core: transaction pool optimizations (#21328)

* core: added local tx pool test case

* core, crypto: various allocation savings regarding tx handling

* core/txlist, txpool: save a reheap operation, avoid some bigint allocs

Co-authored-by: Marius van der Wijden <m.vanderwijden@live.de>
This commit is contained in:
Martin Holst Swende 2020-07-14 21:42:32 +02:00 committed by GitHub
parent 5b081ab214
commit 6c9f040ebe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 104 additions and 28 deletions

@ -99,7 +99,30 @@ func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
// Filter iterates over the list of transactions and removes all of them for which
// the specified function evaluates to true.
// Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
// If you want to do several consecutive filterings, it's therefore better to first
// do a .filter(func1) followed by .Filter(func2) or reheap()
func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
removed := m.filter(filter)
// If transactions were removed, the heap and cache are ruined
if len(removed) > 0 {
m.reheap()
}
return removed
}
func (m *txSortedMap) reheap() {
*m.index = make([]uint64, 0, len(m.items))
for nonce := range m.items {
*m.index = append(*m.index, nonce)
}
heap.Init(m.index)
m.cache = nil
}
// filter is identical to Filter, but **does not** regenerate the heap. This method
// should only be used if followed immediately by a call to Filter or reheap()
func (m *txSortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
var removed types.Transactions
// Collect all the transactions to filter out
@ -109,14 +132,7 @@ func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transac
delete(m.items, nonce)
}
}
// If transactions were removed, the heap and cache are ruined
if len(removed) > 0 {
*m.index = make([]uint64, 0, len(m.items))
for nonce := range m.items {
*m.index = append(*m.index, nonce)
}
heap.Init(m.index)
m.cache = nil
}
return removed
@ -197,10 +213,7 @@ func (m *txSortedMap) Len() int {
return len(m.items)
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (m *txSortedMap) Flatten() types.Transactions {
func (m *txSortedMap) flatten() types.Transactions {
// If the sorting was not cached yet, create and cache it
if m.cache == nil {
m.cache = make(types.Transactions, 0, len(m.items))
@ -209,12 +222,27 @@ func (m *txSortedMap) Flatten() types.Transactions {
}
sort.Sort(types.TxByNonce(m.cache))
}
return m.cache
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (m *txSortedMap) Flatten() types.Transactions {
// Copy the cache to prevent accidental modifications
txs := make(types.Transactions, len(m.cache))
copy(txs, m.cache)
cache := m.flatten()
txs := make(types.Transactions, len(cache))
copy(txs, cache)
return txs
}
// LastElement returns the last element of a flattened list, thus, the
// transaction with the highest nonce
func (m *txSortedMap) LastElement() *types.Transaction {
cache := m.flatten()
return cache[len(cache)-1]
}
// txList is a "list" of transactions belonging to an account, sorted by account
// nonce. The same type can be used both for storing contiguous transactions for
// the executable/pending queue; and for storing gapped transactions for the non-
@ -252,7 +280,11 @@ func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Tran
// If there's an older better transaction, abort
old := l.txs.Get(tx.Nonce())
if old != nil {
threshold := new(big.Int).Div(new(big.Int).Mul(old.GasPrice(), big.NewInt(100+int64(priceBump))), big.NewInt(100))
// threshold = oldGP * (100 + priceBump) / 100
a := big.NewInt(100 + int64(priceBump))
a = a.Mul(a, old.GasPrice())
b := big.NewInt(100)
threshold := a.Div(a, b)
// Have to ensure that the new gas price is higher than the old gas
// price as well as checking the percentage threshold to ensure that
// this is accurate for low (Wei-level) gas price replacements
@ -296,20 +328,25 @@ func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions
l.gascap = gasLimit
// Filter out all the transactions above the account's funds
removed := l.txs.Filter(func(tx *types.Transaction) bool { return tx.Cost().Cmp(costLimit) > 0 || tx.Gas() > gasLimit })
removed := l.txs.Filter(func(tx *types.Transaction) bool {
return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
})
// If the list was strict, filter anything above the lowest nonce
if len(removed) == 0 {
return nil, nil
}
var invalids types.Transactions
if l.strict && len(removed) > 0 {
// If the list was strict, filter anything above the lowest nonce
if l.strict {
lowest := uint64(math.MaxUint64)
for _, tx := range removed {
if nonce := tx.Nonce(); lowest > nonce {
lowest = nonce
}
}
invalids = l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
}
l.txs.reheap()
return removed, invalids
}
@ -363,6 +400,12 @@ func (l *txList) Flatten() types.Transactions {
return l.txs.Flatten()
}
// LastElement returns the last element of a flattened list, thus, the
// transaction with the highest nonce
func (l *txList) LastElement() *types.Transaction {
return l.txs.LastElement()
}
// priceHeap is a heap.Interface implementation over transactions for retrieving
// price-sorted transactions to discard when the pool fills up.
type priceHeap []*types.Transaction
@ -495,8 +538,29 @@ func (l *txPricedList) Underpriced(tx *types.Transaction, local *accountSet) boo
// Discard finds a number of most underpriced transactions, removes them from the
// priced list and returns them for further removal from the entire pool.
func (l *txPricedList) Discard(slots int, local *accountSet) types.Transactions {
drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
save := make(types.Transactions, 0, 64) // Local underpriced transactions to keep
// If we have some local accountset, those will not be discarded
if !local.empty() {
// In case the list is filled to the brim with 'local' txs, we do this
// little check to avoid unpacking / repacking the heap later on, which
// is very expensive
discardable := 0
for _, tx := range *l.items {
if !local.containsTx(tx) {
discardable++
}
if discardable >= slots {
break
}
}
if slots > discardable {
slots = discardable
}
}
if slots == 0 {
return nil
}
drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
save := make(types.Transactions, 0, len(*l.items)-slots) // Local underpriced transactions to keep
for len(*l.items) > 0 && slots > 0 {
// Discard stale transactions if found during cleanup

@ -1059,8 +1059,8 @@ func (pool *TxPool) runReorg(done chan struct{}, reset *txpoolResetRequest, dirt
// Update all accounts to the latest known pending nonce
for addr, list := range pool.pending {
txs := list.Flatten() // Heavy but will be cached and is needed by the miner anyway
pool.pendingNonces.set(addr, txs[len(txs)-1].Nonce()+1)
highestPending := list.LastElement()
pool.pendingNonces.set(addr, highestPending.Nonce()+1)
}
pool.mu.Unlock()
@ -1457,6 +1457,10 @@ func (as *accountSet) contains(addr common.Address) bool {
return exist
}
func (as *accountSet) empty() bool {
return len(as.accounts) == 0
}
// containsTx checks if the sender of a given tx is within the set. If the sender
// cannot be derived, this method returns false.
func (as *accountSet) containsTx(tx *types.Transaction) bool {

@ -1890,11 +1890,15 @@ func benchmarkFuturePromotion(b *testing.B, size int) {
}
// Benchmarks the speed of batched transaction insertion.
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) }
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) }
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100, false) }
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000, false) }
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, false) }
func benchmarkPoolBatchInsert(b *testing.B, size int) {
func BenchmarkPoolBatchLocalInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100, true) }
func BenchmarkPoolBatchLocalInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000, true) }
func BenchmarkPoolBatchLocalInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, true) }
func benchmarkPoolBatchInsert(b *testing.B, size int, local bool) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool()
defer pool.Stop()
@ -1912,6 +1916,10 @@ func benchmarkPoolBatchInsert(b *testing.B, size int) {
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, batch := range batches {
pool.AddRemotes(batch)
if local {
pool.AddLocals(batch)
} else {
pool.AddRemotes(batch)
}
}
}