core: fix transaction reorg issues within the tx pool

This commit is contained in:
Péter Szilágyi 2015-12-30 18:31:37 +02:00
parent 36137623ed
commit 649787a9bf
2 changed files with 344 additions and 44 deletions

@ -140,7 +140,6 @@ func (pool *TxPool) resetState() {
}
}
}
// Check the queue and move transactions over to the pending if possible
// or remove those that have become invalid
pool.checkQueue()
@ -301,17 +300,15 @@ func (pool *TxPool) addTx(hash common.Hash, addr common.Address, tx *types.Trans
}
// Add queues a single transaction in the pool if it is valid.
func (self *TxPool) Add(tx *types.Transaction) (err error) {
func (self *TxPool) Add(tx *types.Transaction) error {
self.mu.Lock()
defer self.mu.Unlock()
err = self.add(tx)
if err == nil {
// check and validate the queueue
self.checkQueue()
if err := self.add(tx); err != nil {
return err
}
return
self.checkQueue()
return nil
}
// AddTransactions attempts to queue all valid transactions in txs.
@ -417,51 +414,55 @@ func (pool *TxPool) checkQueue() {
pool.resetState()
}
var addq txQueue
var promote txQueue
for address, txs := range pool.queue {
// guessed nonce is the nonce currently kept by the tx pool (pending state)
guessedNonce := pool.pendingState.GetNonce(address)
// true nonce is the nonce known by the last state
currentState, err := pool.currentState()
if err != nil {
glog.Errorf("could not get current state: %v", err)
return
}
trueNonce := currentState.GetNonce(address)
addq := addq[:0]
balance := currentState.GetBalance(address)
var (
guessedNonce = pool.pendingState.GetNonce(address) // nonce currently kept by the tx pool (pending state)
trueNonce = currentState.GetNonce(address) // nonce known by the last state
)
promote = promote[:0]
for hash, tx := range txs {
if tx.Nonce() < trueNonce {
// Drop queued transactions whose nonce is lower than
// the account nonce because they have been processed.
// Drop processed or out of fund transactions
if tx.Nonce() < trueNonce || balance.Cmp(tx.Cost()) < 0 {
if glog.V(logger.Core) {
glog.Infof("removed tx (%v) from pool queue: low tx nonce or out of funds\n", tx)
}
delete(txs, hash)
} else {
// Collect the remaining transactions for the next pass.
addq = append(addq, txQueueEntry{hash, address, tx})
}
}
// Find the next consecutive nonce range starting at the
// current account nonce.
sort.Sort(addq)
for i, e := range addq {
// start deleting the transactions from the queue if they exceed the limit
if i > maxQueued {
delete(pool.queue[address], e.hash)
continue
}
if e.Nonce() > guessedNonce {
if len(addq)-i > maxQueued {
// Collect the remaining transactions for the next pass.
promote = append(promote, txQueueEntry{hash, address, tx})
}
// Find the next consecutive nonce range starting at the current account nonce,
// pushing the guessed nonce forward if we add consecutive transactions.
sort.Sort(promote)
for i, entry := range promote {
// If we reached a gap in the nonces, enforce transaction limit and stop
if entry.Nonce() > guessedNonce {
if len(promote)-i > maxQueued {
if glog.V(logger.Debug) {
glog.Infof("Queued tx limit exceeded for %s. Tx %s removed\n", common.PP(address[:]), common.PP(e.hash[:]))
glog.Infof("Queued tx limit exceeded for %s. Tx %s removed\n", common.PP(address[:]), common.PP(entry.hash[:]))
}
for j := i + maxQueued; j < len(addq); j++ {
delete(txs, addq[j].hash)
for _, drop := range promote[i+maxQueued:] {
delete(txs, drop.hash)
}
}
break
}
delete(txs, e.hash)
pool.addTx(e.hash, address, e.Transaction)
// Otherwise promote the transaction and move the guess nonce if needed
pool.addTx(entry.hash, address, entry.Transaction)
delete(txs, entry.hash)
if entry.Nonce() == guessedNonce {
guessedNonce++
}
}
// Delete the entire queue entry if it became empty.
if len(txs) == 0 {
@ -471,20 +472,56 @@ func (pool *TxPool) checkQueue() {
}
// validatePool removes invalid and processed transactions from the main pool.
// If a transaction is removed for being invalid (e.g. out of funds), all sub-
// sequent (Still valid) transactions are moved back into the future queue. This
// is important to prevent a drained account from DOSing the network with non
// executable transactions.
func (pool *TxPool) validatePool() {
state, err := pool.currentState()
if err != nil {
glog.V(logger.Info).Infoln("failed to get current state: %v", err)
return
}
balanceCache := make(map[common.Address]*big.Int)
// Clean up the pending pool, accumulating invalid nonces
gaps := make(map[common.Address]uint64)
for hash, tx := range pool.pending {
from, _ := tx.From() // err already checked
// perform light nonce validation
if state.GetNonce(from) > tx.Nonce() {
sender, _ := tx.From() // err already checked
// Perform light nonce and balance validation
balance := balanceCache[sender]
if balance == nil {
balance = state.GetBalance(sender)
balanceCache[sender] = balance
}
if past := state.GetNonce(sender) > tx.Nonce(); past || balance.Cmp(tx.Cost()) < 0 {
// Remove an already past it invalidated transaction
if glog.V(logger.Core) {
glog.Infof("removed tx (%x) from pool: low tx nonce\n", hash[:4])
glog.Infof("removed tx (%v) from pool: low tx nonce or out of funds\n", tx)
}
delete(pool.pending, hash)
// Track the smallest invalid nonce to postpone subsequent transactions
if !past {
if prev, ok := gaps[sender]; !ok || tx.Nonce() < prev {
gaps[sender] = tx.Nonce()
}
}
}
}
// Move all transactions after a gap back to the future queue
if len(gaps) > 0 {
for hash, tx := range pool.pending {
sender, _ := tx.From()
if gap, ok := gaps[sender]; ok && tx.Nonce() >= gap {
if glog.V(logger.Core) {
glog.Infof("postponed tx (%v) due to introduced gap\n", tx)
}
pool.queueTx(hash, tx)
delete(pool.pending, hash)
}
}
}
}

@ -90,7 +90,7 @@ func TestTransactionQueue(t *testing.T) {
tx := transaction(0, big.NewInt(100), key)
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
currentState.AddBalance(from, big.NewInt(1000))
pool.queueTx(tx.Hash(), tx)
pool.checkQueue()
@ -115,15 +115,17 @@ func TestTransactionQueue(t *testing.T) {
tx1 := transaction(0, big.NewInt(100), key)
tx2 := transaction(10, big.NewInt(100), key)
tx3 := transaction(11, big.NewInt(100), key)
from, _ = tx1.From()
currentState, _ = pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.queueTx(tx1.Hash(), tx1)
pool.queueTx(tx2.Hash(), tx2)
pool.queueTx(tx3.Hash(), tx3)
from, _ = tx1.From()
pool.checkQueue()
if len(pool.pending) != 1 {
t.Error("expected tx pool to be 1 =")
t.Error("expected tx pool to be 1, got", len(pool.pending))
}
if len(pool.queue[from]) != 2 {
t.Error("expected len(queue) == 2, got", len(pool.queue[from]))
@ -272,3 +274,264 @@ func TestRemovedTxEvent(t *testing.T) {
t.Error("expected 1 pending tx, got", len(pool.pending))
}
}
// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add some pending and some queued transactions
var (
tx0 = transaction(0, big.NewInt(100), key)
tx1 = transaction(1, big.NewInt(200), key)
tx10 = transaction(10, big.NewInt(100), key)
tx11 = transaction(11, big.NewInt(200), key)
)
pool.addTx(tx0.Hash(), account, tx0)
pool.addTx(tx1.Hash(), account, tx1)
pool.queueTx(tx10.Hash(), tx10)
pool.queueTx(tx11.Hash(), tx11)
// Check that pre and post validations leave the pool as is
if len(pool.pending) != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), 2)
}
if len(pool.queue[account]) != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 2)
}
pool.resetState()
if len(pool.pending) != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), 2)
}
if len(pool.queue[account]) != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 2)
}
// Reduce the balance of the account, and check that invalidated transactions are dropped
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[tx0.Hash()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[tx1.Hash()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account][tx10.Hash()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account][tx11.Hash()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx11)
}
}
// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
// postponed back into the future queue to prevent broadcating them.
func TestTransactionPostponing(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add a batch consecutive pending transactions for validation
txns := []*types.Transaction{}
for i := 0; i < 100; i++ {
var tx *types.Transaction
if i%2 == 0 {
tx = transaction(uint64(i), big.NewInt(100), key)
} else {
tx = transaction(uint64(i), big.NewInt(500), key)
}
pool.addTx(tx.Hash(), account, tx)
txns = append(txns, tx)
}
// Check that pre and post validations leave the pool as is
if len(pool.pending) != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns))
}
if len(pool.queue[account]) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0)
}
pool.resetState()
if len(pool.pending) != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns))
}
if len(pool.queue[account]) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0)
}
// Reduce the balance of the account, and check that transactions are reorganized
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[txns[0].Hash()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
}
if _, ok := pool.queue[account][txns[0].Hash()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
}
for i, tx := range txns[1:] {
if i%2 == 1 {
if _, ok := pool.pending[tx.Hash()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account][tx.Hash()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
}
} else {
if _, ok := pool.pending[tx.Hash()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account][tx.Hash()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
}
}
}
}
// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(1); i <= maxQueued+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != 0 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
}
if i <= maxQueued {
if len(pool.queue[account]) != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), i)
}
} else {
if len(pool.queue[account]) != maxQueued {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, len(pool.queue[account]), maxQueued)
}
}
}
}
// Tests that even if the transaction count belonging to a single account goes
// above some threshold, as long as the transactions are executable, they are
// accepted.
func TestTransactionPendingLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(0); i < maxQueued+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != int(i)+1 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), i+1)
}
if len(pool.queue[account]) != 0 {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), 0)
}
}
}
// Tests that the transaction limits are enforced the same way irrelevant whether
// the transactions are added one by one or in batches.
func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) }
func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }
func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
// Add a batch of transactions to a pool one by one
pool1, key1 := setupTxPool()
account1, _ := transaction(0, big.NewInt(0), key1).From()
state1, _ := pool1.currentState()
state1.AddBalance(account1, big.NewInt(1000000))
for i := uint64(0); i < maxQueued+5; i++ {
if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Add a batch of transactions to a pool in one bit batch
pool2, key2 := setupTxPool()
account2, _ := transaction(0, big.NewInt(0), key2).From()
state2, _ := pool2.currentState()
state2.AddBalance(account2, big.NewInt(1000000))
txns := []*types.Transaction{}
for i := uint64(0); i < maxQueued+5; i++ {
txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
}
pool2.AddTransactions(txns)
// Ensure the batch optimization honors the same pool mechanics
if len(pool1.pending) != len(pool2.pending) {
t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
}
if len(pool1.queue[account1]) != len(pool2.queue[account2]) {
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue[account1]), len(pool2.queue[account2]))
}
}
// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkValidatePool100(b *testing.B) { benchmarkValidatePool(b, 100) }
func BenchmarkValidatePool1000(b *testing.B) { benchmarkValidatePool(b, 1000) }
func BenchmarkValidatePool10000(b *testing.B) { benchmarkValidatePool(b, 10000) }
func benchmarkValidatePool(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(i), big.NewInt(100000), key)
pool.addTx(tx.Hash(), account, tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.validatePool()
}
}
// Benchmarks the speed of scheduling the contents of the future queue of the
// transaction pool.
func BenchmarkCheckQueue100(b *testing.B) { benchmarkCheckQueue(b, 100) }
func BenchmarkCheckQueue1000(b *testing.B) { benchmarkCheckQueue(b, 1000) }
func BenchmarkCheckQueue10000(b *testing.B) { benchmarkCheckQueue(b, 10000) }
func benchmarkCheckQueue(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(1+i), big.NewInt(100000), key)
pool.queueTx(tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.checkQueue()
}
}