
return true
case 1:
return false
}
// Same account in multiple layers, split by priority
return its[i].priority < its[j].priority
}
// Swap implements sort.Interface, swapping two entries in the iterator stack.
func (its weightedAccountIterators) Swap(i, j int) {
its[i], its[j] = its[j], its[i]
}
// fastAccountIterator is a more optimized multi-layer iterator which maintains a
// direct mapping of all iterators leading down to the bottom layer.
type fastAccountIterator struct {
tree *Tree // Snapshot tree to reinitialize stale sub-iterators with
root common.Hash // Root hash to reinitialize stale sub-iterators through
curAccount []byte
iterators weightedAccountIterators
initiated bool
fail error
}
// newFastAccountIterator creates a new hierarhical account iterator with one
// element per diff layer. The returned combo iterator can be used to walk over
// the entire snapshot diff stack simultaneously.
func newFastAccountIterator(tree *Tree, root common.Hash, seek common.Hash) (AccountIterator, error) {
snap := tree.Snapshot(root)
if snap == nil {
return nil, fmt.Errorf("unknown snapshot: %x", root)
}
fi := &fastAccountIterator{
tree: tree,
root: root,
}
current := snap.(snapshot)
for depth := 0; current != nil; depth++ {
fi.iterators = append(fi.iterators, &weightedAccountIterator{
it: current.AccountIterator(seek),
priority: depth,
})
current = current.Parent()
}
fi.init()
return fi, nil
}
// init walks over all the iterators and resolves any clashes between them, after
// which it prepares the stack for step-by-step iteration.
func (fi *fastAccountIterator) init() {
// Track which account hashes are iterators positioned on
var positioned = make(map[common.Hash]int)
// Position all iterators and track how many remain live
for i := 0; i < len(fi.iterators); i++ {
// Retrieve the first element and if it clashes with a previous iterator,
// advance either the current one or the old one. Repeat until nothing is
// clashing any more.
it := fi.iterators[i]
for {
// If the iterator is exhausted, drop it off the end
if !it.it.Next() {
it.it.Release()
last := len(fi.iterators) - 1
fi.iterators[i] = fi.iterators[last]
fi.iterators[last] = nil
fi.iterators = fi.iterators[:last]
i--
break
}
// The iterator is still alive, check for collisions with previous ones
hash := it.it.Hash()
if other, exist := positioned[hash]; !exist {
positioned[hash] = i
break
} else {
// Iterators collide, one needs to be progressed, use priority to
// determine which.
//
// This whole else-block can be avoided, if we instead
// do an initial priority-sort of the iterators. If we do that,
// then we'll only wind up here if a lower-priority (preferred) iterator
// has the same value, and then we will always just continue.
// However, it costs an extra sort, so it's probably not better
if fi.iterators[other].priority < it.priority {
// The 'it' should be progressed
continue
} else {
// The 'other' should be progressed, swap them
it = fi.iterators[other]
fi.iterators[other], fi.iterators[i] = fi.iterators[i], fi.iterators[other]
continue
}
}
}
}
// Re-sort the entire list
sort.Sort(fi.iterators)
fi.initiated = false
}
// Next steps the iterator forward one element, returning false if exhausted.
func (fi *fastAccountIterator) Next() bool {
if len(fi.iterators) == 0 {
return false
}
if !fi.initiated {
// Don't forward first time -- we had to 'Next' once in order to
// do the sorting already
fi.initiated = true
fi.curAccount = fi.iterators[0].it.Account()
if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
fi.fail = innerErr
return false
}
if fi.curAccount != nil {
return true
}
// Implicit else: we've hit a nil-account, and need to fall through to the
// loop below to land on something non-nil
}
// If an account is deleted in one of the layers, the key will still be there,
// but the actual value will be nil. However, the iterator should not
// export nil-values (but instead simply omit the key), so we need to loop
// here until we either
// - get a non-nil value,
// - hit an error,
// - or exhaust the iterator
for {
if !fi.next(0) {
return false // exhausted
}
fi.curAccount = fi.iterators[0].it.Account()
if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
fi.fail = innerErr
return false // error
}
if fi.curAccount != nil {
break // non-nil value found
}
}
return true
}
// next handles the next operation internally and should be invoked when we know
// that two elements in the list may have the same value.
//
// For example, if the iterated hashes become [2,3,5,5,8,9,10], then we should
// invoke next(3), which will call Next on elem 3 (the second '5') and will
// cascade along the list, applying the same operation if needed.
func (fi *fastAccountIterator) next(idx int) bool {
// If this particular iterator got exhausted, remove it and return true (the
// next one is surely not exhausted yet, otherwise it would have been removed
// already).
if it := fi.iterators[idx].it; !it.Next() {
it.Release()
fi.iterators = append(fi.iterators[:idx], fi.iterators[idx+1:]...)
return len(fi.iterators) > 0
}
// If there's noone left to cascade into, return
if idx == len(fi.iterators)-1 {
return true
}
// We next-ed the iterator at 'idx', now we may have to re-sort that element
var (
cur, next = fi.iterators[idx], fi.iterators[idx+1]
curHash, nextHash = cur.it.Hash(), next.it.Hash()
)
if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
// It is still in correct place
return true
} else if diff == 0 && cur.priority < next.priority {
// So still in correct place, but we need to iterate on the next
fi.next(idx + 1)
return true
}
// At this point, the iterator is in the wrong location, but the remaining
// list is sorted. Find out where to move the item.
clash := -1
index := sort.Search(len(fi.iterators), func(n int) bool {
// The iterator always advances forward, so anything before the old slot
// is known to be behind us, so just skip them altogether. This actually
// is an important clause since the sort order got invalidated.
if n < idx {
return false
}
if n == len(fi.iterators)-1 {
// Can always place an elem last
return true
}
nextHash := fi.iterators[n+1].it.Hash()
if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
return true
} else if diff > 0 {
return false
}
// The elem we're placing it next to has the same value,
// so whichever winds up on n+1 will need further iteraton
clash = n + 1
return cur.priority < fi.iterators[n+1].priority
})
fi.move(idx, index)
if clash != -1 {
fi.next(clash)
}
return true
}
// move advances an iterator to another position in the list.
func (fi *fastAccountIterator) move(index, newpos int) {
elem := fi.iterators[index]
copy(fi.iterators[index:], fi.iterators[index+1:newpos+1])
fi.iterators[newpos] = elem
}
// Error returns any failure that occurred during iteration, which might have
// caused a premature iteration exit (e.g. snapshot stack becoming stale).
func (fi *fastAccountIterator) Error() error {
return fi.fail
}
// Hash returns the current key
func (fi *fastAccountIterator) Hash() common.Hash {
return fi.iterators[0].it.Hash()
}
// Account returns the current key
func (fi *fastAccountIterator) Account() []byte {
return fi.curAccount
}
// Release iterates over all the remaining live layer iterators and releases each
// of thme individually.
func (fi *fastAccountIterator) Release() {
for _, it := range fi.iterators {
it.it.Release()
}
fi.iterators = nil
}
// Debug is a convencience helper during testing
func (fi *fastAccountIterator) Debug() {
for _, it := range fi.iterators {
fmt.Printf("[p=%v v=%v] ", it.priority, it.it.Hash()[0])
}
fmt.Println()
}

@ -0,0 +1,662 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"encoding/binary"
"fmt"
"math/rand"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
)
// TestAccountIteratorBasics tests some simple single-layer iteration
func TestAccountIteratorBasics(t *testing.T) {
var (
destructs = make(map[common.Hash]struct{})
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(4) == 0 {
destructs[h] = struct{}{}
}
if rand.Intn(2) == 0 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
it := parent.AccountIterator(common.Hash{})
verifyIterator(t, 100, it)
}
type testIterator struct {
values []byte
}
func newTestIterator(values ...byte) *testIterator {
return &testIterator{values}
}
func (ti *testIterator) Seek(common.Hash) {
panic("implement me")
}
func (ti *testIterator) Next() bool {
ti.values = ti.values[1:]
return len(ti.values) > 0
}
func (ti *testIterator) Error() error {
return nil
}
func (ti *testIterator) Hash() common.Hash {
return common.BytesToHash([]byte{ti.values[0]})
}
func (ti *testIterator) Account() []byte {
return nil
}
func (ti *testIterator) Release() {}
func TestFastIteratorBasics(t *testing.T) {
type testCase struct {
lists [][]byte
expKeys []byte
}
for i, tc := range []testCase{
{lists: [][]byte{{0, 1, 8}, {1, 2, 8}, {2, 9}, {4},
{7, 14, 15}, {9, 13, 15, 16}},
expKeys: []byte{0, 1, 2, 4, 7, 8, 9, 13, 14, 15, 16}},
{lists: [][]byte{{0, 8}, {1, 2, 8}, {7, 14, 15}, {8, 9},
{9, 10}, {10, 13, 15, 16}},
expKeys: []byte{0, 1, 2, 7, 8, 9, 10, 13, 14, 15, 16}},
} {
var iterators []*weightedAccountIterator
for i, data := range tc.lists {
it := newTestIterator(data...)
iterators = append(iterators, &weightedAccountIterator{it, i})
}
fi := &fastAccountIterator{
iterators: iterators,
initiated: false,
}
count := 0
for fi.Next() {
if got, exp := fi.Hash()[31], tc.expKeys[count]; exp != got {
t.Errorf("tc %d, [%d]: got %d exp %d", i, count, got, exp)
}
count++
}
}
}
func verifyIterator(t *testing.T, expCount int, it AccountIterator) {
t.Helper()
var (
count = 0
last = common.Hash{}
)
for it.Next() {
hash := it.Hash()
if bytes.Compare(last[:], hash[:]) >= 0 {
t.Errorf("wrong order: %x >= %x", last, hash)
}
if it.Account() == nil {
t.Errorf("iterator returned nil-value for hash %x", hash)
}
count++
}
if count != expCount {
t.Errorf("iterator count mismatch: have %d, want %d", count, expCount)
}
if err := it.Error(); err != nil {
t.Errorf("iterator failed: %v", err)
}
}
// TestAccountIteratorTraversal tests some simple multi-layer iteration.
func TestAccountIteratorTraversal(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Stack three diff layers on top with various overlaps
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil,
randomAccountSet("0xaa", "0xee", "0xff", "0xf0"), nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil,
randomAccountSet("0xbb", "0xdd", "0xf0"), nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), nil,
randomAccountSet("0xcc", "0xf0", "0xff"), nil)
// Verify the single and multi-layer iterators
head := snaps.Snapshot(common.HexToHash("0x04"))
verifyIterator(t, 3, head.(snapshot).AccountIterator(common.Hash{}))
verifyIterator(t, 7, head.(*diffLayer).newBinaryAccountIterator())
it, _ := snaps.AccountIterator(common.HexToHash("0x04"), common.Hash{})
defer it.Release()
verifyIterator(t, 7, it)
}
// TestAccountIteratorTraversalValues tests some multi-layer iteration, where we
// also expect the correct values to show up.
func TestAccountIteratorTraversalValues(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Create a batch of account sets to seed subsequent layers with
var (
a = make(map[common.Hash][]byte)
b = make(map[common.Hash][]byte)
c = make(map[common.Hash][]byte)
d = make(map[common.Hash][]byte)
e = make(map[common.Hash][]byte)
f = make(map[common.Hash][]byte)
g = make(map[common.Hash][]byte)
h = make(map[common.Hash][]byte)
)
for i := byte(2); i < 0xff; i++ {
a[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 0, i))
if i > 20 && i%2 == 0 {
b[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 1, i))
}
if i%4 == 0 {
c[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 2, i))
}
if i%7 == 0 {
d[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 3, i))
}
if i%8 == 0 {
e[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 4, i))
}
if i > 50 || i < 85 {
f[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 5, i))
}
if i%64 == 0 {
g[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 6, i))
}
if i%128 == 0 {
h[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 7, i))
}
}
// Assemble a stack of snapshots from the account layers
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, a, nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil, b, nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), nil, c, nil)
snaps.Update(common.HexToHash("0x05"), common.HexToHash("0x04"), nil, d, nil)
snaps.Update(common.HexToHash("0x06"), common.HexToHash("0x05"), nil, e, nil)
snaps.Update(common.HexToHash("0x07"), common.HexToHash("0x06"), nil, f, nil)
snaps.Update(common.HexToHash("0x08"), common.HexToHash("0x07"), nil, g, nil)
snaps.Update(common.HexToHash("0x09"), common.HexToHash("0x08"), nil, h, nil)
it, _ := snaps.AccountIterator(common.HexToHash("0x09"), common.Hash{})
defer it.Release()
head := snaps.Snapshot(common.HexToHash("0x09"))
for it.Next() {
hash := it.Hash()
want, err := head.AccountRLP(hash)
if err != nil {
t.Fatalf("failed to retrieve expected account: %v", err)
}
if have := it.Account(); !bytes.Equal(want, have) {
t.Fatalf("hash %x: account mismatch: have %x, want %x", hash, have, want)
}
}
}
// This testcase is notorious, all layers contain the exact same 200 accounts.
func TestAccountIteratorLargeTraversal(t *testing.T) {
// Create a custom account factory to recreate the same addresses
makeAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
// Build up a large stack of snapshots
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
for i := 1; i < 128; i++ {
snaps.Update(common.HexToHash(fmt.Sprintf("0x%02x", i+1)), common.HexToHash(fmt.Sprintf("0x%02x", i)), nil, makeAccounts(200), nil)
}
// Iterate the entire stack and ensure everything is hit only once
head := snaps.Snapshot(common.HexToHash("0x80"))
verifyIterator(t, 200, head.(snapshot).AccountIterator(common.Hash{}))
verifyIterator(t, 200, head.(*diffLayer).newBinaryAccountIterator())
it, _ := snaps.AccountIterator(common.HexToHash("0x80"), common.Hash{})
defer it.Release()
verifyIterator(t, 200, it)
}
// TestAccountIteratorFlattening tests what happens when we
// - have a live iterator on child C (parent C1 -> C2 .. CN)
// - flattens C2 all the way into CN
// - continues iterating
func TestAccountIteratorFlattening(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Create a stack of diffs on top
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil,
randomAccountSet("0xaa", "0xee", "0xff", "0xf0"), nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil,
randomAccountSet("0xbb", "0xdd", "0xf0"), nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), nil,
randomAccountSet("0xcc", "0xf0", "0xff"), nil)
// Create an iterator and flatten the data from underneath it
it, _ := snaps.AccountIterator(common.HexToHash("0x04"), common.Hash{})
defer it.Release()
if err := snaps.Cap(common.HexToHash("0x04"), 1); err != nil {
t.Fatalf("failed to flatten snapshot stack: %v", err)
}
//verifyIterator(t, 7, it)
}
func TestAccountIteratorSeek(t *testing.T) {
// Create a snapshot stack with some initial data
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil,
randomAccountSet("0xaa", "0xee", "0xff", "0xf0"), nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil,
randomAccountSet("0xbb", "0xdd", "0xf0"), nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), nil,
randomAccountSet("0xcc", "0xf0", "0xff"), nil)
// Construct various iterators and ensure their tranversal is correct
it, _ := snaps.AccountIterator(common.HexToHash("0x02"), common.HexToHash("0xdd"))
defer it.Release()
verifyIterator(t, 3, it) // expected: ee, f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x02"), common.HexToHash("0xaa"))
defer it.Release()
verifyIterator(t, 3, it) // expected: ee, f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x02"), common.HexToHash("0xff"))
defer it.Release()
verifyIterator(t, 0, it) // expected: nothing
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xbb"))
defer it.Release()
verifyIterator(t, 5, it) // expected: cc, dd, ee, f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xef"))
defer it.Release()
verifyIterator(t, 2, it) // expected: f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xf0"))
defer it.Release()
verifyIterator(t, 1, it) // expected: ff
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xff"))
defer it.Release()
verifyIterator(t, 0, it) // expected: nothing
}
// TestIteratorDeletions tests that the iterator behaves correct when there are
// deleted accounts (where the Account() value is nil). The iterator
// should not output any accounts or nil-values for those cases.
func TestIteratorDeletions(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Stack three diff layers on top with various overlaps
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"),
nil, randomAccountSet("0x11", "0x22", "0x33"), nil)
deleted := common.HexToHash("0x22")
destructed := map[common.Hash]struct{}{
deleted: struct{}{},
}
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"),
destructed, randomAccountSet("0x11", "0x33"), nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"),
nil, randomAccountSet("0x33", "0x44", "0x55"), nil)
// The output should be 11,33,44,55
it, _ := snaps.AccountIterator(common.HexToHash("0x04"), common.Hash{})
// Do a quick check
verifyIterator(t, 4, it)
it.Release()
// And a more detailed verification that we indeed do not see '0x22'
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.Hash{})
defer it.Release()
for it.Next() {
hash := it.Hash()
if it.Account() == nil {
t.Errorf("iterator returned nil-value for hash %x", hash)
}
if hash == deleted {
t.Errorf("expected deleted elem %x to not be returned by iterator", deleted)
}
}
}
// BenchmarkAccountIteratorTraversal is a bit a bit notorious -- all layers contain the
// exact same 200 accounts. That means that we need to process 2000 items, but
// only spit out 200 values eventually.
//
// The value-fetching benchmark is easy on the binary iterator, since it never has to reach
// down at any depth for retrieving the values -- all are on the toppmost layer
//
// BenchmarkAccountIteratorTraversal/binary_iterator_keys-6 2239 483674 ns/op
// BenchmarkAccountIteratorTraversal/binary_iterator_values-6 2403 501810 ns/op
// BenchmarkAccountIteratorTraversal/fast_iterator_keys-6 1923 677966 ns/op
// BenchmarkAccountIteratorTraversal/fast_iterator_values-6 1741 649967 ns/op
func BenchmarkAccountIteratorTraversal(b *testing.B) {
// Create a custom account factory to recreate the same addresses
makeAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
// Build up a large stack of snapshots
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
for i := 1; i <= 100; i++ {
snaps.Update(common.HexToHash(fmt.Sprintf("0x%02x", i+1)), common.HexToHash(fmt.Sprintf("0x%02x", i)), nil, makeAccounts(200), nil)
}
// We call this once before the benchmark, so the creation of
// sorted accountlists are not included in the results.
head := snaps.Snapshot(common.HexToHash("0x65"))
head.(*diffLayer).newBinaryAccountIterator()
b.Run("binary iterator keys", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("binary iterator values", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
head.(*diffLayer).accountRLP(it.Hash(), 0)
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator keys", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
got++
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator values", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
got++
it.Account()
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
}
// BenchmarkAccountIteratorLargeBaselayer is a pretty realistic benchmark, where
// the baselayer is a lot larger than the upper layer.
//
// This is heavy on the binary iterator, which in most cases will have to
// call recursively 100 times for the majority of the values
//
// BenchmarkAccountIteratorLargeBaselayer/binary_iterator_(keys)-6 514 1971999 ns/op
// BenchmarkAccountIteratorLargeBaselayer/binary_iterator_(values)-6 61 18997492 ns/op
// BenchmarkAccountIteratorLargeBaselayer/fast_iterator_(keys)-6 10000 114385 ns/op
// BenchmarkAccountIteratorLargeBaselayer/fast_iterator_(values)-6 4047 296823 ns/op
func BenchmarkAccountIteratorLargeBaselayer(b *testing.B) {
// Create a custom account factory to recreate the same addresses
makeAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
// Build up a large stack of snapshots
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, makeAccounts(2000), nil)
for i := 2; i <= 100; i++ {
snaps.Update(common.HexToHash(fmt.Sprintf("0x%02x", i+1)), common.HexToHash(fmt.Sprintf("0x%02x", i)), nil, makeAccounts(20), nil)
}
// We call this once before the benchmark, so the creation of
// sorted accountlists are not included in the results.
head := snaps.Snapshot(common.HexToHash("0x65"))
head.(*diffLayer).newBinaryAccountIterator()
b.Run("binary iterator (keys)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("binary iterator (values)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
v := it.Hash()
head.(*diffLayer).accountRLP(v, 0)
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator (keys)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator (values)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
it.Account()
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
}
/*
func BenchmarkBinaryAccountIteration(b *testing.B) {
benchmarkAccountIteration(b, func(snap snapshot) AccountIterator {
return snap.(*diffLayer).newBinaryAccountIterator()
})
}
func BenchmarkFastAccountIteration(b *testing.B) {
benchmarkAccountIteration(b, newFastAccountIterator)
}
func benchmarkAccountIteration(b *testing.B, iterator func(snap snapshot) AccountIterator) {
// Create a diff stack and randomize the accounts across them
layers := make([]map[common.Hash][]byte, 128)
for i := 0; i < len(layers); i++ {
layers[i] = make(map[common.Hash][]byte)
}
for i := 0; i < b.N; i++ {
depth := rand.Intn(len(layers))
layers[depth][randomHash()] = randomAccount()
}
stack := snapshot(emptyLayer())
for _, layer := range layers {
stack = stack.Update(common.Hash{}, layer, nil, nil)
}
// Reset the timers and report all the stats
it := iterator(stack)
b.ResetTimer()
b.ReportAllocs()
for it.Next() {
}
}
*/

@ -0,0 +1,262 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// journalGenerator is a disk layer entry containing the generator progress marker.
type journalGenerator struct {
Wiping bool // Whether the database was in progress of being wiped
Done bool // Whether the generator finished creating the snapshot
Marker []byte
Accounts uint64
Slots uint64
Storage uint64
}
// journalDestruct is an account deletion entry in a diffLayer's disk journal.
type journalDestruct struct {
Hash common.Hash
}
// journalAccount is an account entry in a diffLayer's disk journal.
type journalAccount struct {
Hash common.Hash
Blob []byte
}
// journalStorage is an account's storage map in a diffLayer's disk journal.
type journalStorage struct {
Hash common.Hash
Keys []common.Hash
Vals [][]byte
}
// loadSnapshot loads a pre-existing state snapshot backed by a key-value store.
func loadSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int, root common.Hash) (snapshot, error) {
// Retrieve the block number and hash of the snapshot, failing if no snapshot
// is present in the database (or crashed mid-update).
baseRoot := rawdb.ReadSnapshotRoot(diskdb)
if baseRoot == (common.Hash{}) {
return nil, errors.New("missing or corrupted snapshot")
}
base := &diskLayer{
diskdb: diskdb,
triedb: triedb,
cache: fastcache.New(cache * 1024 * 1024),
root: baseRoot,
}
// Retrieve the journal, it must exist since even for 0 layer it stores whether
// we've already generated the snapshot or are in progress only
journal := rawdb.ReadSnapshotJournal(diskdb)
if len(journal) == 0 {
return nil, errors.New("missing or corrupted snapshot journal")
}
r := rlp.NewStream(bytes.NewReader(journal), 0)
// Read the snapshot generation progress for the disk layer
var generator journalGenerator
if err := r.Decode(&generator); err != nil {
return nil, fmt.Errorf("failed to load snapshot progress marker: %v", err)
}
// Load all the snapshot diffs from the journal
snapshot, err := loadDiffLayer(base, r)
if err != nil {
return nil, err
}
// Entire snapshot journal loaded, sanity check the head and return
// Journal doesn't exist, don't worry if it's not supposed to
if head := snapshot.Root(); head != root {
return nil, fmt.Errorf("head doesn't match snapshot: have %#x, want %#x", head, root)
}
// Everything loaded correctly, resume any suspended operations
if !generator.Done {
// If the generator was still wiping, restart one from scratch (fine for
// now as it's rare and the wiper deletes the stuff it touches anyway, so
// restarting won't incur a lot of extra database hops.
var wiper chan struct{}
if generator.Wiping {
log.Info("Resuming previous snapshot wipe")
wiper = wipeSnapshot(diskdb, false)
}
// Whether or not wiping was in progress, load any generator progress too
base.genMarker = generator.Marker
if base.genMarker == nil {
base.genMarker = []byte{}
}
base.genPending = make(chan struct{})
base.genAbort = make(chan chan *generatorStats)
var origin uint64
if len(generator.Marker) >= 8 {
origin = binary.BigEndian.Uint64(generator.Marker)
}
go base.generate(&generatorStats{
wiping: wiper,
origin: origin,
start: time.Now(),
accounts: generator.Accounts,
slots: generator.Slots,
storage: common.StorageSize(generator.Storage),
})
}
return snapshot, nil
}
// loadDiffLayer reads the next sections of a snapshot journal, reconstructing a new
// diff and verifying that it can be linked to the requested parent.
func loadDiffLayer(parent snapshot, r *rlp.Stream) (snapshot, error) {
// Read the next diff journal entry
var root common.Hash
if err := r.Decode(&root); err != nil {
// The first read may fail with EOF, marking the end of the journal
if err == io.EOF {
return parent, nil
}
return nil, fmt.Errorf("load diff root: %v", err)
}
var destructs []journalDestruct
if err := r.Decode(&destructs); err != nil {
return nil, fmt.Errorf("load diff destructs: %v", err)
}
destructSet := make(map[common.Hash]struct{})
for _, entry := range destructs {
destructSet[entry.Hash] = struct{}{}
}
var accounts []journalAccount
if err := r.Decode(&accounts); err != nil {
return nil, fmt.Errorf("load diff accounts: %v", err)
}
accountData := make(map[common.Hash][]byte)
for _, entry := range accounts {
accountData[entry.Hash] = entry.Blob
}
var storage []journalStorage
if err := r.Decode(&storage); err != nil {
return nil, fmt.Errorf("load diff storage: %v", err)
}
storageData := make(map[common.Hash]map[common.Hash][]byte)
for _, entry := range storage {
slots := make(map[common.Hash][]byte)
for i, key := range entry.Keys {
slots[key] = entry.Vals[i]
}
storageData[entry.Hash] = slots
}
return loadDiffLayer(newDiffLayer(parent, root, destructSet, accountData, storageData), r)
}
// Journal writes the persistent layer generator stats into a buffer to be stored
// in the database as the snapshot journal.
func (dl *diskLayer) Journal(buffer *bytes.Buffer) (common.Hash, error) {
// If the snapshot is currently being generated, abort it
var stats *generatorStats
if dl.genAbort != nil {
abort := make(chan *generatorStats)
dl.genAbort <- abort
if stats = <-abort; stats != nil {
stats.Log("Journalling in-progress snapshot", dl.genMarker)
}
}
// Ensure the layer didn't get stale
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.stale {
return common.Hash{}, ErrSnapshotStale
}
// Write out the generator marker
entry := journalGenerator{
Done: dl.genMarker == nil,
Marker: dl.genMarker,
}
if stats != nil {
entry.Wiping = (stats.wiping != nil)
entry.Accounts = stats.accounts
entry.Slots = stats.slots
entry.Storage = uint64(stats.storage)
}
if err := rlp.Encode(buffer, entry); err != nil {
return common.Hash{}, err
}
return dl.root, nil
}
// Journal writes the memory layer contents into a buffer to be stored in the
// database as the snapshot journal.
func (dl *diffLayer) Journal(buffer *bytes.Buffer) (common.Hash, error) {
// Journal the parent first
base, err := dl.parent.Journal(buffer)
if err != nil {
return common.Hash{}, err
}
// Ensure the layer didn't get stale
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.Stale() {
return common.Hash{}, ErrSnapshotStale
}
// Everything below was journalled, persist this layer too
if err := rlp.Encode(buffer, dl.root); err != nil {
return common.Hash{}, err
}
destructs := make([]journalDestruct, 0, len(dl.destructSet))
for hash := range dl.destructSet {
destructs = append(destructs, journalDestruct{Hash: hash})
}
if err := rlp.Encode(buffer, destructs); err != nil {
return common.Hash{}, err
}
accounts := make([]journalAccount, 0, len(dl.accountData))
for hash, blob := range dl.accountData {
accounts = append(accounts, journalAccount{Hash: hash, Blob: blob})
}
if err := rlp.Encode(buffer, accounts); err != nil {
return common.Hash{}, err
}
storage := make([]journalStorage, 0, len(dl.storageData))
for hash, slots := range dl.storageData {
keys := make([]common.Hash, 0, len(slots))
vals := make([][]byte, 0, len(slots))
for key, val := range slots {
keys = append(keys, key)
vals = append(vals, val)
}
storage = append(storage, journalStorage{Hash: hash, Keys: keys, Vals: vals})
}
if err := rlp.Encode(buffer, storage); err != nil {
return common.Hash{}, err
}
return base, nil
}

@ -0,0 +1,603 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package snapshot implements a journalled, dynamic state dump.
package snapshot
import (
"bytes"
"errors"
"fmt"
"sync"
"sync/atomic"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/trie"
)
var (
snapshotCleanAccountHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/hit", nil)
snapshotCleanAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/miss", nil)
snapshotCleanAccountInexMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/inex", nil)
snapshotCleanAccountReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/read", nil)
snapshotCleanAccountWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/write", nil)
snapshotCleanStorageHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/hit", nil)
snapshotCleanStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/miss", nil)
snapshotCleanStorageInexMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/inex", nil)
snapshotCleanStorageReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/read", nil)
snapshotCleanStorageWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/write", nil)
snapshotDirtyAccountHitMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/hit", nil)
snapshotDirtyAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/miss", nil)
snapshotDirtyAccountInexMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/inex", nil)
snapshotDirtyAccountReadMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/read", nil)
snapshotDirtyAccountWriteMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/write", nil)
snapshotDirtyStorageHitMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/hit", nil)
snapshotDirtyStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/miss", nil)
snapshotDirtyStorageInexMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/inex", nil)
snapshotDirtyStorageReadMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/read", nil)
snapshotDirtyStorageWriteMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/write", nil)
snapshotDirtyAccountHitDepthHist = metrics.NewRegisteredHistogram("state/snapshot/dirty/account/hit/depth", nil, metrics.NewExpDecaySample(1028, 0.015))
snapshotDirtyStorageHitDepthHist = metrics.NewRegisteredHistogram("state/snapshot/dirty/storage/hit/depth", nil, metrics.NewExpDecaySample(1028, 0.015))
snapshotFlushAccountItemMeter = metrics.NewRegisteredMeter("state/snapshot/flush/account/item", nil)
snapshotFlushAccountSizeMeter = metrics.NewRegisteredMeter("state/snapshot/flush/account/size", nil)
snapshotFlushStorageItemMeter = metrics.NewRegisteredMeter("state/snapshot/flush/storage/item", nil)
snapshotFlushStorageSizeMeter = metrics.NewRegisteredMeter("state/snapshot/flush/storage/size", nil)
snapshotBloomIndexTimer = metrics.NewRegisteredResettingTimer("state/snapshot/bloom/index", nil)
snapshotBloomErrorGauge = metrics.NewRegisteredGaugeFloat64("state/snapshot/bloom/error", nil)
snapshotBloomAccountTrueHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/truehit", nil)
snapshotBloomAccountFalseHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/falsehit", nil)
snapshotBloomAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/miss", nil)
snapshotBloomStorageTrueHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/truehit", nil)
snapshotBloomStorageFalseHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/falsehit", nil)
snapshotBloomStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/miss", nil)
// ErrSnapshotStale is returned from data accessors if the underlying snapshot
// layer had been invalidated due to the chain progressing forward far enough
// to not maintain the layer's original state.
ErrSnapshotStale = errors.New("snapshot stale")
// ErrNotCoveredYet is returned from data accessors if the underlying snapshot
// is being generated currently and the requested data item is not yet in the
// range of accounts covered.
ErrNotCoveredYet = errors.New("not covered yet")
// errSnapshotCycle is returned if a snapshot is attempted to be inserted
// that forms a cycle in the snapshot tree.
errSnapshotCycle = errors.New("snapshot cycle")
)
// Snapshot represents the functionality supported by a snapshot storage layer.
type Snapshot interface {
// Root returns the root hash for which this snapshot was made.
Root() common.Hash
// Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format.
Account(hash common.Hash) (*Account, error)
// AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format.
AccountRLP(hash common.Hash) ([]byte, error)
// Storage directly retrieves the storage data associated with a particular hash,
// within a particular account.
Storage(accountHash, storageHash common.Hash) ([]byte, error)
}
// snapshot is the internal version of the snapshot data layer that supports some
// additional methods compared to the public API.
type snapshot interface {
Snapshot
// Parent returns the subsequent layer of a snapshot, or nil if the base was
// reached.
//
// Note, the method is an internal helper to avoid type switching between the
// disk and diff layers. There is no locking involved.
Parent() snapshot
// Update creates a new layer on top of the existing snapshot diff tree with
// the specified data items.
//
// Note, the maps are retained by the method to avoid copying everything.
Update(blockRoot common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer
// Journal commits an entire diff hierarchy to disk into a single journal entry.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
Journal(buffer *bytes.Buffer) (common.Hash, error)
// Stale return whether this layer has become stale (was flattened across) or
// if it's still live.
Stale() bool
// AccountIterator creates an account iterator over an arbitrary layer.
AccountIterator(seek common.Hash) AccountIterator
}
// SnapshotTree is an Ethereum state snapshot tree. It consists of one persistent
// base layer backed by a key-value store, on top of which arbitrarily many in-
// memory diff layers are topped. The memory diffs can form a tree with branching,
// but the disk layer is singleton and common to all. If a reorg goes deeper than
// the disk layer, everything needs to be deleted.
//
// The goal of a state snapshot is twofold: to allow direct access to account and
// storage data to avoid expensive multi-level trie lookups; and to allow sorted,
// cheap iteration of the account/storage tries for sync aid.
type Tree struct {
diskdb ethdb.KeyValueStore // Persistent database to store the snapshot
triedb *trie.Database // In-memory cache to access the trie through
cache int // Megabytes permitted to use for read caches
layers map[common.Hash]snapshot // Collection of all known layers
lock sync.RWMutex
}
// New attempts to load an already existing snapshot from a persistent key-value
// store (with a number of memory layers from a journal), ensuring that the head
// of the snapshot matches the expected one.
//
// If the snapshot is missing or inconsistent, the entirety is deleted and will
// be reconstructed from scratch based on the tries in the key-value store, on a
// background thread.
func New(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int, root common.Hash, async bool) *Tree {
// Create a new, empty snapshot tree
snap := &Tree{
diskdb: diskdb,
triedb: triedb,
cache: cache,
layers: make(map[common.Hash]snapshot),
}
if !async {
defer snap.waitBuild()
}
// Attempt to load a previously persisted snapshot and rebuild one if failed
head, err := loadSnapshot(diskdb, triedb, cache, root)
if err != nil {
log.Warn("Failed to load snapshot, regenerating", "err", err)
snap.Rebuild(root)
return snap
}
// Existing snapshot loaded, seed all the layers
for head != nil {
snap.layers[head.Root()] = head
head = head.Parent()
}
return snap
}
// waitBuild blocks until the snapshot finishes rebuilding. This method is meant
// to be used by tests to ensure we're testing what we believe we are.
func (t *Tree) waitBuild() {
// Find the rebuild termination channel
var done chan struct{}
t.lock.RLock()
for _, layer := range t.layers {
if layer, ok := layer.(*diskLayer); ok {
done = layer.genPending
break
}
}
t.lock.RUnlock()
// Wait until the snapshot is generated
if done != nil {
<-done
}
}
// Snapshot retrieves a snapshot belonging to the given block root, or nil if no
// snapshot is maintained for that block.
func (t *Tree) Snapshot(blockRoot common.Hash) Snapshot {
t.lock.RLock()
defer t.lock.RUnlock()
return t.layers[blockRoot]
}
// Update adds a new snapshot into the tree, if that can be linked to an existing
// old parent. It is disallowed to insert a disk layer (the origin of all).
func (t *Tree) Update(blockRoot common.Hash, parentRoot common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) error {
// Reject noop updates to avoid self-loops in the snapshot tree. This is a
// special case that can only happen for Clique networks where empty blocks
// don't modify the state (0 block subsidy).
//
// Although we could silently ignore this internally, it should be the caller's
// responsibility to avoid even attempting to insert such a snapshot.
if blockRoot == parentRoot {
return errSnapshotCycle
}
// Generate a new snapshot on top of the parent
parent := t.Snapshot(parentRoot).(snapshot)
if parent == nil {
return fmt.Errorf("parent [%#x] snapshot missing", parentRoot)
}
snap := parent.Update(blockRoot, destructs, accounts, storage)
// Save the new snapshot for later
t.lock.Lock()
defer t.lock.Unlock()
t.layers[snap.root] = snap
return nil
}
// Cap traverses downwards the snapshot tree from a head block hash until the
// number of allowed layers are crossed. All layers beyond the permitted number
// are flattened downwards.
func (t *Tree) Cap(root common.Hash, layers int) error {
// Retrieve the head snapshot to cap from
snap := t.Snapshot(root)
if snap == nil {
return fmt.Errorf("snapshot [%#x] missing", root)
}
diff, ok := snap.(*diffLayer)
if !ok {
return fmt.Errorf("snapshot [%#x] is disk layer", root)
}
// Run the internal capping and discard all stale layers
t.lock.Lock()
defer t.lock.Unlock()
// Flattening the bottom-most diff layer requires special casing since there's
// no child to rewire to the grandparent. In that case we can fake a temporary
// child for the capping and then remove it.
var persisted *diskLayer
switch layers {
case 0:
// If full commit was requested, flatten the diffs and merge onto disk
diff.lock.RLock()
base := diffToDisk(diff.flatten().(*diffLayer))
diff.lock.RUnlock()
// Replace the entire snapshot tree with the flat base
t.layers = map[common.Hash]snapshot{base.root: base}
return nil
case 1:
// If full flattening was requested, flatten the diffs but only merge if the
// memory limit was reached
var (
bottom *diffLayer
base *diskLayer
)
diff.lock.RLock()
bottom = diff.flatten().(*diffLayer)
if bottom.memory >= aggregatorMemoryLimit {
base = diffToDisk(bottom)
}
diff.lock.RUnlock()
// If all diff layers were removed, replace the entire snapshot tree
if base != nil {
t.layers = map[common.Hash]snapshot{base.root: base}
return nil
}
// Merge the new aggregated layer into the snapshot tree, clean stales below
t.layers[bottom.root] = bottom
default:
// Many layers requested to be retained, cap normally
persisted = t.cap(diff, layers)
}
// Remove any layer that is stale or links into a stale layer
children := make(map[common.Hash][]common.Hash)
for root, snap := range t.layers {
if diff, ok := snap.(*diffLayer); ok {
parent := diff.parent.Root()
children[parent] = append(children[parent], root)
}
}
var remove func(root common.Hash)
remove = func(root common.Hash) {
delete(t.layers, root)
for _, child := range children[root] {
remove(child)
}
delete(children, root)
}
for root, snap := range t.layers {
if snap.Stale() {
remove(root)
}
}
// If the disk layer was modified, regenerate all the cummulative blooms
if persisted != nil {
var rebloom func(root common.Hash)
rebloom = func(root common.Hash) {
if diff, ok := t.layers[root].(*diffLayer); ok {
diff.rebloom(persisted)
}
for _, child := range children[root] {
rebloom(child)
}
}
rebloom(persisted.root)
}
return nil
}
// cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards. If the
// layer limit is reached, memory cap is also enforced (but not before).
//
// The method returns the new disk layer if diffs were persistend into it.
func (t *Tree) cap(diff *diffLayer, layers int) *diskLayer {
// Dive until we run out of layers or reach the persistent database
for ; layers > 2; layers-- {
// If we still have diff layers below, continue down
if parent, ok := diff.parent.(*diffLayer); ok {
diff = parent
} else {
// Diff stack too shallow, return without modifications
return nil
}
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
switch parent := diff.parent.(type) {
case *diskLayer:
return nil
case *diffLayer:
// Flatten the parent into the grandparent. The flattening internally obtains a
// write lock on grandparent.
flattened := parent.flatten().(*diffLayer)
t.layers[flattened.root] = flattened
diff.lock.Lock()
defer diff.lock.Unlock()
diff.parent = flattened
if flattened.memory < aggregatorMemoryLimit {
// Accumulator layer is smaller than the limit, so we can abort, unless
// there's a snapshot being generated currently. In that case, the trie
// will move fron underneath the generator so we **must** merge all the
// partial data down into the snapshot and restart the generation.
if flattened.parent.(*diskLayer).genAbort == nil {
return nil
}
}
default:
panic(fmt.Sprintf("unknown data layer: %T", parent))
}
// If the bottom-most layer is larger than our memory cap, persist to disk
bottom := diff.parent.(*diffLayer)
bottom.lock.RLock()
base := diffToDisk(bottom)
bottom.lock.RUnlock()
t.layers[base.root] = base
diff.parent = base
return base
}
// diffToDisk merges a bottom-most diff into the persistent disk layer underneath
// it. The method will panic if called onto a non-bottom-most diff layer.
func diffToDisk(bottom *diffLayer) *diskLayer {
var (
base = bottom.parent.(*diskLayer)
batch = base.diskdb.NewBatch()
stats *generatorStats
)
// If the disk layer is running a snapshot generator, abort it
if base.genAbort != nil {
abort := make(chan *generatorStats)
base.genAbort <- abort
stats = <-abort
}
// Start by temporarily deleting the current snapshot block marker. This
// ensures that in the case of a crash, the entire snapshot is invalidated.
rawdb.DeleteSnapshotRoot(batch)
// Mark the original base as stale as we're going to create a new wrapper
base.lock.Lock()
if base.stale {
panic("parent disk layer is stale") // we've committed into the same base from two children, boo
}
base.stale = true
base.lock.Unlock()
// Destroy all the destructed accounts from the database
for hash := range bottom.destructSet {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(hash[:], base.genMarker) > 0 {
continue
}
// Remove all storage slots
rawdb.DeleteAccountSnapshot(batch, hash)
base.cache.Set(hash[:], nil)
it := rawdb.IterateStorageSnapshots(base.diskdb, hash)
for it.Next() {
if key := it.Key(); len(key) == 65 { // TODO(karalabe): Yuck, we should move this into the iterator
batch.Delete(key)
base.cache.Del(key[1:])
snapshotFlushStorageItemMeter.Mark(1)
}
}
it.Release()
}
// Push all updated accounts into the database
for hash, data := range bottom.accountData {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(hash[:], base.genMarker) > 0 {
continue
}
// Push the account to disk
rawdb.WriteAccountSnapshot(batch, hash, data)
base.cache.Set(hash[:], data)
snapshotCleanAccountWriteMeter.Mark(int64(len(data)))
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write account snapshot", "err", err)
}
batch.Reset()
}
snapshotFlushAccountItemMeter.Mark(1)
snapshotFlushAccountSizeMeter.Mark(int64(len(data)))
}
// Push all the storage slots into the database
for accountHash, storage := range bottom.storageData {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(accountHash[:], base.genMarker) > 0 {
continue
}
// Generation might be mid-account, track that case too
midAccount := base.genMarker != nil && bytes.Equal(accountHash[:], base.genMarker[:common.HashLength])
for storageHash, data := range storage {
// Skip any slot not covered yet by the snapshot
if midAccount && bytes.Compare(storageHash[:], base.genMarker[common.HashLength:]) > 0 {
continue
}
if len(data) > 0 {
rawdb.WriteStorageSnapshot(batch, accountHash, storageHash, data)
base.cache.Set(append(accountHash[:], storageHash[:]...), data)
snapshotCleanStorageWriteMeter.Mark(int64(len(data)))
} else {
rawdb.DeleteStorageSnapshot(batch, accountHash, storageHash)
base.cache.Set(append(accountHash[:], storageHash[:]...), nil)
}
snapshotFlushStorageItemMeter.Mark(1)
snapshotFlushStorageSizeMeter.Mark(int64(len(data)))
}
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write storage snapshot", "err", err)
}
batch.Reset()
}
}
// Update the snapshot block marker and write any remainder data
rawdb.WriteSnapshotRoot(batch, bottom.root)
if err := batch.Write(); err != nil {
log.Crit("Failed to write leftover snapshot", "err", err)
}
res := &diskLayer{
root: bottom.root,
cache: base.cache,
diskdb: base.diskdb,
triedb: base.triedb,
genMarker: base.genMarker,
genPending: base.genPending,
}
// If snapshot generation hasn't finished yet, port over all the starts and
// continue where the previous round left off.
//
// Note, the `base.genAbort` comparison is not used normally, it's checked
// to allow the tests to play with the marker without triggering this path.
if base.genMarker != nil && base.genAbort != nil {
res.genMarker = base.genMarker
res.genAbort = make(chan chan *generatorStats)
go res.generate(stats)
}
return res
}
// Journal commits an entire diff hierarchy to disk into a single journal entry.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
//
// The method returns the root hash of the base layer that needs to be persisted
// to disk as a trie too to allow continuing any pending generation op.
func (t *Tree) Journal(root common.Hash) (common.Hash, error) {
// Retrieve the head snapshot to journal from var snap snapshot
snap := t.Snapshot(root)
if snap == nil {
return common.Hash{}, fmt.Errorf("snapshot [%#x] missing", root)
}
// Run the journaling
t.lock.Lock()
defer t.lock.Unlock()
journal := new(bytes.Buffer)
base, err := snap.(snapshot).Journal(journal)
if err != nil {
return common.Hash{}, err
}
// Store the journal into the database and return
rawdb.WriteSnapshotJournal(t.diskdb, journal.Bytes())
return base, nil
}
// Rebuild wipes all available snapshot data from the persistent database and
// discard all caches and diff layers. Afterwards, it starts a new snapshot
// generator with the given root hash.
func (t *Tree) Rebuild(root common.Hash) {
t.lock.Lock()
defer t.lock.Unlock()
// Track whether there's a wipe currently running and keep it alive if so
var wiper chan struct{}
// Iterate over and mark all layers stale
for _, layer := range t.layers {
switch layer := layer.(type) {
case *diskLayer:
// If the base layer is generating, abort it and save
if layer.genAbort != nil {
abort := make(chan *generatorStats)
layer.genAbort <- abort
if stats := <-abort; stats != nil {
wiper = stats.wiping
}
}
// Layer should be inactive now, mark it as stale
layer.lock.Lock()
layer.stale = true
layer.lock.Unlock()
case *diffLayer:
// If the layer is a simple diff, simply mark as stale
layer.lock.Lock()
atomic.StoreUint32(&layer.stale, 1)
layer.lock.Unlock()
default:
panic(fmt.Sprintf("unknown layer type: %T", layer))
}
}
// Start generating a new snapshot from scratch on a backgroung thread. The
// generator will run a wiper first if there's not one running right now.
log.Info("Rebuilding state snapshot")
t.layers = map[common.Hash]snapshot{
root: generateSnapshot(t.diskdb, t.triedb, t.cache, root, wiper),
}
}
// AccountIterator creates a new account iterator for the specified root hash and
// seeks to a starting account hash.
func (t *Tree) AccountIterator(root common.Hash, seek common.Hash) (AccountIterator, error) {
return newFastAccountIterator(t, root, seek)
}

@ -0,0 +1,348 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"fmt"
"math/big"
"math/rand"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/rlp"
)
// randomHash generates a random blob of data and returns it as a hash.
func randomHash() common.Hash {
var hash common.Hash
if n, err := rand.Read(hash[:]); n != common.HashLength || err != nil {
panic(err)
}
return hash
}
// randomAccount generates a random account and returns it RLP encoded.
func randomAccount() []byte {
root := randomHash()
a := Account{
Balance: big.NewInt(rand.Int63()),
Nonce: rand.Uint64(),
Root: root[:],
CodeHash: emptyCode[:],
}
data, _ := rlp.EncodeToBytes(a)
return data
}
// randomAccountSet generates a set of random accounts with the given strings as
// the account address hashes.
func randomAccountSet(hashes ...string) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for _, hash := range hashes {
accounts[common.HexToHash(hash)] = randomAccount()
}
return accounts
}
// Tests that if a disk layer becomes stale, no active external references will
// be returned with junk data. This version of the test flattens every diff layer
// to check internal corner case around the bottom-most memory accumulator.
func TestDiskLayerExternalInvalidationFullFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Retrieve a reference to the base and commit a diff on top
ref := snaps.Snapshot(base.root)
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 2)
}
// Commit the diff layer onto the disk and ensure it's persisted
if err := snaps.Cap(common.HexToHash("0x02"), 0); err != nil {
t.Fatalf("failed to merge diff layer onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrieval on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 1 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 1)
fmt.Println(snaps.layers)
}
}
// Tests that if a disk layer becomes stale, no active external references will
// be returned with junk data. This version of the test retains the bottom diff
// layer to check the usual mode of operation where the accumulator is retained.
func TestDiskLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Retrieve a reference to the base and commit two diffs on top
ref := snaps.Snapshot(base.root)
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 3)
}
// Commit the diff layer onto the disk and ensure it's persisted
defer func(memcap uint64) { aggregatorMemoryLimit = memcap }(aggregatorMemoryLimit)
aggregatorMemoryLimit = 0
if err := snaps.Cap(common.HexToHash("0x03"), 2); err != nil {
t.Fatalf("failed to merge diff layer onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrievald on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 2)
fmt.Println(snaps.layers)
}
}
// Tests that if a diff layer becomes stale, no active external references will
// be returned with junk data. This version of the test flattens every diff layer
// to check internal corner case around the bottom-most memory accumulator.
func TestDiffLayerExternalInvalidationFullFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Commit two diffs on top and retrieve a reference to the bottommost
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 3)
}
ref := snaps.Snapshot(common.HexToHash("0x02"))
// Flatten the diff layer into the bottom accumulator
if err := snaps.Cap(common.HexToHash("0x03"), 1); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
// Since the accumulator diff layer was modified, ensure that data retrievald on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 2)
fmt.Println(snaps.layers)
}
}
// Tests that if a diff layer becomes stale, no active external references will
// be returned with junk data. This version of the test retains the bottom diff
// layer to check the usual mode of operation where the accumulator is retained.
func TestDiffLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Commit three diffs on top and retrieve a reference to the bottommost
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 4 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 4)
}
ref := snaps.Snapshot(common.HexToHash("0x02"))
// Doing a Cap operation with many allowed layers should be a no-op
exp := len(snaps.layers)
if err := snaps.Cap(common.HexToHash("0x04"), 2000); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
if got := len(snaps.layers); got != exp {
t.Errorf("layers modified, got %d exp %d", got, exp)
}
// Flatten the diff layer into the bottom accumulator
if err := snaps.Cap(common.HexToHash("0x04"), 2); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
// Since the accumulator diff layer was modified, ensure that data retrievald on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 3)
fmt.Println(snaps.layers)
}
}
// TestPostCapBasicDataAccess tests some functionality regarding capping/flattening.
func TestPostCapBasicDataAccess(t *testing.T) {
// setAccount is a helper to construct a random account entry and assign it to
// an account slot in a snapshot
setAccount := func(accKey string) map[common.Hash][]byte {
return map[common.Hash][]byte{
common.HexToHash(accKey): randomAccount(),
}
}
// Create a starting base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// The lowest difflayer
snaps.Update(common.HexToHash("0xa1"), common.HexToHash("0x01"), nil, setAccount("0xa1"), nil)
snaps.Update(common.HexToHash("0xa2"), common.HexToHash("0xa1"), nil, setAccount("0xa2"), nil)
snaps.Update(common.HexToHash("0xb2"), common.HexToHash("0xa1"), nil, setAccount("0xb2"), nil)
snaps.Update(common.HexToHash("0xa3"), common.HexToHash("0xa2"), nil, setAccount("0xa3"), nil)
snaps.Update(common.HexToHash("0xb3"), common.HexToHash("0xb2"), nil, setAccount("0xb3"), nil)
// checkExist verifies if an account exiss in a snapshot
checkExist := func(layer *diffLayer, key string) error {
if data, _ := layer.Account(common.HexToHash(key)); data == nil {
return fmt.Errorf("expected %x to exist, got nil", common.HexToHash(key))
}
return nil
}
// shouldErr checks that an account access errors as expected
shouldErr := func(layer *diffLayer, key string) error {
if data, err := layer.Account(common.HexToHash(key)); err == nil {
return fmt.Errorf("expected error, got data %x", data)
}
return nil
}
// check basics
snap := snaps.Snapshot(common.HexToHash("0xb3")).(*diffLayer)
if err := checkExist(snap, "0xa1"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb3"); err != nil {
t.Error(err)
}
// Cap to a bad root should fail
if err := snaps.Cap(common.HexToHash("0x1337"), 0); err == nil {
t.Errorf("expected error, got none")
}
// Now, merge the a-chain
snaps.Cap(common.HexToHash("0xa3"), 0)
// At this point, a2 got merged into a1. Thus, a1 is now modified, and as a1 is
// the parent of b2, b2 should no longer be able to iterate into parent.
// These should still be accessible
if err := checkExist(snap, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb3"); err != nil {
t.Error(err)
}
// But these would need iteration into the modified parent
if err := shouldErr(snap, "0xa1"); err != nil {
t.Error(err)
}
if err := shouldErr(snap, "0xa2"); err != nil {
t.Error(err)
}
if err := shouldErr(snap, "0xa3"); err != nil {
t.Error(err)
}
// Now, merge it again, just for fun. It should now error, since a3
// is a disk layer
if err := snaps.Cap(common.HexToHash("0xa3"), 0); err == nil {
t.Error("expected error capping the disk layer, got none")
}
}

@ -0,0 +1,36 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"github.com/ethereum/go-ethereum/common"
)
// hashes is a helper to implement sort.Interface.
type hashes []common.Hash
// Len is the number of elements in the collection.
func (hs hashes) Len() int { return len(hs) }
// Less reports whether the element with index i should sort before the element
// with index j.
func (hs hashes) Less(i, j int) bool { return bytes.Compare(hs[i][:], hs[j][:]) < 0 }
// Swap swaps the elements with indexes i and j.
func (hs hashes) Swap(i, j int) { hs[i], hs[j] = hs[j], hs[i] }

130
core/state/snapshot/wipe.go Normal file

@ -0,0 +1,130 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
)
// wipeSnapshot starts a goroutine to iterate over the entire key-value database
// and delete all the data associated with the snapshot (accounts, storage,
// metadata). After all is done, the snapshot range of the database is compacted
// to free up unused data blocks.
func wipeSnapshot(db ethdb.KeyValueStore, full bool) chan struct{} {
// Wipe the snapshot root marker synchronously
if full {
rawdb.DeleteSnapshotRoot(db)
}
// Wipe everything else asynchronously
wiper := make(chan struct{}, 1)
go func() {
if err := wipeContent(db); err != nil {
log.Error("Failed to wipe state snapshot", "err", err) // Database close will trigger this
return
}
close(wiper)
}()
return wiper
}
// wipeContent iterates over the entire key-value database and deletes all the
// data associated with the snapshot (accounts, storage), but not the root hash
// as the wiper is meant to run on a background thread but the root needs to be
// removed in sync to avoid data races. After all is done, the snapshot range of
// the database is compacted to free up unused data blocks.
func wipeContent(db ethdb.KeyValueStore) error {
if err := wipeKeyRange(db, "accounts", rawdb.SnapshotAccountPrefix, len(rawdb.SnapshotAccountPrefix)+common.HashLength); err != nil {
return err
}
if err := wipeKeyRange(db, "storage", rawdb.SnapshotStoragePrefix, len(rawdb.SnapshotStoragePrefix)+2*common.HashLength); err != nil {
return err
}
// Compact the snapshot section of the database to get rid of unused space
start := time.Now()
log.Info("Compacting snapshot account area ")
end := common.CopyBytes(rawdb.SnapshotAccountPrefix)
end[len(end)-1]++
if err := db.Compact(rawdb.SnapshotAccountPrefix, end); err != nil {
return err
}
log.Info("Compacting snapshot storage area ")
end = common.CopyBytes(rawdb.SnapshotStoragePrefix)
end[len(end)-1]++
if err := db.Compact(rawdb.SnapshotStoragePrefix, end); err != nil {
return err
}
log.Info("Compacted snapshot area in database", "elapsed", common.PrettyDuration(time.Since(start)))
return nil
}
// wipeKeyRange deletes a range of keys from the database starting with prefix
// and having a specific total key length.
func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, keylen int) error {
// Batch deletions together to avoid holding an iterator for too long
var (
batch = db.NewBatch()
items int
)
// Iterate over the key-range and delete all of them
start, logged := time.Now(), time.Now()
it := db.NewIteratorWithStart(prefix)
for it.Next() {
// Skip any keys with the correct prefix but wrong lenth (trie nodes)
key := it.Key()
if !bytes.HasPrefix(key, prefix) {
break
}
if len(key) != keylen {
continue
}
// Delete the key and periodically recreate the batch and iterator
batch.Delete(key)
items++
if items%10000 == 0 {
// Batch too large (or iterator too long lived, flush and recreate)
it.Release()
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
it = db.NewIteratorWithStart(key)
if time.Since(logged) > 8*time.Second {
log.Info("Deleting state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
}
it.Release()
if err := batch.Write(); err != nil {
return err
}
log.Info("Deleted state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start)))
return nil
}

@ -0,0 +1,124 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
// Tests that given a database with random data content, all parts of a snapshot
// can be crrectly wiped without touching anything else.
func TestWipe(t *testing.T) {
// Create a database with some random snapshot data
db := memorydb.New()
for i := 0; i < 128; i++ {
account := randomHash()
rawdb.WriteAccountSnapshot(db, account, randomHash().Bytes())
for j := 0; j < 1024; j++ {
rawdb.WriteStorageSnapshot(db, account, randomHash(), randomHash().Bytes())
}
}
rawdb.WriteSnapshotRoot(db, randomHash())
// Add some random non-snapshot data too to make wiping harder
for i := 0; i < 65536; i++ {
// Generate a key that's the wrong length for a state snapshot item
var keysize int
for keysize == 0 || keysize == 32 || keysize == 64 {
keysize = 8 + rand.Intn(64) // +8 to ensure we will "never" randomize duplicates
}
// Randomize the suffix, dedup and inject it under the snapshot namespace
keysuffix := make([]byte, keysize)
rand.Read(keysuffix)
if rand.Int31n(2) == 0 {
db.Put(append(rawdb.SnapshotAccountPrefix, keysuffix...), randomHash().Bytes())
} else {
db.Put(append(rawdb.SnapshotStoragePrefix, keysuffix...), randomHash().Bytes())
}
}
// Sanity check that all the keys are present
var items int
it := db.NewIteratorWithPrefix(rawdb.SnapshotAccountPrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.SnapshotAccountPrefix)+common.HashLength {
items++
}
}
it = db.NewIteratorWithPrefix(rawdb.SnapshotStoragePrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.SnapshotStoragePrefix)+2*common.HashLength {
items++
}
}
if items != 128+128*1024 {
t.Fatalf("snapshot size mismatch: have %d, want %d", items, 128+128*1024)
}
if hash := rawdb.ReadSnapshotRoot(db); hash == (common.Hash{}) {
t.Errorf("snapshot block marker mismatch: have %#x, want <not-nil>", hash)
}
// Wipe all snapshot entries from the database
<-wipeSnapshot(db, true)
// Iterate over the database end ensure no snapshot information remains
it = db.NewIteratorWithPrefix(rawdb.SnapshotAccountPrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.SnapshotAccountPrefix)+common.HashLength {
t.Errorf("snapshot entry remained after wipe: %x", key)
}
}
it = db.NewIteratorWithPrefix(rawdb.SnapshotStoragePrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.SnapshotStoragePrefix)+2*common.HashLength {
t.Errorf("snapshot entry remained after wipe: %x", key)
}
}
if hash := rawdb.ReadSnapshotRoot(db); hash != (common.Hash{}) {
t.Errorf("snapshot block marker remained after wipe: %#x", hash)
}
// Iterate over the database and ensure miscellaneous items are present
items = 0
it = db.NewIterator()
defer it.Release()
for it.Next() {
items++
}
if items != 65536 {
t.Fatalf("misc item count mismatch: have %d, want %d", items, 65536)
}
}

@ -195,16 +195,36 @@ func (s *stateObject) GetCommittedState(db Database, key common.Hash) common.Has
if value, cached := s.originStorage[key]; cached {
return value
}
// Track the amount of time wasted on reading the storage trie
// If no live objects are available, attempt to use snapshots
var (
enc []byte
err error
)
if s.db.snap != nil {
if metrics.EnabledExpensive {
defer func(start time.Time) { s.db.SnapshotStorageReads += time.Since(start) }(time.Now())
}
// If the object was destructed in *this* block (and potentially resurrected),
// the storage has been cleared out, and we should *not* consult the previous
// snapshot about any storage values. The only possible alternatives are:
// 1) resurrect happened, and new slot values were set -- those should
// have been handles via pendingStorage above.
// 2) we don't have new values, and can deliver empty response back
if _, destructed := s.db.snapDestructs[s.addrHash]; destructed {
return common.Hash{}
}
enc, err = s.db.snap.Storage(s.addrHash, crypto.Keccak256Hash(key[:]))
}
// If snapshot unavailable or reading from it failed, load from the database
if s.db.snap == nil || err != nil {
if metrics.EnabledExpensive {
defer func(start time.Time) { s.db.StorageReads += time.Since(start) }(time.Now())
}
// Otherwise load the value from the database
enc, err := s.getTrie(db).TryGet(key[:])
if err != nil {
if enc, err = s.getTrie(db).TryGet(key[:]); err != nil {
s.setError(err)
return common.Hash{}
}
}
var value common.Hash
if len(enc) > 0 {
_, content, _, err := rlp.Split(enc)
@ -283,6 +303,16 @@ func (s *stateObject) updateTrie(db Database) Trie {
if metrics.EnabledExpensive {
defer func(start time.Time) { s.db.StorageUpdates += time.Since(start) }(time.Now())
}
// Retrieve the snapshot storage map for the object
var storage map[common.Hash][]byte
if s.db.snap != nil {
// Retrieve the old storage map, if available, create a new one otherwise
storage = s.db.snapStorage[s.addrHash]
if storage == nil {
storage = make(map[common.Hash][]byte)
s.db.snapStorage[s.addrHash] = storage
}
}
// Insert all the pending updates into the trie
tr := s.getTrie(db)
for key, value := range s.pendingStorage {
@ -292,14 +322,19 @@ func (s *stateObject) updateTrie(db Database) Trie {
}
s.originStorage[key] = value
var v []byte
if (value == common.Hash{}) {
s.setError(tr.TryDelete(key[:]))
continue
}
} else {
// Encoding []byte cannot fail, ok to ignore the error.
v, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(value[:]))
v, _ = rlp.EncodeToBytes(common.TrimLeftZeroes(value[:]))
s.setError(tr.TryUpdate(key[:], v))
}
// If state snapshotting is active, cache the data til commit
if storage != nil {
storage[crypto.Keccak256Hash(key[:])] = v // v will be nil if value is 0x00
}
}
if len(s.pendingStorage) > 0 {
s.pendingStorage = make(Storage)
}

@ -36,7 +36,7 @@ type stateTest struct {
func newStateTest() *stateTest {
db := rawdb.NewMemoryDatabase()
sdb, _ := New(common.Hash{}, NewDatabase(db))
sdb, _ := New(common.Hash{}, NewDatabase(db), nil)
return &stateTest{db: db, state: sdb}
}
@ -146,7 +146,7 @@ func TestSnapshotEmpty(t *testing.T) {
}
func TestSnapshot2(t *testing.T) {
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()))
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
stateobjaddr0 := toAddr([]byte("so0"))
stateobjaddr1 := toAddr([]byte("so1"))

@ -25,6 +25,7 @@ import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
@ -66,6 +67,12 @@ type StateDB struct {
db Database
trie Trie
snaps *snapshot.Tree
snap snapshot.Snapshot
snapDestructs map[common.Hash]struct{}
snapAccounts map[common.Hash][]byte
snapStorage map[common.Hash]map[common.Hash][]byte
// This map holds 'live' objects, which will get modified while processing a state transition.
stateObjects map[common.Address]*stateObject
stateObjectsPending map[common.Address]struct{} // State objects finalized but not yet written to the trie
@ -103,24 +110,36 @@ type StateDB struct {
StorageHashes time.Duration
StorageUpdates time.Duration
StorageCommits time.Duration
SnapshotAccountReads time.Duration
SnapshotStorageReads time.Duration
SnapshotCommits time.Duration
}
// Create a new state from a given trie.
func New(root common.Hash, db Database) (*StateDB, error) {
func New(root common.Hash, db Database, snaps *snapshot.Tree) (*StateDB, error) {
tr, err := db.OpenTrie(root)
if err != nil {
return nil, err
}
return &StateDB{
sdb := &StateDB{
db: db,
trie: tr,
snaps: snaps,
stateObjects: make(map[common.Address]*stateObject),
stateObjectsPending: make(map[common.Address]struct{}),
stateObjectsDirty: make(map[common.Address]struct{}),
logs: make(map[common.Hash][]*types.Log),
preimages: make(map[common.Hash][]byte),
journal: newJournal(),
}, nil
}
if sdb.snaps != nil {
if sdb.snap = sdb.snaps.Snapshot(root); sdb.snap != nil {
sdb.snapDestructs = make(map[common.Hash]struct{})
sdb.snapAccounts = make(map[common.Hash][]byte)
sdb.snapStorage = make(map[common.Hash]map[common.Hash][]byte)
}
}
return sdb, nil
}
// setError remembers the first non-nil error it is called with.
@ -152,6 +171,15 @@ func (s *StateDB) Reset(root common.Hash) error {
s.logSize = 0
s.preimages = make(map[common.Hash][]byte)
s.clearJournalAndRefund()
if s.snaps != nil {
s.snapAccounts, s.snapDestructs, s.snapStorage = nil, nil, nil
if s.snap = s.snaps.Snapshot(root); s.snap != nil {
s.snapDestructs = make(map[common.Hash]struct{})
s.snapAccounts = make(map[common.Hash][]byte)
s.snapStorage = make(map[common.Hash]map[common.Hash][]byte)
}
}
return nil
}
@ -438,6 +466,14 @@ func (s *StateDB) updateStateObject(obj *stateObject) {
panic(fmt.Errorf("can't encode object at %x: %v", addr[:], err))
}
s.setError(s.trie.TryUpdate(addr[:], data))
// If state snapshotting is active, cache the data til commit. Note, this
// update mechanism is not symmetric to the deletion, because whereas it is
// enough to track account updates at commit time, deletions need tracking
// at transaction boundary level to ensure we capture state clearing.
if s.snap != nil {
s.snapAccounts[obj.addrHash] = snapshot.AccountRLP(obj.data.Nonce, obj.data.Balance, obj.data.Root, obj.data.CodeHash)
}
}
// deleteStateObject removes the given object from the state trie.
@ -470,21 +506,45 @@ func (s *StateDB) getDeletedStateObject(addr common.Address) *stateObject {
if obj := s.stateObjects[addr]; obj != nil {
return obj
}
// Track the amount of time wasted on loading the object from the database
// If no live objects are available, attempt to use snapshots
var (
data Account
err error
)
if s.snap != nil {
if metrics.EnabledExpensive {
defer func(start time.Time) { s.SnapshotAccountReads += time.Since(start) }(time.Now())
}
var acc *snapshot.Account
if acc, err = s.snap.Account(crypto.Keccak256Hash(addr[:])); err == nil {
if acc == nil {
return nil
}
data.Nonce, data.Balance, data.CodeHash = acc.Nonce, acc.Balance, acc.CodeHash
if len(data.CodeHash) == 0 {
data.CodeHash = emptyCodeHash
}
data.Root = common.BytesToHash(acc.Root)
if data.Root == (common.Hash{}) {
data.Root = emptyRoot
}
}
}
// If snapshot unavailable or reading from it failed, load from the database
if s.snap == nil || err != nil {
if metrics.EnabledExpensive {
defer func(start time.Time) { s.AccountReads += time.Since(start) }(time.Now())
}
// Load the object from the database
enc, err := s.trie.TryGet(addr[:])
if len(enc) == 0 {
s.setError(err)
return nil
}
var data Account
if err := rlp.DecodeBytes(enc, &data); err != nil {
log.Error("Failed to decode state object", "addr", addr, "err", err)
return nil
}
}
// Insert into the live set
obj := newObject(s, addr, data)
s.setStateObject(obj)
@ -509,12 +569,19 @@ func (s *StateDB) GetOrNewStateObject(addr common.Address) *stateObject {
func (s *StateDB) createObject(addr common.Address) (newobj, prev *stateObject) {
prev = s.getDeletedStateObject(addr) // Note, prev might have been deleted, we need that!
var prevdestruct bool
if s.snap != nil && prev != nil {
_, prevdestruct = s.snapDestructs[prev.addrHash]
if !prevdestruct {
s.snapDestructs[prev.addrHash] = struct{}{}
}
}
newobj = newObject(s, addr, Account{})
newobj.setNonce(0) // sets the object to dirty
if prev == nil {
s.journal.append(createObjectChange{account: &addr})
} else {
s.journal.append(resetObjectChange{prev: prev})
s.journal.append(resetObjectChange{prev: prev, prevdestruct: prevdestruct})
}
s.setStateObject(newobj)
return newobj, prev
@ -673,6 +740,16 @@ func (s *StateDB) Finalise(deleteEmptyObjects bool) {
}
if obj.suicided || (deleteEmptyObjects && obj.empty()) {
obj.deleted = true
// If state snapshotting is active, also mark the destruction there.
// Note, we can't do this only at the end of a block because multiple
// transactions within the same block might self destruct and then
// ressurrect an account; but the snapshotter needs both events.
if s.snap != nil {
s.snapDestructs[obj.addrHash] = struct{}{} // We need to maintain account deletions explicitly (will remain set indefinitely)
delete(s.snapAccounts, obj.addrHash) // Clear out any previously updated account data (may be recreated via a ressurrect)
delete(s.snapStorage, obj.addrHash) // Clear out any previously updated storage data (may be recreated via a ressurrect)
}
} else {
obj.finalise()
}
@ -748,13 +825,14 @@ func (s *StateDB) Commit(deleteEmptyObjects bool) (common.Hash, error) {
s.stateObjectsDirty = make(map[common.Address]struct{})
}
// Write the account trie changes, measuing the amount of wasted time
var start time.Time
if metrics.EnabledExpensive {
defer func(start time.Time) { s.AccountCommits += time.Since(start) }(time.Now())
start = time.Now()
}
// The onleaf func is called _serially_, so we can reuse the same account
// for unmarshalling every time.
var account Account
return s.trie.Commit(func(leaf []byte, parent common.Hash) error {
root, err := s.trie.Commit(func(leaf []byte, parent common.Hash) error {
if err := rlp.DecodeBytes(leaf, &account); err != nil {
return nil
}
@ -767,4 +845,24 @@ func (s *StateDB) Commit(deleteEmptyObjects bool) (common.Hash, error) {
}
return nil
})
if metrics.EnabledExpensive {
s.AccountCommits += time.Since(start)
}
// If snapshotting is enabled, update the snapshot tree with this new version
if s.snap != nil {
if metrics.EnabledExpensive {
defer func(start time.Time) { s.SnapshotCommits += time.Since(start) }(time.Now())
}
// Only update if there's a state transition (skip empty Clique blocks)
if parent := s.snap.Root(); parent != root {
if err := s.snaps.Update(root, parent, s.snapDestructs, s.snapAccounts, s.snapStorage); err != nil {
log.Warn("Failed to update snapshot tree", "from", parent, "to", root, "err", err)
}
if err := s.snaps.Cap(root, 127); err != nil { // Persistent layer is 128th, the last available trie
log.Warn("Failed to cap snapshot tree", "root", root, "layers", 127, "err", err)
}
}
s.snap, s.snapDestructs, s.snapAccounts, s.snapStorage = nil, nil, nil, nil
}
return root, err
}

@ -39,7 +39,7 @@ import (
func TestUpdateLeaks(t *testing.T) {
// Create an empty state database
db := rawdb.NewMemoryDatabase()
state, _ := New(common.Hash{}, NewDatabase(db))
state, _ := New(common.Hash{}, NewDatabase(db), nil)
// Update it with some accounts
for i := byte(0); i < 255; i++ {
@ -73,8 +73,8 @@ func TestIntermediateLeaks(t *testing.T) {
// Create two state databases, one transitioning to the final state, the other final from the beginning
transDb := rawdb.NewMemoryDatabase()
finalDb := rawdb.NewMemoryDatabase()
transState, _ := New(common.Hash{}, NewDatabase(transDb))
finalState, _ := New(common.Hash{}, NewDatabase(finalDb))
transState, _ := New(common.Hash{}, NewDatabase(transDb), nil)
finalState, _ := New(common.Hash{}, NewDatabase(finalDb), nil)
modify := func(state *StateDB, addr common.Address, i, tweak byte) {
state.SetBalance(addr, big.NewInt(int64(11*i)+int64(tweak)))
@ -149,7 +149,7 @@ func TestIntermediateLeaks(t *testing.T) {
// https://github.com/ethereum/go-ethereum/pull/15549.
func TestCopy(t *testing.T) {
// Create a random state test to copy and modify "independently"
orig, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()))
orig, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
for i := byte(0); i < 255; i++ {
obj := orig.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
@ -385,7 +385,7 @@ func (test *snapshotTest) String() string {
func (test *snapshotTest) run() bool {
// Run all actions and create snapshots.
var (
state, _ = New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()))
state, _ = New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
snapshotRevs = make([]int, len(test.snapshots))
sindex = 0
)
@ -399,7 +399,7 @@ func (test *snapshotTest) run() bool {
// Revert all snapshots in reverse order. Each revert must yield a state
// that is equivalent to fresh state with all actions up the snapshot applied.
for sindex--; sindex >= 0; sindex-- {
checkstate, _ := New(common.Hash{}, state.Database())
checkstate, _ := New(common.Hash{}, state.Database(), nil)
for _, action := range test.actions[:test.snapshots[sindex]] {
action.fn(action, checkstate)
}
@ -477,7 +477,7 @@ func TestTouchDelete(t *testing.T) {
// TestCopyOfCopy tests that modified objects are carried over to the copy, and the copy of the copy.
// See https://github.com/ethereum/go-ethereum/pull/15225#issuecomment-380191512
func TestCopyOfCopy(t *testing.T) {
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()))
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
addr := common.HexToAddress("aaaa")
state.SetBalance(addr, big.NewInt(42))
@ -494,7 +494,7 @@ func TestCopyOfCopy(t *testing.T) {
//
// See https://github.com/ethereum/go-ethereum/issues/20106.
func TestCopyCommitCopy(t *testing.T) {
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()))
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
// Create an account and check if the retrieved balance is correct
addr := common.HexToAddress("0xaffeaffeaffeaffeaffeaffeaffeaffeaffeaffe")
@ -566,7 +566,7 @@ func TestCopyCommitCopy(t *testing.T) {
//
// See https://github.com/ethereum/go-ethereum/issues/20106.
func TestCopyCopyCommitCopy(t *testing.T) {
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()))
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
// Create an account and check if the retrieved balance is correct
addr := common.HexToAddress("0xaffeaffeaffeaffeaffeaffeaffeaffeaffeaffe")
@ -656,7 +656,7 @@ func TestCopyCopyCommitCopy(t *testing.T) {
// first, but the journal wiped the entire state object on create-revert.
func TestDeleteCreateRevert(t *testing.T) {
// Create an initial state with a single contract
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()))
state, _ := New(common.Hash{}, NewDatabase(rawdb.NewMemoryDatabase()), nil)
addr := toAddr([]byte("so"))
state.SetBalance(addr, big.NewInt(1))

@ -41,7 +41,7 @@ type testAccount struct {
func makeTestState() (Database, common.Hash, []*testAccount) {
// Create an empty state
db := NewDatabase(rawdb.NewMemoryDatabase())
state, _ := New(common.Hash{}, db)
state, _ := New(common.Hash{}, db, nil)
// Fill it with some arbitrary data
accounts := []*testAccount{}
@ -72,7 +72,7 @@ func makeTestState() (Database, common.Hash, []*testAccount) {
// account array.
func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) {
// Check root availability and state contents
state, err := New(root, NewDatabase(db))
state, err := New(root, NewDatabase(db), nil)
if err != nil {
t.Fatalf("failed to create state trie at %x: %v", root, err)
}
@ -113,7 +113,7 @@ func checkStateConsistency(db ethdb.Database, root common.Hash) error {
if _, err := db.Get(root.Bytes()); err != nil {
return nil // Consider a non existent state consistent.
}
state, err := New(root, NewDatabase(db))
state, err := New(root, NewDatabase(db), nil)
if err != nil {
return err
}

@ -54,6 +54,7 @@ func (p *statePrefetcher) Prefetch(block *types.Block, statedb *state.StateDB, c
gaspool = new(GasPool).AddGas(block.GasLimit())
)
// Iterate over and process the individual transactions
byzantium := p.config.IsByzantium(block.Number())
for i, tx := range block.Transactions() {
// If block precaching was interrupted, abort
if interrupt != nil && atomic.LoadUint32(interrupt) == 1 {
@ -64,6 +65,14 @@ func (p *statePrefetcher) Prefetch(block *types.Block, statedb *state.StateDB, c
if err := precacheTransaction(p.config, p.bc, nil, gaspool, statedb, header, tx, cfg); err != nil {
return // Ugh, something went horribly wrong, bail out
}
// If we're pre-byzantium, pre-load trie nodes for the intermediate root
if !byzantium {
statedb.IntermediateRoot(true)
}
}
// If were post-byzantium, pre-load trie nodes for the final root hash
if byzantium {
statedb.IntermediateRoot(true)
}
}

@ -86,7 +86,7 @@ func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key
}
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 10000000, new(event.Feed)}
key, _ := crypto.GenerateKey()
@ -171,7 +171,7 @@ func (c *testChain) State() (*state.StateDB, error) {
// a state change between those fetches.
stdb := c.statedb
if *c.trigger {
c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
// simulate that the new head block included tx0 and tx1
c.statedb.SetNonce(c.address, 2)
c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Ether))
@ -189,7 +189,7 @@ func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
var (
key, _ = crypto.GenerateKey()
address = crypto.PubkeyToAddress(key.PublicKey)
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
trigger = false
)
@ -345,7 +345,7 @@ func TestTransactionChainFork(t *testing.T) {
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
statedb.AddBalance(addr, big.NewInt(100000000000000))
pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)}
@ -374,7 +374,7 @@ func TestTransactionDoubleNonce(t *testing.T) {
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
statedb.AddBalance(addr, big.NewInt(100000000000000))
pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)}
@ -565,7 +565,7 @@ func TestTransactionPostponing(t *testing.T) {
t.Parallel()
// Create the pool to test the postponing with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
@ -778,7 +778,7 @@ func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -866,7 +866,7 @@ func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
evictionInterval = time.Second
// Create the pool to test the non-expiration enforcement
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -969,7 +969,7 @@ func TestTransactionPendingGlobalLimiting(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -1071,7 +1071,7 @@ func TestTransactionCapClearsFromAll(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -1105,7 +1105,7 @@ func TestTransactionPendingMinimumAllowance(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -1153,7 +1153,7 @@ func TestTransactionPoolRepricing(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
@ -1274,7 +1274,7 @@ func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
@ -1336,7 +1336,7 @@ func TestTransactionPoolUnderpricing(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -1442,7 +1442,7 @@ func TestTransactionPoolStableUnderpricing(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -1507,7 +1507,7 @@ func TestTransactionDeduplication(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
@ -1573,7 +1573,7 @@ func TestTransactionReplacement(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
@ -1668,7 +1668,7 @@ func testTransactionJournaling(t *testing.T, nolocals bool) {
os.Remove(journal)
// Create the original pool to inject transaction into the journal
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
@ -1766,7 +1766,7 @@ func TestTransactionStatusCheck(t *testing.T) {
t.Parallel()
// Create the pool to test the status retrievals with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)

@ -81,7 +81,7 @@ func TestEIP2200(t *testing.T) {
for i, tt := range eip2200Tests {
address := common.BytesToAddress([]byte("contract"))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
statedb.CreateAccount(address)
statedb.SetCode(address, hexutil.MustDecode(tt.input))
statedb.SetState(address, common.Hash{}, common.BytesToHash([]byte{tt.original}))

@ -70,7 +70,7 @@ const (
SHR
SAR
SHA3 = 0x20
SHA3 OpCode = 0x20
)
// 0x30 range - closure state.
@ -101,8 +101,8 @@ const (
NUMBER
DIFFICULTY
GASLIMIT
CHAINID = 0x46
SELFBALANCE = 0x47
CHAINID OpCode = 0x46
SELFBALANCE OpCode = 0x47
)
// 0x50 range - 'storage' and execution.
@ -213,10 +213,9 @@ const (
RETURN
DELEGATECALL
CREATE2
STATICCALL = 0xfa
REVERT = 0xfd
SELFDESTRUCT = 0xff
STATICCALL OpCode = 0xfa
REVERT OpCode = 0xfd
SELFDESTRUCT OpCode = 0xff
)
// Since the opcodes aren't all in order we can't use a regular slice.

@ -99,7 +99,7 @@ func Execute(code, input []byte, cfg *Config) ([]byte, *state.StateDB, error) {
setDefaults(cfg)
if cfg.State == nil {
cfg.State, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
cfg.State, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
}
var (
address = common.BytesToAddress([]byte("contract"))
@ -129,7 +129,7 @@ func Create(input []byte, cfg *Config) ([]byte, common.Address, uint64, error) {
setDefaults(cfg)
if cfg.State == nil {
cfg.State, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
cfg.State, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
}
var (
vmenv = NewEnv(cfg)

@ -98,7 +98,7 @@ func TestExecute(t *testing.T) {
}
func TestCall(t *testing.T) {
state, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
state, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
address := common.HexToAddress("0x0a")
state.SetCode(address, []byte{
byte(vm.PUSH1), 10,
@ -154,7 +154,7 @@ func BenchmarkCall(b *testing.B) {
}
func benchmarkEVM_Create(bench *testing.B, code string) {
var (
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
sender = common.BytesToAddress([]byte("sender"))
receiver = common.BytesToAddress([]byte("receiver"))
)

@ -64,7 +64,7 @@ func (h resultHash) Less(i, j int) bool { return bytes.Compare(h[i].Bytes(), h[j
func TestAccountRange(t *testing.T) {
var (
statedb = state.NewDatabase(rawdb.NewMemoryDatabase())
state, _ = state.New(common.Hash{}, statedb)
state, _ = state.New(common.Hash{}, statedb, nil)
addrs = [AccountRangeMaxResults * 2]common.Address{}
m = map[common.Address]bool{}
)
@ -162,7 +162,7 @@ func TestAccountRange(t *testing.T) {
func TestEmptyAccountRange(t *testing.T) {
var (
statedb = state.NewDatabase(rawdb.NewMemoryDatabase())
state, _ = state.New(common.Hash{}, statedb)
state, _ = state.New(common.Hash{}, statedb, nil)
)
state.Commit(true)
@ -188,7 +188,7 @@ func TestEmptyAccountRange(t *testing.T) {
func TestStorageRangeAt(t *testing.T) {
// Create a state where account 0x010000... has a few storage entries.
var (
state, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()))
state, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
addr = common.Address{0x01}
keys = []common.Hash{ // hashes of Keys of storage
common.HexToHash("340dd630ad21bf010b4e676dbfa9ba9a02175262d1fa356232cfde6cb5b47ef2"),

@ -155,7 +155,7 @@ func (api *PrivateDebugAPI) traceChain(ctx context.Context, start, end *types.Bl
return nil, fmt.Errorf("parent block #%d not found", number-1)
}
}
statedb, err := state.New(start.Root(), database)
statedb, err := state.New(start.Root(), database, nil)
if err != nil {
// If the starting state is missing, allow some number of blocks to be reexecuted
reexec := defaultTraceReexec
@ -168,7 +168,7 @@ func (api *PrivateDebugAPI) traceChain(ctx context.Context, start, end *types.Bl
if start == nil {
break
}
if statedb, err = state.New(start.Root(), database); err == nil {
if statedb, err = state.New(start.Root(), database, nil); err == nil {
break
}
}
@ -648,7 +648,7 @@ func (api *PrivateDebugAPI) computeStateDB(block *types.Block, reexec uint64) (*
if block == nil {
break
}
if statedb, err = state.New(block.Root(), database); err == nil {
if statedb, err = state.New(block.Root(), database, nil); err == nil {
break
}
}

@ -127,7 +127,8 @@ func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
config.Miner.GasPrice = new(big.Int).Set(DefaultConfig.Miner.GasPrice)
}
if config.NoPruning && config.TrieDirtyCache > 0 {
config.TrieCleanCache += config.TrieDirtyCache
config.TrieCleanCache += config.TrieDirtyCache * 3 / 5
config.SnapshotCache += config.TrieDirtyCache * 3 / 5
config.TrieDirtyCache = 0
}
log.Info("Allocated trie memory caches", "clean", common.StorageSize(config.TrieCleanCache)*1024*1024, "dirty", common.StorageSize(config.TrieDirtyCache)*1024*1024)
@ -184,6 +185,7 @@ func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
TrieDirtyLimit: config.TrieDirtyCache,
TrieDirtyDisabled: config.NoPruning,
TrieTimeLimit: config.TrieTimeout,
SnapshotLimit: config.SnapshotCache,
}
)
eth.blockchain, err = core.NewBlockChain(chainDb, cacheConfig, chainConfig, eth.engine, vmConfig, eth.shouldPreserve)
@ -204,7 +206,7 @@ func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
eth.txPool = core.NewTxPool(config.TxPool, chainConfig, eth.blockchain)
// Permit the downloader to use the trie cache allowance during fast sync
cacheLimit := cacheConfig.TrieCleanLimit + cacheConfig.TrieDirtyLimit
cacheLimit := cacheConfig.TrieCleanLimit + cacheConfig.TrieDirtyLimit + cacheConfig.SnapshotLimit
checkpoint := config.Checkpoint
if checkpoint == nil {
checkpoint = params.TrustedCheckpoints[genesisHash]

@ -50,6 +50,7 @@ var DefaultConfig = Config{
TrieCleanCache: 256,
TrieDirtyCache: 256,
TrieTimeout: 60 * time.Minute,
SnapshotCache: 256,
Miner: miner.Config{
GasFloor: 8000000,
GasCeil: 8000000,
@ -125,6 +126,7 @@ type Config struct {
TrieCleanCache int
TrieDirtyCache int
TrieTimeout time.Duration
SnapshotCache int
// Mining options
Miner miner.Config

@ -349,7 +349,7 @@ func testGetNodeData(t *testing.T, protocol int) {
}
accounts := []common.Address{testBank, acc1Addr, acc2Addr}
for i := uint64(0); i <= pm.blockchain.CurrentBlock().NumberU64(); i++ {
trie, _ := state.New(pm.blockchain.GetBlockByNumber(i).Root(), state.NewDatabase(statedb))
trie, _ := state.New(pm.blockchain.GetBlockByNumber(i).Root(), state.NewDatabase(statedb), nil)
for j, acc := range accounts {
state, _ := pm.blockchain.State()

@ -168,7 +168,7 @@ func TestPrestateTracerCreate2(t *testing.T) {
Code: []byte{},
Balance: big.NewInt(500000000000000),
}
statedb := tests.MakePreState(rawdb.NewMemoryDatabase(), alloc)
statedb := tests.MakePreState(rawdb.NewMemoryDatabase(), alloc, false)
// Create the tracer, the EVM environment and run it
tracer, err := New("prestateTracer")
@ -242,7 +242,7 @@ func TestCallTracer(t *testing.T) {
GasLimit: uint64(test.Context.GasLimit),
GasPrice: tx.GasPrice(),
}
statedb := tests.MakePreState(rawdb.NewMemoryDatabase(), test.Genesis.Alloc)
statedb := tests.MakePreState(rawdb.NewMemoryDatabase(), test.Genesis.Alloc, false)
// Create the tracer, the EVM environment and run it
tracer, err := New("callTracer")

@ -91,7 +91,7 @@ func odrAccounts(ctx context.Context, db ethdb.Database, config *params.ChainCon
for _, addr := range acc {
if bc != nil {
header := bc.GetHeaderByHash(bhash)
st, err = state.New(header.Root, state.NewDatabase(db))
st, err = state.New(header.Root, state.NewDatabase(db), nil)
} else {
header := lc.GetHeaderByHash(bhash)
st = light.NewState(ctx, header, lc.Odr())
@ -122,7 +122,7 @@ func odrContractCall(ctx context.Context, db ethdb.Database, config *params.Chai
data[35] = byte(i)
if bc != nil {
header := bc.GetHeaderByHash(bhash)
statedb, err := state.New(header.Root, state.NewDatabase(db))
statedb, err := state.New(header.Root, state.NewDatabase(db), nil)
if err == nil {
from := statedb.GetOrNewStateObject(bankAddr)

@ -149,7 +149,7 @@ func odrAccounts(ctx context.Context, db ethdb.Database, bc *core.BlockChain, lc
st = NewState(ctx, header, lc.Odr())
} else {
header := bc.GetHeaderByHash(bhash)
st, _ = state.New(header.Root, state.NewDatabase(db))
st, _ = state.New(header.Root, state.NewDatabase(db), nil)
}
var res []byte
@ -189,7 +189,7 @@ func odrContractCall(ctx context.Context, db ethdb.Database, bc *core.BlockChain
} else {
chain = bc
header = bc.GetHeaderByHash(bhash)
st, _ = state.New(header.Root, state.NewDatabase(db))
st, _ = state.New(header.Root, state.NewDatabase(db), nil)
}
// Perform read-only call.

@ -30,7 +30,7 @@ import (
)
func NewState(ctx context.Context, head *types.Header, odr OdrBackend) *state.StateDB {
state, _ := state.New(head.Root, NewStateDatabase(ctx, head, odr))
state, _ := state.New(head.Root, NewStateDatabase(ctx, head, odr), nil)
return state
}

@ -45,11 +45,13 @@ func TestBlockchain(t *testing.T) {
bt.skipLoad(`.*randomStatetest94.json.*`)
bt.walk(t, blockTestDir, func(t *testing.T, name string, test *BlockTest) {
if err := bt.checkFailure(t, name, test.Run()); err != nil {
t.Error(err)
if err := bt.checkFailure(t, name+"/trie", test.Run(false)); err != nil {
t.Errorf("test without snapshotter failed: %v", err)
}
if err := bt.checkFailure(t, name+"/snap", test.Run(true)); err != nil {
t.Errorf("test with snapshotter failed: %v", err)
}
})
// There is also a LegacyTests folder, containing blockchain tests generated
// prior to Istanbul. However, they are all derived from GeneralStateTests,
// which run natively, so there's no reason to run them here.

@ -94,7 +94,7 @@ type btHeaderMarshaling struct {
Timestamp math.HexOrDecimal64
}
func (t *BlockTest) Run() error {
func (t *BlockTest) Run(snapshotter bool) error {
config, ok := Forks[t.json.Network]
if !ok {
return UnsupportedForkError{t.json.Network}
@ -118,7 +118,12 @@ func (t *BlockTest) Run() error {
} else {
engine = ethash.NewShared()
}
chain, err := core.NewBlockChain(db, &core.CacheConfig{TrieCleanLimit: 0}, config, engine, vm.Config{}, nil)
cache := &core.CacheConfig{TrieCleanLimit: 0}
if snapshotter {
cache.SnapshotLimit = 1
cache.SnapshotWait = true
}
chain, err := core.NewBlockChain(db, cache, config, engine, vm.Config{}, nil)
if err != nil {
return err
}

@ -63,10 +63,17 @@ func TestState(t *testing.T) {
subtest := subtest
key := fmt.Sprintf("%s/%d", subtest.Fork, subtest.Index)
name := name + "/" + key
t.Run(key, func(t *testing.T) {
t.Run(key+"/trie", func(t *testing.T) {
withTrace(t, test.gasLimit(subtest), func(vmconfig vm.Config) error {
_, err := test.Run(subtest, vmconfig)
return st.checkFailure(t, name, err)
_, err := test.Run(subtest, vmconfig, false)
return st.checkFailure(t, name+"/trie", err)
})
})
t.Run(key+"/snap", func(t *testing.T) {
withTrace(t, test.gasLimit(subtest), func(vmconfig vm.Config) error {
_, err := test.Run(subtest, vmconfig, true)
return st.checkFailure(t, name+"/snap", err)
})
})
}

@ -24,6 +24,8 @@ import (
"strconv"
"strings"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math"
@ -145,8 +147,8 @@ func (t *StateTest) Subtests() []StateSubtest {
}
// Run executes a specific subtest and verifies the post-state and logs
func (t *StateTest) Run(subtest StateSubtest, vmconfig vm.Config) (*state.StateDB, error) {
statedb, root, err := t.RunNoVerify(subtest, vmconfig)
func (t *StateTest) Run(subtest StateSubtest, vmconfig vm.Config, snapshotter bool) (*state.StateDB, error) {
statedb, root, err := t.RunNoVerify(subtest, vmconfig, snapshotter)
if err != nil {
return statedb, err
}
@ -163,14 +165,14 @@ func (t *StateTest) Run(subtest StateSubtest, vmconfig vm.Config) (*state.StateD
}
// RunNoVerify runs a specific subtest and returns the statedb and post-state root
func (t *StateTest) RunNoVerify(subtest StateSubtest, vmconfig vm.Config) (*state.StateDB, common.Hash, error) {
func (t *StateTest) RunNoVerify(subtest StateSubtest, vmconfig vm.Config, snapshotter bool) (*state.StateDB, common.Hash, error) {
config, eips, err := getVMConfig(subtest.Fork)
if err != nil {
return nil, common.Hash{}, UnsupportedForkError{subtest.Fork}
}
vmconfig.ExtraEips = eips
block := t.genesis(config).ToBlock(nil)
statedb := MakePreState(rawdb.NewMemoryDatabase(), t.json.Pre)
statedb := MakePreState(rawdb.NewMemoryDatabase(), t.json.Pre, snapshotter)
post := t.json.Post[subtest.Fork][subtest.Index]
msg, err := t.json.Tx.toMessage(post)
@ -204,9 +206,9 @@ func (t *StateTest) gasLimit(subtest StateSubtest) uint64 {
return t.json.Tx.GasLimit[t.json.Post[subtest.Fork][subtest.Index].Indexes.Gas]
}
func MakePreState(db ethdb.Database, accounts core.GenesisAlloc) *state.StateDB {
func MakePreState(db ethdb.Database, accounts core.GenesisAlloc, snapshotter bool) *state.StateDB {
sdb := state.NewDatabase(db)
statedb, _ := state.New(common.Hash{}, sdb)
statedb, _ := state.New(common.Hash{}, sdb, nil)
for addr, a := range accounts {
statedb.SetCode(addr, a.Code)
statedb.SetNonce(addr, a.Nonce)
@ -217,7 +219,12 @@ func MakePreState(db ethdb.Database, accounts core.GenesisAlloc) *state.StateDB
}
// Commit and re-open to start with a clean state.
root, _ := statedb.Commit(false)
statedb, _ = state.New(root, sdb)
var snaps *snapshot.Tree
if snapshotter {
snaps = snapshot.New(db, sdb.TrieDB(), 1, root, false)
}
statedb, _ = state.New(root, sdb, snaps)
return statedb
}

@ -45,7 +45,6 @@ type ttFork struct {
}
func (tt *TransactionTest) Run(config *params.ChainConfig) error {
validateTx := func(rlpData hexutil.Bytes, signer types.Signer, isHomestead bool, isIstanbul bool) (*common.Address, *common.Hash, error) {
tx := new(types.Transaction)
if err := rlp.DecodeBytes(rlpData, tx); err != nil {

@ -30,7 +30,10 @@ func TestVM(t *testing.T) {
vmt.walk(t, vmTestDir, func(t *testing.T, name string, test *VMTest) {
withTrace(t, test.json.Exec.GasLimit, func(vmconfig vm.Config) error {
return vmt.checkFailure(t, name, test.Run(vmconfig))
return vmt.checkFailure(t, name+"/trie", test.Run(vmconfig, false))
})
withTrace(t, test.json.Exec.GasLimit, func(vmconfig vm.Config) error {
return vmt.checkFailure(t, name+"/snap", test.Run(vmconfig, true))
})
})
}

@ -78,8 +78,8 @@ type vmExecMarshaling struct {
GasPrice *math.HexOrDecimal256
}
func (t *VMTest) Run(vmconfig vm.Config) error {
statedb := MakePreState(rawdb.NewMemoryDatabase(), t.json.Pre)
func (t *VMTest) Run(vmconfig vm.Config, snapshotter bool) error {
statedb := MakePreState(rawdb.NewMemoryDatabase(), t.json.Pre, snapshotter)
ret, gasRemaining, err := t.exec(statedb, vmconfig)
if t.json.GasRemaining == nil {